The KISS Principle applied to Dataflow
Language Paradigms for Visualization
Frameworks

Hans-Peter Bischof, Swathi Annamalai

Rochester Institute of Technology
Center for Computational Relativity and Gravitation
102 Lomb Memorial Dr., Rochester, NY 14623
{hpb,sxa9002}@cs.rit.edu

Abstract. Most visualization frameworks and visualization systems are
using dataflow languages as a programming paradigm. This paper will
contrast the different paradigms and propose a successfully implemented
and used KISS (Keep It Simple Stupid) approach for visualization frame-
works. A dataflow language needs a runtime environment for execution.
We will present a runtime environment based on a minimalistic dataflow
language design. An example will illustrate our approach with a few
selected examples.

Key words: Dataflow Languages, Visualization Frameworks

1 Introduction

This paper describes a successful adaption of the KISS principle to the design
and development of a visualization framework. In this paper we will first discuss
the use cases for dataflow languages and classify them. Then we will distill the
minimal requirements of dataflow languages for visualization frameworks. Finally
we present our design of a minimalistic dataflow environment, followed by an
example.

2 Dataflow Languages

Dataflow languages are not new. A short history of dataflow languages can be
found in Whiting’s et all[11] paper from 1994. More recent history shows that
dataflow languages are generally not used for generic programming purposes.
They are only used, and useful, if data becomes the main concept behind a pro-
gram. They provide a different way of how we look at computing. Von Neumann
inspired imperative language styles think in terms of control flow on a line by line
basis. In dataflow languages the primary focus is on the data moving through
the system.

The building blocks of dataflow languages are nodes which are connected via
a directed graph. The data is flowing between the nodes along the directed graph
during the execution of a program.

One of the original design goals of dataflow languages was to make parallel
programming and execution easier[9]. This goal is achieved by the property that
nodes do normally not share any state information with other nodes. This prop-
erty of dataflow languages naturally allows to parallelize or distribute dataflow
programs.

A dataflow program is a directed graph. The nodes are computing compo-
nents, and the edges are the dataflow paths. A node in a dataflow program has
well defined input and output communication endpoints which are used to con-
nect the nodes with each other. The communication endpoints may be typed in
order to allow only matching connections, which reduces the amount of possible
programming errors. Nodes should be able to process arguments which allow to
fine tune the functionality of a them.

A dataflow language is typically executed in an execution engine. The exe-
cution engine controls the execution of the components based on the dataflow
between the nodes.

The processing of data can be done in streaming or blocking mode. Kahn[5]
proposed 1974 that the reading on an empty input communication endpoint will
block the node from execution, until data becomes available. As a consequence,
processing of the data by a node can only start when all input communication
endpoints are valid, meaning presented with data.

Some dataflow languages can be programmed via a graphical programming
environment. Dataflow programs then are simply written by creating nodes,
connecting input and output communication channels, and assigning argument
values. Figure 1 shows one example of a graphical representation of a dataflow
program. The node Stars reads the file named sim.dat specified as an argument
and sends the data to the node Stars3D, and from there the data is sent to the
last node in the graph, a Camera.

sim.dat S o ot i s (g

bty
Browse... e _'—I Stars3D |"_ "‘| Camera3D |

Fig. 1. Hello World

The Unix|[8] shell[7] sh has been one of the first environments which success-
fully adopted a dataflow approach. The following UNIX pipeline sequence can
be seen as a very simple example of a dataflow program.

cat file | sort -nr | head -5

The shell, the executing engine, while executing this pipeline sequence, has to
create and start the processes, create the communication buffers, and connect
standard in with standard out of the different processes. The shell knows nothing
about the functionality of the nodes, or the type of data exchanged, but it is
responsible for the dataflow from node to node and for the scheduling of the
execution of the individual nodes.

A distributed version of this command sequence would look like the following:

cat file | ssh biggie sort -nr | head -5

The sort command will be executed on the host named biggie; the other com-
mands will be executed locally. What has to happen in order to execute this
program sequence is rather difficult from a shell point of view. Network commu-
nications need to be made, buffers need to be created, and two OS schedulers
have to work in unison etc. Nevertheless the use case is rather simple and the
developer of sort designed and implemented the command without imagining a
use case like this. The ease of use and the simplicity of adding new components
comes from the fact, that the operating system is responsible for the communi-
cation aspects.

The rest of this paper discusses a short history of dataflow languages and
describe a minimalistic dataflow language for visualizations frameworks.

3 Discussion of Dataflow Languages

General purpose programming languages are not well suited to design solutions
for dataflow based problems. A dataflow program is a directed graph, where the
node act on the data they receive, and the edges connect the nodes. A node may
have more than one incoming edge, and may have more than one outgoing edge.

Concurrencies of processes are implicit and controlled by the system in dataflow
models[1]. Therefore they are less prone to errors due to deadlocks within the
system components. Originally developed to exploit parallelism, dataflow lan-
guages are created with a need to appropriately combine data, task and pipeline
parallelism to accomplish maximum performance. Granularity as a measure of
dividing workload amongst system components is applied to dataflow models as
fine grained and coarse grained dataflow.

Dataflow languages begun to appear in the late 1970s with TDFL (Textual
Dataflow Language) being the first of the kinds to be developed using the graph
based programming concept. LAU[4], VAL[6], SISAL[3] were some of the other
dataflow languages that emerged using dataflow properties such as single as-
signment, conditional evaluation, iterative constructs, etc. LAB VIEW][10], a
popularly used program development application has built-in scheduler that ex-
ploits parallelism due to multi-threading and multi-processing properties of the
language. Commonly used in Digital Signal Processing applications for chip de-
sign, LAB VIEW components are structured as wires depicting propagation of
variables and operations (nodes) are specified by sets of instructions.

We will discuss the requirements for dataflow languages in the next chapter.

4 Discussion of Requirements for Dataflow Languages for
Visualization Frameworks

As a first requirement for dataflow language, it must be possible to create the
dataflow graph, i.e., this means it must be possible to create the components
and connect the data communication endpoints with each other. Additionally it
must be possible to fine tune the behavior of the components during execution
in order to make a dataflow language program useful.

From here on, two possible paths can be chosen. The first one is a highly
sophisticated dataflow language, which supports the use of variables, control
structures, function calls, etc. These languages allow to write complete data
flow programs.

As an example, Iris Explorer [2] is using skm as the scripting language. Skm
is a general purpose language and has roughly 50 commands and is not too
hard to learn but very difficult to master. A note from IRIS Explorer User’s
Guide (007-1371-030.1994): ”This chapter describes how to use the scripting
language, Skm, to take full advantage of the command interface in Explorer.”
This means, in order to use, or create additions to Iris Explorer you have to
fully understand skm. Figure 2 shows a simple code snippet from the handbook
(www.rc.yale.edu/userguides/graphics/explorer/html/doc/ug/ch6.htm):

(define image-conn
(procedure (modl mod2)
(connect modl "Img Out" mod2 "Img In")))

Fig. 2. Simple example of the Skm scripting language

Within this approach languages like skm must be learnt in order write visu-
alization programs, which means each developer goes through a steep learning
curve. The property that nodes do not change state information of other nodes
has to be kept in order to make it possible to distribute the program over a
network. A language must not leave this up to the developer, the language must
enforce this property. The execution engine, which has to support all provided
features is rather complex, and therefore difficult to develop and to substitute.
Adding new components requires the complete knowledge and side effects of the
dataflow language.

The question to ask here is, what makes an environment useful and accessible
to a large group of users/developers.

The other choice would be a simple language, which supports the creating of
components, connecting them to a directed graph, and supplying the components
with arguments. The control structures are implemented in components using
commonly known languages, like Java, etc.

The major difference between the two choices is where to put the complexity
of the program. The first choice allows to put the complexity in the language; the

second choice will force to put the complexity in the building block, the node.
The second choice will enforce the creating of reusable, simple, building blocks
used in a straight forward dataflow environment.

The rest of the paper will describe a visualization framework named Spiegel
1. A minimalistic approach was chosen as a design principle for this framework.
Spiegel is developed in Java and uses a dataflow language name Sprache?. This
language has 8 keywords and can be learned in 5 minutes.

5 Minimalistic Design of Dataflow Environments for
Visualization Frameworks

Our solution for the dataflow environment consists of 3 components: a simple
language Sprache to define the dataflow graph; a programming interface which
each component has to implement; and a runtime engine which executes the
dataflow program.

Sprache has 8 keywords, which allows to create components, connect them,
set default values and create functions. The following code snippet shows an
example, leaving out the CLASSPATH for easier readability:

function new extractor Stars # defining of a component
function set Stars blackHoleSize 3 # setting a value
function connect BH_extractor output stars to BH_visualizer input stars

connection of

communication channels

Fig. 3. Sprache: Dataflow Language Example

A component, developed in Java, which can be used in the Spiegel framework
has:

— k named and typed data input communication endpoints, 0 < k

— [named and typed data output communication endpoints, 0 < [

— m named and typed argument inputs

— 1 command channel endpoint

— to implement a programming interface, which requires to implement one
method update()

The method update(), will be called if one of the input communication end-
points or an argument has an updated value. The execution engine is responsible
for invoking the method, providing the values from the input communication

! Spiegel is the German word for mirror. Like the mirror in a telescope helps to observe
the universe, Spiegel helps to observe the simulation of objects in space.

2 Sprache is the German word for language. Both names were chosen by Jonathan
Coles.

endpoints, passing along the arguments, and sending the data along the com-
munication paths.

6 A Camera Follows the Path of a Black Hole During a
Merger Process

As a demonstration of its ease of use We would like to use the Spiegel system
to solve the following problem: A data set contains the paths of three black
holes during a black hole merger process. For the visualization, a camera should
be fixed at a given position in space, but follow the motion of a specific black
hole. The problem here is, that the dataflow needs to be analyzed during the
visualization process. Figure 4 shows a graphical representation of the Sprache
program; Figure 5 shoes the code of the program. The BH_extractor reads the
position of the black holes and passes this information to the BH_visualizer
and PositionOfBh. PositionOfBh extracts the position information of black hole
number 3, and sends the position information to the BH_Cam. The position of
the black hole will be updated with each time step, therefore the camera follows
the position of the black hole.

Which Black Hole to Follow? J' Look-At Position
14444 REEEE:

ﬂ—{ PositionOfbh I:: ::1 BH_Cam |

t t ¢ 1t+1¢44
‘ BH_extractor),..., m{ BH_visualizer }*—

Fig. 4. Follows the Path of a Black Hole During a Merger Process

The first five lines create the 5 components, the value 3 is assigned to a
component in line six, and the last four lines connect the components.

This program contains all 8 keywords and shows that even though the lan-
guage is simple, interesting visualization systems can easily be described.

A component will be automatically executed on a remote machine, if a host
name is supplied. The program shown in Figure 6 the component BH_visualizer
is supplied with the host name biggie. The execution engine will in a trans-
parent way to the component transfer the classes needed to biggie, create the
needed communication channels, and will perform the execution. Figure 6 is the
dataflow equivalent of

cat file | ssh biggie sort -nr | head -5

function
function
function
function
function

function

function
function
function
function

new UserFunction BH_Cam

new Stars BH_extractor

new Position0fThisOne PositionOfbh
new ConstantInteger ConstantInteger
new Stars3Dvolume BH_visualizer

ConstantInteger set value 3

connect BH_extractor output stars to PositionOfbh input stars
connect BH_extractor output stars to BH_visualizer input stars
connect PositionOfbh output position_2 to BH_Cam input location
connect ConstantInteger output value to PositionOfbh input thisOne

Fig. 5. Sprache: Dataflow Language Example for Following the Path of a Black Hole

b4y dyvyy Ay

‘ BH_extractor |—o— —o—l PositionOfbh I:: - ::1 BH_Cam ‘

Fig. 6. Follows the Path of a Black Hole During a Merger Process

H H H H H
g W N

**

0]

H H B H

© 00 N

7 Conclusion

We presented a minimalistic dataflow language and runtime engine, which are
easy to use, easy to understand, and easy to extend. Everything, which does
not concern the dataflow, in other words all control flow decisions are done in
Java. This allows a large group of developer to use the system with a two hour
learning curve.

We lately successfully added an audio component to the system, which al-
lows us to create a stereo audio representation of the data. The authors know of
no other visualization framework where this is doable with little effort. The pre-
sented framework is a system where the KISS principle was successfully adopted.

Acknowledgements

We would like to express our thanks to Manuela Campanelli, Carlos Lousto
and Yosef Zlowocher, all RIT, for their help and fruitful discussions. This team
provided the data used and the interpretation of the visual representation.

References

1. J. Dennis. A Language Design for Structured Concurrency. The Design and Im-
plementation of Programming Languages. Lecture Notes in Computer Science,
54:23-42, 1977.

2. David Foulser. Iris explorer: a framework for investigation. SIGGRAPH Comput.
Graph., 29(2):13-16, 1995.

3. J. Gaudiot, W. Bohm, T. DeBoni, J. Feo, and P. Miller. The sisal model of
functional programming and its implementation, 1997.

4. John R. Gurd, John R. W. Glauert, and Chris C. Kirkham. Generation of dataflow
graphical object code for the lapse programming language. In CONPAR ’81: Pro-
ceedings of the Conference on Analysing Problem Classes and Programming for
Parallel Computing, pages 155-168, London, UK, 1981. Springer-Verlag.

5. G. Kahn. The semantics of a simple language for parallel programming. Informa-
tion Processing, 74:471-475, 1974.

6. James R. McGraw. The val language: Description and analysis. ACM Trans.
Program. Lang. Syst., 4(1):44-82, 1982.

7. D. M. Ritchie and K. Thompson. The unix time-sharing system. Communications
of the ACM, 17:365-375, 1974.

8. Dennis M. Ritchie and Ken Thompson. The unix time-sharing system. Commun.
ACM, 17(7):365-375, 1974.

9. William Robert Sutherland. The on-line graphical specification of computer pro-
cedures, ph.d. dissertation. 1966.

10. Jeffrey Travis and Lisa K. Wells. LabVIEW for Everyone with Cdrom. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2001.

11. Paul G. Whiting and Robert S. V. Pascoe. A history of data-flow languages. IEEE
Ann. Hist. Comput., 16(4):38-59, 1994.

