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Method: exploit corotating frame

• Expand waveform 
!

!

!

!

• SPA term by term 
• As in SpinTaylorF2 


!

• Substitute into inner products, Fisher
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Example SPA: SpinTaylorF2 

• Time-domain signal

!

!

!

• Fourier-transform term-by-term

!

!

!

!

• Regroup terms: “carrier+sideband” [restricted to (l,m’)=(2,2) + (2,-2)]
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Expanding isolates distinct time-frequency tracks

• Distinct time-frequency trajectories 
!
!

• Orthogonal (!) : 


• Known   [Brown, Lundgren, O’Shaughnessy 2012]


• Unique angular dependence for each term


!
!

• (Intrinsic) Fisher matrix separates, simplifies  
• Each term: (amplitude) * (fisher from one mode)


• Leading order result:
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Simple approximate (intrinsic) Fisher matrix 

!

!

!

!

• Good:

• Easy to calculate


• Similar to nonprecessing 
(weighted average)


• Intuition about separating 
parameters


• “Bad”

• Ansatz / approximation


• At best, retains all degeneracies 
of full problem (phases, …)
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Simple approximate (intrinsic) Fisher matrix 

!

!

!

!

• Good:

• Easy to calculate


• Similar to nonprecessing 
(weighted average)


• Intuition about separating 
parameters


• “Bad”

• Ansatz / approximation


• At best, retains all degeneracies 
of full problem (phases, …)
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Conclusions

• Approximate Fisher matrix for single-spin binaries

• Simple, intuitive


• Recover nonprecessing limit


• Tractable analytic  calculations:  small tilt angle; small spins; …


• Practical applications

• Trends in parameter measurement vs source masses and viewing angle


• What can we measure for a “face on” binary,                : ~ no modulations?


• Big picture: Quickly assess ability of GW measurements to extract information 
and decide between astronomical scenarios


• Additionally:

• (Another) Frequency-domain precessing template 


• Easy to understand: SPA term by term
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Implications

• Illustrate measurements possible via GW  [vs astrophysics]

• Masses                            [vs NS, BH mass distribution]      [e.g, Aasi et al 2013; Vitale et al 2014]


• Spins                               [vs X-ray binaries]                        [e.g., Aasi et al 2013; Vitale et al 2014]


• Geometry of merger        [vs SN kicks; short GRBs...]


• Understand results via simple calculation

• Separation of scales appears in observables


• Calibrated analytic calculation against high-resolution, complete PE


• Future directions

• Production scale: validate over parameter space; advanced instruments


• More physics:   2 spins (Kesden et al); higher harmonics ; merger phase; high mass; …


•  Transition & corner cases: ansatz breaks if precession too slow


• Usable: portable code for users


• simplified analysis & formulae              [SpinTaylorF2: Lundgren and ROS PRD 89 44021 (2013)]
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Technical details: How to make the sausage
• Standard approximations


• “Restricted” amplitude


• Phase change (not amplitude) 
dominates overlap


!
• (Approximate) orthogonality of harmonics 

with different ‘m’


!
• Rotation is “slowly varying”


• Implies time-frequency relationship ~ 
independent of ‘m’, rotation


• [Easily relaxed]


!
• (Approximate) simple precession
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Example SPA: SpinTaylorF2 [details]

• Time domain form

!

!

• Kinematics

!

• Precession angles

!

!

• Frequency domain form
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Parameters and results 1: Instantaneous geometry
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FIG. 7: Source geometry: Angular momenta (C): This figure demontrates (1) that the individual angular momenta to
be well-constrained to two discrete regions; (2) higher harmonics allow us to distinguish between the two alternatives; and (3)
that the precession cone is well-determined, at the accuracy level expected from the number of precession cycles. As in Figure
4, colors indicate di�erent noise realizations; solid and dotted lines indicate the neglect or use of higher harmonics; the green
point shows the expected solution; and the solid blue path shows the trajectory of L and S over one precession cycle. Top
panels:Projection of the orbital angular momentum direction (L̂; top left panel); spin angular momentum direction (Ŝ; center
panel); and total angular momentum direction Ĵ into the plane of the sky (top right). Bottom left panel : The precession angle
�JL of L around J . For comparison, the green points show the simulated values; when present, the solid blue path shows
variables covered in one precession cycle. Roughly speaking, the precession phase can be measured with relative accuracy of a
few times ⌅�1: tens of percent. Bottom right panel : Illustration that both the opening angle ⇥ of the precession cone and the
angle ⇤JN between the line of sight and Ĵ can be measured accurately, with relative error � 1/NP ⌅ significantly smaller than
the relative error in the precession phase �JL. ROS: Fix plots, they are not showing the right base points

quasicircular (or even orbit-averaged) EOMs is not prop-
agated back in...and with precession, di�erences can be
significant. Physical intuition and experience with NR
suggests the orbit-averaged equations are more physi-
cal...but detailed studies are needed.

* Demonstrate geometrical parameters can be mea-
sured and their measurements understood. Believe
these symmetry-breaking features are leading-order ef-
fects, less-susceptible to systematic error than fine issues
in the GW phase

** particularly opening angle of precession cone, which
can be constrained with extremely high precision in a rel-
atively model-neutral way. Should be INDEPENDENT
of PN order (confirm!) – systematics are interpreta-
tion/ID of �(f)?

** that reference angle along precession cone does not
shift best-fit values for masses, or shape of distribution
(intuitively obvious) – but beware case B

** that except in very well-chosen coordinates, the con-
fidence regions are not ellipsoidal, so a naive Fisher ma-
trix approach is poorly-suited to the problem

* demonstrate that higher harmonics add some relative
value here – not small things, either

** this is despite the fact that we have lots of small
eigenvalues, so higher harmonics have greater leverage to
change the small measurements a lot

** main e�ect is GLOBAL, to eliminate degenerate
peaks, usually in orientation

** but this can influence the intrinsic parameters, de-
pending on the precise orientation of the precession phase
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Dynamics of and GW from our BH-NS 

• What

!

• Dynamics: 

• spin, precession significant at >40 Hz


• GW

• (corotating chirp) x (slow rotation)

12
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Dynamics of and GW from our BH-NS 

• What

!

• Dynamics: 

• spin, precession significant at >40 Hz


• GW

• (corotating chirp) x (slow rotation)
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Measuring gravitational waves

Detector 

• Nearly gaussian, stationary


!
!
!
!

• Band limited


!
Signal


• More cycles at low frequency


• “Typical” merger physics not in band


• “Input” binary dominates


• Orbital phase: degenerate evolution
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J. Read, KITP conference 2012
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Eq. (18) of Ref. [6]). The NQC coefficients are fixed by re-
quiring that the EOB (2,2) mode agrees with the NR input
values for |h22|, ⌥t |h22|, ⌥ 2

t |h22|, ⌥t⇥22 and ⌥ 2
t ⇥22, evaluated

at the peak of |h22|. Using the 38 NR nonprecessing wave-
forms in the SXS catalog and Teukolsky waveforms com-
puted in the small-mass-ratio limit [21], we updated the fit-
ting formulas for the NR input values given in Table IV of
Ref. [6]. We use these to iteratively compute the NQC co-
efficients as described in Sect. IIB of Ref. [6]. While pre-
vious nonspinning EOB models [8] were calibrated without
enforcing any time delay between the peak in the (2,2) am-
plitude and in the orbital frequency, here, as in Refs. [5, 6],
we require a lag �t22

peak which varies with the physical param-
eters of the binary. The idea of introducing �t22

peak into the
model was inspired by studies in the small-mass-ratio limit,
where such time delay was first seen with EOB trajectories
sourcing Teukolsky waveforms [22] and accurately quantified
in Ref. [21]. Finally, the inspiral-plunge waveform is simply
defined as hinsp�plunge

22 ⇤ N22hF
22, and hinsp�plunge

⌅m ⇤ hF
⌅m when

(⌅,m) ⌅= (2,2).
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FIG. 1. Unfaithfulness of (2,2) EOB waveforms for all the 38 non-
precessing BH binaries in the SXS catalog. Only a few selected cases
are labeled in the legend.

As usual, the EOB merger-ringdown (RD) waveform is
built as a linear combination of quasi normal-modes (QNMs)
of the remnant BH [4]

hmerger�RD
⌅m (t) =

N�1

⇥
n=0

A⌅mn e�i⌅⌅mn(t�t⌅mmatch) , (5)

where N is the number of overtones, t⌅mmatch is the time when
|hinsp�plunge

⌅m | peaks, A⌅mn is the complex amplitude of the n-
th overtone of the (⌅,m) mode, and ⌅⌅mn = ⌃⌅mn � i/⇧⌅mn is
its complex frequency, having positive (real) frequency ⌃⌅mn
and decay time ⇧⌅mn. The frequencies ⌅⌅mn depend on the
mass Mf and spin a f of the final Kerr BH, and are tabulated
in Ref. [23]. To predict Mf we use the phenomenological for-
mula proposed by Ref. [24], but we replace its equal-mass
limit [Eq. (11) therein] with the highly accurate fit given in

Eq. (9) of Ref. [13]. To compute a f , we start from the for-
mula of Ref. [25] (which also predicts the direction of the
final spin for precessing binaries), and use the simulations
in the SXS calatog to refit its nonprecessing limit; the main
change we introduce are 4 new fitting coefficients designed
to improve the equal-mass, high-spin corner of the parameter
space, where the prediction of Ref. [25] has residuals exceed-
ing 5%. We improve the stability of the ringdown modeling
across the entire parameter space by (i) assuming a monotonic
behavior of a f with decreasing ⇤ for extremal spins, and (ii)
replacing some of the higher physical overtones with pseudo-
QNMs that depend on the merger frequency, on ⌅220 and on
⇤ , and moderate the rise of the ringdown GW frequency [5, 6].

Finally, the complete inspiral-merger-ringdown waveform
is built as the smooth matching of hinsp�plunge

⌅m to hmerger�RD
⌅m at

t⌅mmatch, over an interval �t⌅mmatch, following the hybrid matching
procedure of Ref. [5] to fix the coefficients A⌅mn in Eq. (5).
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FIG. 2. NR and EOB (2,2) waveforms of the BH binary with q = 1
and �1 = �2 = 0.98. The two waveforms are aligned at their ampli-
tude peak (marked by a vertical dashed line). R is the distance to the
source.

Results and discussion. The SXS catalog includes 8 non-
spinning BH binaries with q = 1, 1.5, 2, 3, 4, 5, 6, 8, and
30 spinning, nonprecessing BH binaries with: q = 1 and
�1 = �2 = 0.98, 0.97, ±0.95, ±0.9, 0.85, ±0.8, ±0.6, ±0.44,
±0.2; q = 1, 1.5, 3, 5, 8, �1 = ±0.5 and �2 = 0; q = 1.5 and
�1 = ��2 = ±0.5; q = 2, �1 = 0.6 and �2 = 0; q = 3 and
�1 = �2 = ±0.5. We find that to accurately match all 38
nonprecessing waveforms, it is sufficient to calibrate the EOB
model to a much smaller subset of them. However, since our
goal is an accurate model for the entire parameter space, most
of which is not covered by the NR waveforms, we prefer to ex-
ploit all available non-degenerate NR information in the cali-
bration. In Fig. 1 we compare the EOB waveforms to all the
38 nonprecessing NR waveforms by computing their unfaith-
fulness

F̄ ⇤ 1�max
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Taracchini et al 2013 (1311.2544)
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Inferring source parameters

!

!

• Evidence for signal

!

!

!
• Inputs: 


• Prior knowledge                                      about distribution of 

• Signal model

• Noise model

• Algorithm for integral/exploration in many dimensions
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Comparison: S6 PE paper (BH-NS)
• Same framework [earlier], smaller study


• No analysis or geometry

16

Aasi et al 2013
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FIG. 11: Posterior probability distributions for the dimensionless spin magnitude of the heavier (left) and lighter (right)
components of the binary from the spinning NSBH software injection (section III B 2), as inferred in the model ST (table I),
full-spin STPN; the true values are shown with vertical red lines.

FIG. 12: (left) Posterior probability distributions for the chirp mass M of the blind injection (section III C) for signal models
at 2.5pN. The injected value is marked with a vertical line. (right) Overlay of 90% probability regions for the joint posterior
distribution on the component masses m1, m2 of the binary. The bias introduced by an analysis with a model which disallows
spin is clear.
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FIG. 9: (left) Posterior probability distributions for the chirp mass M of the spinning NSBH software injection (section III B 2)
for the seven signal models considered. The injected value is marked with a vertical red line. (right) Overlay of 90% probability
regions for the joint posterior distribution on the component masses m1, m2 of the binary.

FIG. 10: Joint posterior probability regions for the location and inclination angle of the spinning NSBH software injection
(section III B 2). (left) The binary is localized well on the sky. (right) In this case, the true value lies outside of the 90%
credible interval of the joint distance-inclination marginalized probability density function.


