A semianalytic Fisher matrix for precessing BH-NS binaries

Richard O'Shaughnessy (CCRG, RIT)

with Prakash Nepal (UWM) and Andrew Lundgren (AEI-Hannover)

 $R \cdot I \cdot T$

2015 April APS, Baltimore MD

Method: exploit corotating frame

• Expand waveform

$$
h(t, \hat{n}, \lambda) = e^{-2i\Psi_J} \frac{M}{d_L} \sum_{lm\bar{m}} h_{l\bar{m}}^{(C)}(t, \lambda) D_{m\bar{m}}^l(R(t)) Y_{lm}^{(-2)}(\hat{n})
$$

=
$$
e^{-2i\Psi_J} \frac{M}{d_L} \sum_{lm\bar{m}} e^{-i\bar{m}(\Phi_{\text{orb}} + \gamma)} e^{-im\alpha} d_{m\bar{m}}^l(\beta) A_{l\bar{m}}^c(t) Y_{lm}^{(-2)}(\hat{n})
$$

• SPA term by term

• As in SpinTaylorF2

Lundgren and ROS PRD 89 44021 (2013)

• Substitute into inner products, Fisher

$$
\Gamma_{ab}=\langle\partial_a h|\partial_b h\rangle=\sum_{l,m,\bar m\; l',m',\bar m'}\ldots
$$

$$
\begin{array}{c}\n\begin{array}{c}\n\overline{\mathbf{J}} \\
\overline{\mathbf{J}} \\
\overline{\
$$

$$
\hat{\mathbf{L}} = \sin \beta_{JL} \cos \alpha_{JL} \hat{x}' + \sin \beta_{JL} \sin \alpha_{JL} \hat{y}'
$$

$$
+ \cos \beta_{JL} \hat{\mathbf{J}}
$$

$$
\frac{d\hat{\mathbf{L}}}{dt} \simeq \frac{\mathbf{J}}{r^3} \left(2 + \frac{3m_2}{2m_1} \right) \times \hat{\mathbf{L}}
$$

Apostolatos et al 1994: one spin

$$
\gamma=-\int \cos\beta_{JL}d\alpha_{JL}
$$

• Time-domain signal

$$
h_{+}(t) - ih_{\times}(t) = e^{-2i\psi} \sum_{lm} h_{lm}(t) - {}_{2}Y_{l,m}(\theta, \phi)
$$

=
$$
e^{-2i\psi} \sum_{lm'} \sum_{m} D^{l}_{m',m} (\alpha(t), \beta(t), \zeta(t)) h_{l,m}^{\text{ROT}}(t) - {}_{2}Y_{l,m'}(\theta, \phi)
$$

• Fourier-transform term-by-term

$$
X(t) \equiv D_{m',2}^l(R(t)) \times \frac{\eta v^2}{d_L} e^{-i2\Phi(t)} \times (-2) Y_{l,m'}(\theta, \phi)
$$

$$
\tilde{X}(\omega) \simeq D_{m',2}^l(R(t(\omega))) \times \frac{\eta v^2}{d_L} \frac{e^{i\Psi(\omega)}}{\sqrt{id^2\Phi/dt^2/\pi}} \times (-2) Y_{l,m'}(\theta, \phi)
$$

• Regroup terms: "carrier+sideband" [restricted to (I,m')=(2,2) + (2,-2)]

Expanding isolates distinct time-frequency tracks

• Distinct time-frequency trajectories

$$
2\pi f_{m,\bar{m}} \equiv m(\dot{\Phi}_{\rm orb} - \dot{\alpha}\cos\beta_{JL}) + \bar{m}\dot{\alpha}
$$

- Orthogonal (!) :
	- Known [Brown, Lundgren, O'Shaughnessy 2012]
- Unique angular dependence for each term

- **• (Intrinsic) Fisher matrix separates, simplifies**
	- Each term: (amplitude) * (fisher from **one** mode)
	- Leading order result:

$$
\Gamma_{ab} = \sum_{m=2}^{2} \sum_{s=\pm 1} \rho_{2ms}^2 \hat{\Gamma}_{ab}^{ms}
$$

Simple approximate (intrinsic) Fisher matrix

0

df

 $\frac{4(\pi {\cal M}_c^2)^2}{2}$

 $\frac{(\mathcal{M}_c)^2}{3d_L^2} (\pi \mathcal{M}_c f)^{-7/3}$

 $S_h(f)$

 $\rho_{2ms}^2 \equiv |_{-2}Y_{2m}(\theta_{JN})d_{m,2s}^2(\beta)|^2 \int_0^\infty$

- Amplitude
- Angular dependence
- Phase

$$
\hat{\Gamma}_{ab}^{(ms)} = \frac{\int_{0}^{\infty} \frac{df}{S_{h}(f)} (\pi M_{c}f)^{-7/3} \partial_{a} (\Psi_{2} - 2\zeta - m s \alpha) \partial_{b} (\Psi_{2} - 2\zeta - m s \alpha)}{\int_{0}^{\infty} \frac{df}{S_{h}(f)} (\pi M_{c}f)^{-7/3}}
$$
\n• Good:
\n• Easy to calculate
\n• Similar to nonprecessing
\n(weighted average)
\n• Intuition about separating
\nparameters
\n• "Bad"
\n• Ansatz / approximation
\n• At best, retains all degeneracies
\nof full problem (phases, ...)
\n• study
\n• study of the system of the system.

ROS et al 2014 (PRD 89 064048)

Simple approximate (intrinsic) Fisher matrix

$$
\rho_{2ms}^2 \equiv |_{-2} Y_{2m}(\theta_{JN}) d_{m,2s}^2(\beta)|^2 \int_0^\infty \frac{df}{S_h(f)} \frac{4(\pi \mathcal{M}_c^2)^2}{3d_L^2} (\pi \mathcal{M}_c f)^{-7/3}
$$

- Amplitude
- Angular dependence
- Phase

$$
\hat{\Gamma}_{ab}^{(ms)} = \frac{\int_0^\infty \frac{df}{S_h(f)} (\pi \mathcal{M}_c f)^{-7/3} \partial_a (\Psi_2 - 2\zeta - ms\alpha) \partial_b (\Psi_2 - 2\zeta - ms\alpha)}{\int_0^\infty \frac{df}{S_h(f)} (\pi \mathcal{M}_c f)^{-7/3}}
$$

- Good:
	- Easy to calculate
	- Similar to nonprecessing (weighted average)
	- Intuition about separating parameters
- "Bad"
	- Ansatz / approximation
	- At best, retains all degeneracies of full problem (phases, …)

Conclusions

- Approximate Fisher matrix for single-spin binaries
	- Simple, intuitive
		- Recover nonprecessing limit
		- Tractable analytic calculations: small tilt angle; small spins; …
- Practical applications
	- Trends in parameter measurement vs source masses and viewing angle
	- What can we measure for a "face on" binary, $\theta_{JN} \simeq 0$: ~ no modulations?
	- **Big picture: Quickly** assess ability of GW measurements to extract information and decide between astronomical scenarios
- Additionally:
	- (Another) Frequency-domain precessing template
		- Easy to understand: SPA term by term

Klein et al 2014 (here: M7) Lundgren and ROS ("SpinTaylorF2") PRD 89 44021 (2013) Schmidt et al ("IMRPhenomP")

Implications

- Illustrate measurements possible via GW [vs astrophysics]
	- Masses [vs NS, BH mass distribution] [e.g, Aasi et al 2013; Vitale et al 2014]
	- Spins **Example 2014** [vs X-ray binaries] **Example 2013; Vitale et al 2014**

- Geometry of merger [vs SN kicks; short GRBs...]
- **• Understand** results via simple calculation
	- Separation of scales appears in observables
	- Calibrated analytic calculation against high-resolution, complete PE
- **•** Future directions
	- Production scale: validate over parameter space; advanced instruments
	- More physics: 2 spins (Kesden et al); higher harmonics ; merger phase; high mass; ...
		- Transition & corner cases: ansatz breaks if precession too slow
	- Usable: portable code for users
		- simplified analysis & formulae [SpinTaylorF2: Lundgren and ROS PRD 89 44021 (2013)]

Technical details: How to make the sausage

- Standard approximations
	- "Restricted" amplitude
	- Phase change (not amplitude) dominates overlap
- (Approximate) orthogonality of harmonics with different 'm'
- Rotation is "slowly varying"
	- Implies time-frequency relationship \sim independent of 'm', rotation
	- [Easily relaxed]
- (Approximate) simple precession

 $\langle \partial_a h | \partial_b h \rangle \simeq \langle h | (\partial_a \Psi)(\partial_b \Psi) | h \rangle$

$$
\left\langle h_{22}^{(C)} D_{2\bar{m}}^{l}(R) | h_{22}^{(C)} D_{2m}^{l}(R) \right\rangle \simeq 0
$$

$$
\omega = \frac{d}{dt} [\Phi_{orb} - 2\gamma - m\alpha] \simeq \frac{d}{dt} \Phi_{orb}
$$

$$
\frac{^{300}}{^{250}}
$$

$$
\frac{^{300}}{^{100}}
$$

$$
\frac{^{50}}{^{100}}
$$

• Time domain form

$$
h_{+} = \frac{2M\eta}{D} v^{2} \text{Re} \bigg[\sum_{m} z_{m} e^{im\alpha} e^{2i(\Phi - \zeta)} \bigg]
$$

\n
$$
z_{m} = -2Y_{2,m}(\beta, 0) \frac{4\pi}{5} \left[e^{-2i\psi} - 2Y_{2m}(\theta, 0) + e^{2i\psi} - 2Y_{2-m}(\theta, 0) \right].
$$

• Kinematics

$$
\gamma = \frac{|\mathbf{S}_1|}{|\mathbf{L}|} = \left(\frac{m_1 \chi}{m_2}\right) v ;
$$

\n
$$
\Gamma_J = |J|/|\mathbf{L}| = \sqrt{1 + 2\kappa \gamma + \gamma^2} .
$$

• Precession angles

$$
\alpha(v) = \eta \left(2 + \frac{3m_2}{2m_1} \right) \int v^5 \Gamma_J \left(\frac{dt}{dv} \right) dv
$$

$$
\zeta(v) = \eta \left(2 + \frac{3m_2}{2m_1} \right) \int v^5 (1 + \kappa \gamma) \left(\frac{dt}{dv} \right) dv.
$$

• Frequency domain form

$$
\bar{h}_+(f) \simeq \frac{2\pi\mathcal{M}_c^2}{D} \sqrt{\frac{5}{96\pi}} (\pi\mathcal{M}f)^{-7/6} \sum_m z_m e^{i(\Psi - 2\zeta) + im\alpha}
$$

Parameters and results 1: Instantaneous geometry

Dynamics of and GW from our BH-NS

Dynamics of and GW from our BH-NS

Measuring gravitational waves M_{A} ivicasuring gravitation \overline{a} **behavior of** α for extremal spins, and α

• Evidence for signal

$$
Z(d|H_1) = \frac{p(\lbrace d \rbrace | H_1)}{p(\lbrace d \rbrace | H_0)} = \int d\lambda p(\vec{\lambda}|H_1) \frac{p(\lbrace d \rbrace | \vec{\lambda}, H_1)}{p(\lbrace d \rbrace | H_0)} \xrightarrow{H_1 \text{ : with signal}}
$$

$$
\xrightarrow{\text{posterior distribution}}
$$

- Inputs:
	- Prior knowledge $p(\lambda|H_1)$
	- Signal model $h(\lambda)$
	- Noise model

 $p({d|\vec{\lambda}, H_1}) = p({d - h(\vec{\lambda})}||H_0)$

about distribution of λ

• Algorithm for integral/exploration in many dimensions

 $p({d} | H_0)$

Comparison: S6 PE paper (BH-NS)

- Same framework [earlier], smaller study
- No analysis or geometry

Aasi et al 2013 Λ ooi ot al (1111) H ddicid \mathcal{L} Ulli

