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What do you want to know?

• Solving the binary black hole precession equations 
• What are we solving and how?

• Efficient solution for two-spin precession + inspiral

• Understanding the adiabatic evolution of spin precession

• Morphological classification

!

• Parameter estimation 
• Reasonable sources: identify signatures of both spins

• “Morphological classification” and its astrophysical significance

!

!

• Why should you care about precessing BH binaries?
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Binary inspiral and precession
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• Orbit, precession, inspiral timescale hierarchy

• Conserved on precession time

• Conserved on precession time and      

(2PN) adiabatic invariant 
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B. Parameterizing the resonant solutions

Spin-orbit resonances are coplanar equilibrium solu-
tions of the 3PN spin-precession equations [6, 13]. Res-
onant solutions can be found fixing �⇥ = 0� or �⇥ =
180� and solving the spin precession equations to ob-
tain �1 and �2. Two di⇤erent one-parameter families of
solutions can be found for �⇥ = 0� and �⇥ = 180�
[5, 6]. We parameterize these one-dimensional families
by a “projected e⇤ective spin” ⇤, defined as

⇤ ⌅ S0 · L̂
M2

�����
f=fref

⇧
⌅
�⌅1 + q⌅2

1 + q
,
⌅1 + q⌅2

1 + q

⇧
, (8)

where the “e⇤ective spin” S0, first introduced in [14], is

S0 = (1 + q)S1 +
⇥

1 +
1
q

⇤
S2 . (9)

Note that for our choice of maximal spins ⌅i = 1, Eq. (8)
implies that ⇤ ⇧ [�1,+1]. Fig. 1 shows the resonant fam-
ilies superimposed with contours of constant ⇤. For each
resonant family (i.e. �⇥ = 0� or 180�), there is a one-
to-one correspondence between ⇤ and resonant solutions
(�1, �2) of the PN equations. The parameter ⇤ is particu-
larly well-suited to describe spin-orbit dynamics, because
it is approximately conserved by orbital evolution when
all known PN orders are included [5] (and exactly con-
served up to 2PN when the 2PN-order radiation-reaction
[15, 16] is used).

The approximate conservation of the parameter ⇤ sug-
gests that resonant binaries should dynamically resemble
single-spin binaries. This idea leads to the main results
of this paper, and it will be discussed in detail in the
subsequent section.

C. Di�erent families have qualitatively di�erent
precessional dynamics

The two resonant families have qualitatively di⇤erent
precessional dynamics. Put simply, in the �⇥ = 180�
resonance, the two spins are on opposite sides of the or-
bital angular momentum. For comparable-mass binaries
with similar spin magnitude, this results in a small to-
tal spin and, consequently, the total and orbital angular
momentum are nearly aligned and the orbital plane does
not precess significantly. By contrast, in the �⇥ = 0�
resonance, the two spins point to the same side of the
orbital angular momentum. Except for very small angles
�1 and �2, this results in a large total spin component
perpendicular to the orbital angular momentum. There-
fore L and J are significantly misaligned, which leads to
significant orbital precession. This is also illistrated in
Fig. 2, which shows the degree of alignment between the
unit orbital and total angular momentum vectors L̂, Ĵ
for the two resonant families at fref . For �⇥ = 180�,
L̂ and Ĵ are almost completely aligned for any value of
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FIG. 1. (color online) One-parameter families of resonant bi-
naries (red, green) superimposed with contours of constant
⇥ = S0 · L̂/M2. Red (top-left) and green (bottom-right)
curves show resonant configurations in the two coplanar fam-
ilies for our canonical choice of the parameters (q = 0.8,
M = 13.5M�, ⇤1 = ⇤2 = 1) at three di�erent emitted fre-
quencies: 20 Hz (dashed), 60 Hz (i.e. fref , solid) and 150 Hz
(dotted). The value of ⇥ ⇤ [�1, 1] is constant over the sloped
dashed lines. Each of them always cross the resonant curves
exactly once, thus unambiguously identifying a single binary
[i.e. a pair (�1, �2)] in each family.

the parameter ⇤ whereas binaries in the �⇥ = 0� fam-
ily show significant misalignment of L̂ and Ĵ unless ⇤ is
close to ±1. Note that ⇤ = ±1 corresponds to the bottom
left and top right corner in the cos �1 vs. cos �2 plane of
Fig. 1, where the two resonant families meet. Binaries
with ⇤ = ±1 have spins totally aligned or anti-aligned
with L̂, and therefore belong to both families.

Barring these special cases, however, the weak preces-
sion of binaries with �⇥ = 180� and the strong preces-
sion of binaries with �⇥ = 0� will produce significant dif-
ferences in their GW signal. We illustrate this in Fig. 3,
where we show the expected SNR accumulated over the
frequency domain for various members of the �⇥ = 0�
and the �⇥ = 180� families. In each panel of this figure
we fix a frame by specifying the relative orientation of the
line of sight n̂ with respect the orbital angular momen-
tum L̂, i.e. ⇥ = arccos(L̂ · n̂), at the reference frequency
fref .

The pronounced precession of the orbital plane in bi-
naries with �⇥ = 0� manifests itself in significant os-
cillations in the SNR per frequency bin in these figures
as compared with the �⇥ = 180� family. In contrast,
fixing a frame by choosing ⇥ such that the line of sight
n̂ is aligned with the total angular momentum Ĵ elimi-
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for the two resonant families at fref . For �⇥ = 180�,
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FIG. 1. (color online) One-parameter families of resonant bi-
naries (red, green) superimposed with contours of constant
⇥ = S0 · L̂/M2. Red (top-left) and green (bottom-right)
curves show resonant configurations in the two coplanar fam-
ilies for our canonical choice of the parameters (q = 0.8,
M = 13.5M�, ⇤1 = ⇤2 = 1) at three di�erent emitted fre-
quencies: 20 Hz (dashed), 60 Hz (i.e. fref , solid) and 150 Hz
(dotted). The value of ⇥ ⇤ [�1, 1] is constant over the sloped
dashed lines. Each of them always cross the resonant curves
exactly once, thus unambiguously identifying a single binary
[i.e. a pair (�1, �2)] in each family.

the parameter ⇤ whereas binaries in the �⇥ = 0� fam-
ily show significant misalignment of L̂ and Ĵ unless ⇤ is
close to ±1. Note that ⇤ = ±1 corresponds to the bottom
left and top right corner in the cos �1 vs. cos �2 plane of
Fig. 1, where the two resonant families meet. Binaries
with ⇤ = ±1 have spins totally aligned or anti-aligned
with L̂, and therefore belong to both families.

Barring these special cases, however, the weak preces-
sion of binaries with �⇥ = 180� and the strong preces-
sion of binaries with �⇥ = 0� will produce significant dif-
ferences in their GW signal. We illustrate this in Fig. 3,
where we show the expected SNR accumulated over the
frequency domain for various members of the �⇥ = 0�
and the �⇥ = 180� families. In each panel of this figure
we fix a frame by specifying the relative orientation of the
line of sight n̂ with respect the orbital angular momen-
tum L̂, i.e. ⇥ = arccos(L̂ · n̂), at the reference frequency
fref .

The pronounced precession of the orbital plane in bi-
naries with �⇥ = 0� manifests itself in significant os-
cillations in the SNR per frequency bin in these figures
as compared with the �⇥ = 180� family. In contrast,
fixing a frame by choosing ⇥ such that the line of sight
n̂ is aligned with the total angular momentum Ĵ elimi-

Constant from Racine 2008
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Coordinates for precessing spins

• Spin vectors relative to L
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FIG. 1. (color online) One-parameter families of resonant bi-
naries (red, green) superimposed with contours of constant
⇥ = S0 · L̂/M2. Red (top-left) and green (bottom-right)
curves show resonant configurations in the two coplanar fam-
ilies for our canonical choice of the parameters (q = 0.8,
M = 13.5M�, ⇤1 = ⇤2 = 1) at three di�erent emitted fre-
quencies: 20 Hz (dashed), 60 Hz (i.e. fref , solid) and 150 Hz
(dotted). The value of ⇥ ⇤ [�1, 1] is constant over the sloped
dashed lines. Each of them always cross the resonant curves
exactly once, thus unambiguously identifying a single binary
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the parameter ⇤ whereas binaries in the �⇥ = 0� fam-
ily show significant misalignment of L̂ and Ĵ unless ⇤ is
close to ±1. Note that ⇤ = ±1 corresponds to the bottom
left and top right corner in the cos �1 vs. cos �2 plane of
Fig. 1, where the two resonant families meet. Binaries
with ⇤ = ±1 have spins totally aligned or anti-aligned
with L̂, and therefore belong to both families.

Barring these special cases, however, the weak preces-
sion of binaries with �⇥ = 180� and the strong preces-
sion of binaries with �⇥ = 0� will produce significant dif-
ferences in their GW signal. We illustrate this in Fig. 3,
where we show the expected SNR accumulated over the
frequency domain for various members of the �⇥ = 0�
and the �⇥ = 180� families. In each panel of this figure
we fix a frame by specifying the relative orientation of the
line of sight n̂ with respect the orbital angular momen-
tum L̂, i.e. ⇥ = arccos(L̂ · n̂), at the reference frequency
fref .

The pronounced precession of the orbital plane in bi-
naries with �⇥ = 0� manifests itself in significant os-
cillations in the SNR per frequency bin in these figures
as compared with the �⇥ = 180� family. In contrast,
fixing a frame by choosing ⇥ such that the line of sight
n̂ is aligned with the total angular momentum Ĵ elimi-
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where Seff is some linear combination of S1 and S2 (note
this is not the same effective spin as in [7]). Since LN !
_LN " 0, without radiation reaction, the magnitude of the

orbital angular momentum vector is constant with spin
precession. The magnitude of the total spin vector S, on
the other hand, is not conserved as the angle changes
between the two-spin vectors (each of constant
magnitude).

The relations (2.11) and (2.12) constrain the binary
system to a subset of the complete parameter space defined
by the three vectors LN, S1, and S2. We believe it is this set
of constraints that best explains much of the behavior
presented below, as opposed to a more classical description
of resonance based on Hamiltonian mechanics and energy
minima in phase space (see, e.g., Murray and Dermott [24],
Sussman and Wisdom [25]). However, a Hamiltonian for-
mulation of the post-Newtonian equations of motion such
as in [26–28] may prove to give a more classical explana-
tion to these apparently geometric constraints.

The inclusion of gravitational radiation causes the orbit
to shrink and also circularize in time, reducing a, e, and the
magnitude of the angular momentum
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!!!!!!!!!!!!!!!!!!!!!!!!

ma#1$ e2%
q

: (2.13)

Following Peters [23] and adopting units with m " 1, we
use the coupled first-order differential equations
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to evolve the binary orbital elements in time (higher-order
evolution equations for these orbital elements, including
spin effects, can be found in [29–31]). All of the above
orbit-averaged precession and radiation reaction equations
have been tested and compared to the full 2.5-order post-
Newtonian equations of motion in Kidder [19]. The agree-
ment is very good for most of the inspiral, all the way down
to r & 10 m, after which almost any post-Newtonian ap-
proximation becomes increasingly uncertain.

III. GEOMETRY OF EQUILIBRIUM

One of the most difficult aspects of studying the spin-
ning binary system is the problem of visualizing and
analyzing the orientation of the two spins and the angular
momentum in an informative way. In general, these three
vectors are defined by nine coordinates [the angular mo-
mentum is also related to a and e through (2.13)]. Since the
spin magnitudes S1 and S2 are conserved in the point mass

approximation, and we can pick a coordinate system where
LN points in the êz direction, we are left with five coor-
dinates: #LN; "1; "2;#1;#2%. Furthermore, the overall dy-
namics are preserved under rotation around LN so we can
reduce the spin degrees of freedom by defining the êx
direction along #1 " 0, leaving four independent coordi-
nates to define the orientation of the system:
#LN; "1; "2;!#%. Figure 1 shows a schematic of the ge-
ometry used throughout this paper. Following the post-
Newtonian formalism, all angles and vector magnitudes
are defined in a Cartesian, flat space-time.

In this coordinate system, there exists a set of equilib-
rium spin configurations for which LN, "1, "2, and !# are
constant (without radiation reaction), even though the in-
dividual vectors might vary in time from the point of view
of a fixed inertial coordinate system. Trivial equilibrium
examples include the collinear cases with cos"1 " '1 and
cos"2 " '1. More interesting cases occur when S1, S2,
and LN all appear to precess around a fixed axis at a
constant rate so as to remain in a fixed relative orientation.
These points in parameter space can be found by solving
(cf. Apostolatos [9])

θ1

S1

LN

ey

ex∆φ

θ2

S2

FIG. 1. Schematic diagram of the spin and orbital angular
momentum vectors. The coordinate system is defined such that
LN is along the z axis and #"1; "2% are the respective angles
between LN and #S1;S2%. The projection of S1 onto the x-y plane
is defined to be along the x axis so the azimuthal spin angles are
#1 " 0 and #2 " !#.
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Merging BH binary

Free precession
sin�⇥ ⇥ ±1 (pile-up)

No tides
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mass ra
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tides

FIG. 1. Schematic summary of our predictions for the spin orientation of BH binaries as they enter the LIGO/Virgo band.

Before summarizing our results, we first introduce
some notation. Consider a BH binary with component
masses m1 ⌅ m2, total mass M = m1 + m2 and mass
ratio q = m2/m1 ⇤ 1. The spin Si of each BH can be
written as

Si = ⇥i
Gm2

i

c
Ŝi , (1)

where 0 ⇤ ⇥i ⇤ 1 (i = 1, 2) is the dimensionless spin mag-
nitude and a hat denotes a unit vector. Our goal is not
to rival the complexity of existing population-synthesis
models of compact-binary formation, but rather to inves-
tigate specifically those astrophysical ingredients which
a⇤ect the spin dynamics. We therefore focus on maxi-
mally spinning BH binaries with mass ratio q = 0.8, a
typical value predicted by population-synthesis studies
(cf. e.g. Fig. 9 of [12]).

Let us define �i to be the angle between each spin Si

and the orbital angular momentum of the binary L, �12
to be the angle between S1 and S2, and �⇥ to be the
angle between the projection of the spins on the orbital
plane:

cos �1 = Ŝ1 · L̂, cos �2 = Ŝ2 · L̂, (2)

cos �12 = Ŝ1 · Ŝ2, cos�⇥ =
Ŝ1 ⇥ L̂

|Ŝ1 ⇥ L̂|
· Ŝ2 ⇥ L̂

|Ŝ2 ⇥ L̂|
. (3)

As we will demonstrate below, the physical mechanisms
leading to the formation of the BH binary leave a char-
acteristic imprint on the angles �⇥ and �12. This has
implications for GW data analysis and, even more strik-
ingly, for GW astronomy: at least in principle, measure-
ments of spin orientation with future GW detections can
constrain the astrophysical evolutionary processes that
lead the binary to merger.

Binaries can be locked into spin-orbit resonances if
there is an initial asymmetry in their spin alignments
with the orbital angular momentum, i.e. if �1 ⌃= �2 (see
[6, 11] and Fig. 1 of [9]). In these resonant configurations,
the BH spins and orbital angular momentum jointly pre-
cess in a common plane, which we refer to as “resonant-
plane locking”. Binaries in which the two BH spins and
the orbital angular momentum do not share a common
plane at the end of the inspiral are said to precess freely.
If initially �1 < �2, the two spins align with each other

so that �⇥ ⇧ 0�, �12 ⇧ 0�. If initially �1 > �2, the
projections of the BH spins on the orbital plane anti-
align so that �⇥ ⇧ 180�, �12 ⇧ �1 + �2. The strength
of resonance locking depends on the binary mass ratio:
resonances are strongest for mass ratios q close – but not
exactly equal – to unity (cf. Figs. 3 and 4 of [11]), which
is a typical case for stellar-mass BH binaries detectable
by Advanced LIGO/Virgo.
Astrophysical formation channels determine the initial

conditions for PN evolutions in the late inspiral. As a re-
sult they determine whether resonant locking can occur,
and which resonant configuration is favored. Here we
introduce a model for BH binary formation that allows
us to establish a link between binary-formation channels
and the near-merger spin configurations of precessing BH
binaries.

A. Executive summary

Our main findings are summarized schematically in
Fig. 1. Supernova (SN) kicks tilt the orbit, producing
a misalignment between the orbital angular momentum
and the orientation of the spins of the binary members
[71]. As a result, the main factors determining the spin
alignment of a BH binary are the magnitude of SN kicks
and the possibility that other physical e⇤ects may realign
the spins with the orbital angular momentum in between
SN events. Dominant among these physical e⇤ects (aside
from the SN kick itself) are the e⇧ciency of tidal inter-
actions and the possibility of a mass-ratio reversal due
to mass transfer from the initially more massive, faster
evolving progenitor.
Tides a⇤ect the binary in two significant ways: they

align the spins of stellar BH progenitors with the or-
bital angular momentum and they reduce the binary ec-
centricity. Additionally, tides force stars to rotate syn-
chronously with the orbit, increasing the likelihood of a
large BH spin at collapse and implying that our results
will depend only mildly (if at all) on the initial stellar
spin. Consider the evolution of the system between the
two SN events, when the binary consists of a BH and
a non-degenerate star. If tidal interactions are e⇧cient
(a reasonable assumption, as we argue in Appendix A6)
they tend to align the star (but not the BH) with the or-

• Separate problem 

• Solve “co-precessing frame”: 
spins relative to L (3-d ODE) 

• Integration solves inertial frame

GW frequency 
(Hz)
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Solving precession
• Conservative evolution (L fixed)


• Count parameters: only one left!

•                  magnitudes conserved       6

• Frame aligned with L                           3

• Magnitude of J conserved                   2

•    conserved                                         1


!

•  Recover inertial frame L, spins by integration + rotation 

!

!

• Precession and inspiral

• Because L precesses around J 

• Average is one precession cycle

6

Other approaches: Montana State 2013; 
  Tessmer et al 2013;  

dL
dt

= �L � L

L� r

dJ

dL
=

�
Ĵ · L̂

�

(directions only)

(and S1 in ‘xz’ plane)

�

L,S1,S2

http://adsabs.harvard.edu/abs/2013PhRvD..88f3011C
http://adsabs.harvard.edu/abs/2013PhRvD..87f4035T
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Solution enhances computation and insight

• Efficient 
• Minimal stepping (=inspiral timescale)

• Can evolve astrophysical scales 

according to theory (not randomly), 
cheaply 
!

• Evolution in 
• Conserved constants as coordinates

!

• Movie: allowed region vs time

!

• Evolution to low J with “similar” shape 

• At large r,           allowed region = 

“distorted”                     plane 

7

J, �

cos �1, cos �2

J2 = L2 + (S1 + S2)2 + LS1 cos �1 + LS2 cos �2

J, �

q=0.3, maximal spins
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How do spin dynamics change versus time?

8

S = |�S1 + �S2| Inspiral

�� = azimuthal angle of �S1 about �S
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Phase space for double-spin evolution

• Fixed points: Global maximum, minimum of       at fixed J
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“Transfer function” and precession morphology

10
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Parameter estimation: Parameter constraints
• GW measurements constrain plausible source parameters

• Example: Pick exactly resonant sources (=edges of        phase space)

!

!

!

!

!

!

!

!

!

• Clear signature of both spins

11
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Parameter estimation: Distinguishing resonances
• Correctly identify “morphology”  …. except “face-on”, non-modulated binaries

12
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How might BH-BH binaries form?

• Formation order encoded in morphology?

13

6

a) Main-sequence binary b) First mass-transfer phase
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FIG. 3. A schematic representation of our model for BH binary formation and spin evolution. Empty circles represent stars,
filled circles represent BHs. Phase (a) shows the initial main-sequence stellar binary. Mass transfer from the primary to the
secondary (b) leads to a possible mass-ratio reversal. The first SN kick tilts the angle between the spins and the orbital plane
(c). Tidal interactions can realign the stellar member of the binary (d). The second SN kick tilts the orbital plane again (e).
Gravitational radiation shrinks and circularizes the binary before our explicit PN evolution begins (f).

We assume that the spins of the primary S⇥ and sec-
ondary S⇥⇥ are initially aligned with the orbital angular
momentum L. As the primary evolves, its envelope ex-
pands until it fills its Roche lobe, initiating stable mass
transfer to the secondary (phase b in Fig. 3). The ef-
ficiency of mass transfer is usually parametrized via a
parameter fa � [0, 1]: cf. Eq. (A9) of Appendix A 3. We
assume this mass transfer continues until the primary has
depleted its hydrogen envelope, leaving behind a helium
core of mass M ⇥

C = 8.5M� (M ⇥
C = 8M�) in the SMR

(RMR) scenario. Following [12], we assume semiconser-
vative mass transfer: the secondary accretes a fraction
fa = 1/2 of the mass lost by the primary, growing to a
mass M ⇥⇥

Sf = 30M� (M ⇥⇥
Sf = 35M�) in the SMR (RMR)

scenario at the end of the mass-transfer episode. In prin-
ciple mass transfer should also change the orbital separa-
tion, but we neglect this change as it is smaller than the

width of the distribution of initial separations, as well
as subsequent changes in the separation during the CE
phase.
Following the end of mass transfer, the primary ex-

plodes in a SN (phase c in Fig. 3) producing a BH of
mass M ⇥

BH = 7.5 M� (M ⇥
BH = 6 M� ) in the SMR

(RMR) scenario. For simplicity, in our simulations the
spin of this newly born BH is assumed to be maximal3

(�i = 1, i = 1 , 2) and aligned with its stellar progenitor.
The SN ejecta are generally emitted asymmetrically, im-
parting a recoil velocity to the BH which is generally a
fraction of the typical recoil velocities for protoneutron

3 Note that spin-orbit resonances are e�ective provided that the
dimensionless spins �i � 0.5 [6].

Gerosa et al 2013

In frame of orbitInertial frame
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How might BH-BH binaries form?

• Formation order?

14

Gerosa et al 2013

In frame of orbitInertial frame
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FIG. 3. A schematic representation of our model for BH binary formation and spin evolution. Empty circles represent stars,
filled circles represent BHs. Phase (a) shows the initial main-sequence stellar binary. Mass transfer from the primary to the
secondary (b) leads to a possible mass-ratio reversal. The first SN kick tilts the angle between the spins and the orbital plane
(c). Tidal interactions can realign the stellar member of the binary (d). The second SN kick tilts the orbital plane again (e).
Gravitational radiation shrinks and circularizes the binary before our explicit PN evolution begins (f).

We assume that the spins of the primary S⇥ and sec-
ondary S⇥⇥ are initially aligned with the orbital angular
momentum L. As the primary evolves, its envelope ex-
pands until it fills its Roche lobe, initiating stable mass
transfer to the secondary (phase b in Fig. 3). The ef-
ficiency of mass transfer is usually parametrized via a
parameter fa � [0, 1]: cf. Eq. (A9) of Appendix A 3. We
assume this mass transfer continues until the primary has
depleted its hydrogen envelope, leaving behind a helium
core of mass M ⇥

C = 8.5M� (M ⇥
C = 8M�) in the SMR

(RMR) scenario. Following [12], we assume semiconser-
vative mass transfer: the secondary accretes a fraction
fa = 1/2 of the mass lost by the primary, growing to a
mass M ⇥⇥

Sf = 30M� (M ⇥⇥
Sf = 35M�) in the SMR (RMR)

scenario at the end of the mass-transfer episode. In prin-
ciple mass transfer should also change the orbital separa-
tion, but we neglect this change as it is smaller than the

width of the distribution of initial separations, as well
as subsequent changes in the separation during the CE
phase.
Following the end of mass transfer, the primary ex-

plodes in a SN (phase c in Fig. 3) producing a BH of
mass M ⇥

BH = 7.5 M� (M ⇥
BH = 6 M� ) in the SMR

(RMR) scenario. For simplicity, in our simulations the
spin of this newly born BH is assumed to be maximal3

(�i = 1, i = 1 , 2) and aligned with its stellar progenitor.
The SN ejecta are generally emitted asymmetrically, im-
parting a recoil velocity to the BH which is generally a
fraction of the typical recoil velocities for protoneutron

3 Note that spin-orbit resonances are e�ective provided that the
dimensionless spins �i � 0.5 [6].
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How might BH-BH binaries form?

• Formation order?
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Gerosa et al 2013

In frame of orbitInertial frame
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FIG. 3. A schematic representation of our model for BH binary formation and spin evolution. Empty circles represent stars,
filled circles represent BHs. Phase (a) shows the initial main-sequence stellar binary. Mass transfer from the primary to the
secondary (b) leads to a possible mass-ratio reversal. The first SN kick tilts the angle between the spins and the orbital plane
(c). Tidal interactions can realign the stellar member of the binary (d). The second SN kick tilts the orbital plane again (e).
Gravitational radiation shrinks and circularizes the binary before our explicit PN evolution begins (f).

We assume that the spins of the primary S⇥ and sec-
ondary S⇥⇥ are initially aligned with the orbital angular
momentum L. As the primary evolves, its envelope ex-
pands until it fills its Roche lobe, initiating stable mass
transfer to the secondary (phase b in Fig. 3). The ef-
ficiency of mass transfer is usually parametrized via a
parameter fa � [0, 1]: cf. Eq. (A9) of Appendix A 3. We
assume this mass transfer continues until the primary has
depleted its hydrogen envelope, leaving behind a helium
core of mass M ⇥

C = 8.5M� (M ⇥
C = 8M�) in the SMR

(RMR) scenario. Following [12], we assume semiconser-
vative mass transfer: the secondary accretes a fraction
fa = 1/2 of the mass lost by the primary, growing to a
mass M ⇥⇥

Sf = 30M� (M ⇥⇥
Sf = 35M�) in the SMR (RMR)

scenario at the end of the mass-transfer episode. In prin-
ciple mass transfer should also change the orbital separa-
tion, but we neglect this change as it is smaller than the

width of the distribution of initial separations, as well
as subsequent changes in the separation during the CE
phase.
Following the end of mass transfer, the primary ex-

plodes in a SN (phase c in Fig. 3) producing a BH of
mass M ⇥

BH = 7.5 M� (M ⇥
BH = 6 M� ) in the SMR

(RMR) scenario. For simplicity, in our simulations the
spin of this newly born BH is assumed to be maximal3

(�i = 1, i = 1 , 2) and aligned with its stellar progenitor.
The SN ejecta are generally emitted asymmetrically, im-
parting a recoil velocity to the BH which is generally a
fraction of the typical recoil velocities for protoneutron

3 Note that spin-orbit resonances are e�ective provided that the
dimensionless spins �i � 0.5 [6].
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How might BH-BH binaries form?

• Formation order? 

!

!

!

!

!

!

!

• Key feature:  
• first-born BH has larger misalignment     [need not be most massive]

• distinguishable gravitational waves, via morphology
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In frame of orbitInertial frame
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FIG. 3. A schematic representation of our model for BH binary formation and spin evolution. Empty circles represent stars,
filled circles represent BHs. Phase (a) shows the initial main-sequence stellar binary. Mass transfer from the primary to the
secondary (b) leads to a possible mass-ratio reversal. The first SN kick tilts the angle between the spins and the orbital plane
(c). Tidal interactions can realign the stellar member of the binary (d). The second SN kick tilts the orbital plane again (e).
Gravitational radiation shrinks and circularizes the binary before our explicit PN evolution begins (f).

We assume that the spins of the primary S⇥ and sec-
ondary S⇥⇥ are initially aligned with the orbital angular
momentum L. As the primary evolves, its envelope ex-
pands until it fills its Roche lobe, initiating stable mass
transfer to the secondary (phase b in Fig. 3). The ef-
ficiency of mass transfer is usually parametrized via a
parameter fa � [0, 1]: cf. Eq. (A9) of Appendix A 3. We
assume this mass transfer continues until the primary has
depleted its hydrogen envelope, leaving behind a helium
core of mass M ⇥

C = 8.5M� (M ⇥
C = 8M�) in the SMR

(RMR) scenario. Following [12], we assume semiconser-
vative mass transfer: the secondary accretes a fraction
fa = 1/2 of the mass lost by the primary, growing to a
mass M ⇥⇥

Sf = 30M� (M ⇥⇥
Sf = 35M�) in the SMR (RMR)

scenario at the end of the mass-transfer episode. In prin-
ciple mass transfer should also change the orbital separa-
tion, but we neglect this change as it is smaller than the

width of the distribution of initial separations, as well
as subsequent changes in the separation during the CE
phase.
Following the end of mass transfer, the primary ex-

plodes in a SN (phase c in Fig. 3) producing a BH of
mass M ⇥

BH = 7.5 M� (M ⇥
BH = 6 M� ) in the SMR

(RMR) scenario. For simplicity, in our simulations the
spin of this newly born BH is assumed to be maximal3

(�i = 1, i = 1 , 2) and aligned with its stellar progenitor.
The SN ejecta are generally emitted asymmetrically, im-
parting a recoil velocity to the BH which is generally a
fraction of the typical recoil velocities for protoneutron

3 Note that spin-orbit resonances are e�ective provided that the
dimensionless spins �i � 0.5 [6].
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Astrophysical motivation

• Supermassive black hole evolution over time 
• Recoil

• Merger dynamics and EM signals

!

• Gravitational waves from merging binaries 
• Relating asymptotic (“birth”) and near-merger (“observable”) spins

• Inferring binary parameters from detected gravitational waves

• Insight into formation processes: SN kicks, birth order,…
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Understanding and evolving precessing black hole binaries

R. O’Shaughnessy

Binary black holes (BBHs) on quasicircular orbits are fully characterized by their total mass
M , mass ratio q, spins S1 and S2, and orbital angular momentum L. When the binary separa-
tion r � GM/c2, the timescale on which these angular momenta precess is much shorter than
the radiation-reaction time on which L = |L| decreases due to gravitational-wave (GW) emission.
Using conserved constants and separation of timescales, we solve the orbit-averaged spin-precession
equations analytically for arbitrary mass ratios and spins. This solution provides a simple and e�-
cient way to propagate binaries at astrophysically interesting separations (e.g., 106M) to just prior
to merger, enabling further studies of SMBH evolution and recoil. The solution decomposes BBH
spin precession into three distinct morphologies, between which BBHs can transition during their
inspiral. This solution also provides new insight into the complex, nonlinear, two-spin dynamics
of binary black holes and the gravitational waves they emit, enabling us to better understand and
interpret gravitational waves from generic BBH mergers and to exploit those results for astrophysics.

Where to find more information:
Paper : http://arxiv.org/abs/1411.0674
Movies

https://www.youtube.com/watch?v=rKET4753MfE : single evolution of J, \xi plane inwards

https://www.youtube.com/watch?v=FGYkEvJ8z4s&list=PLwaaLoSFA-EcfUJ-k1rviZBs-Ct-ze9Tk&index=3:

PDF slides: http://ccrg.rit.edu/ oshaughn/2015-01-Aspen-Interactive.pdf
PDF script : http://ccrg.rit.edu/ oshaughn/2015-01-Aspen-Interactive-Script.pdf

I. SCRIPT

1: Introduction
Physical Review Letters has just accepted work that my collaborators and I have finished,
giving a new perspective on an old problem: the impact of spin on the
orbit and inspiral of black hole-black hole binary. In this interactive presentation, I’ll describe
our solution and why you, an astronomer or astrophysicist at Aspen, should care.

2: Collaborators
This work obviously wouldn’t be possible without the hard work of my collaborators, notably Davide Gerosa from
Cambridge and Daniele Trifiro from Pisa, who worked on the general theory of double spin evolution and
on gravitational wave parameter estimation, respectively.

3: Outline
Please feel free to navigate this interactive presentation as you see fit,
using the navigation links on the bottom of each slide and within selected slides,
including this outline.

Elements of this presentation describe

- Solving the binary black hole precession equations
- What the precession equations are, and how we solve them.
- Fast and insightful inspiral calculations with two spins
- A transfer function: How precessing spins periodic dynamics change with time
- "Morphological classification": The spin phase space split into three parts, which

precess in distinctive ways and which may be populated by astrophysicall distinct properties.

- Inferring parameters of resonant binary black holes
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- Why you should care and, qualitatively, what our astrophysics solution facilitates

4: Mathematics of inspiral
The inspiral and precession of binary black holes are well-characterized by the following
post-Newtonian equations.

- The first equation shows how the orbit of a binary of total mass M and reduced mass \eta M
shrinks, as characterized by its velocity ’v’.
The first term is the Peters and Mathews equation.

- The second equations describe how the spins S1, S2 precess. Spin precession occurs because of
spin-orbit coupling and spin-spin interactions, hidden inside \Omega_{1,2}

- The evolution equation for L is also a precession equation, plus a term involving
GW radiation losses. The spin precession rate for L is fixed by requiring conservation of J
(if dissipation was removed.)

A strong timescale hierarchy exists: the orbital period is much shorter than the precession timescales
(1/\Omega_{1,2,L}), which is in turn much smaller than the inspiral time (v/(dv/dt)).

Dissipation only occurs on the inspiral time; on shorter timescales, the spin evolution is conservative,
well-described by a hamiltonian. This hamiltonian evolution conserves the total angular momentum J and
(at 2PN order) a special linear combination of the spins, \xi. On longer timescales, J shrinks in magnitude
but \xi remains nearly constant, being an adiabatic invariant.

Double-spin dynamics has historically been studied numerically.
These solutions show L, S1, and S2 precess around the direction of J, which remains nearly fixed.

Several people have presented different semianalytic solutions, notably Racine 2008.
They are complicated or incomplete -- for example,they work for perturbatively small spins;
only in the equal mass case; etc.

5: Coordinates for inspiral in a special, co-precessing frame
To characterize the two spins’ evolution and solve the EOMs, we need to define several variables, which describe
the evolution of the spins in a frame aligned with L. Specifically, in this frame L is along the z axis
and S1 is in the x-z plane.

Note that in this frame, the problem only has *3* parameters: \theta_1, \theta_2, \Delta\Phi.

6: How we solve for precession and inspiral
The conservative evolution, appropriate to short timescales and nearly fixed separation r or L
can be solved in the frame aligned with L using known conserved constants: the problem reduces to
one-dimensional hamiltonian evolution.
Having solved the *relative* motion ODEs, we have the information needed to solve dL/dt and construct
the spin trajectories in an inertial frame.

Because L precesses around J and because the binary instantaneously radiates angular momentum along L,
the "average" rate of total angular momentum loss is along J, with a coefficient set by the average
angle between L and J. Using the spin trajectories, this precession-time average can be evaluated.
So we can compute how J(L). Using \xi constant, the long-term spin evolution is completely specified.

7: Useful computationally and conceptually
This solution is computationally vastly more efficient than previous numerical approaches to explicitly
solve the spin precession equations. Though some numerical evaluation is required, each timestep can be
a significant fraction of the *inspiral* timescale. We can therefore efficiently evolve binaries from
astrophysically relevant separations down to merger, including stellar-mass binaries formed in few hour
orbits and supermassive black hole binaries.

Link to TOC 2 Generated January 20, 2015
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Our solution also provides insight into had previously been a conceptually opaque problem with
a few tantalizing results, like post-Newtonian resonances. As an example, our analysis suggests one
natural way to represent inspiral is the almost-trivial "flow" of binaries in the J, \xi plane, shown
in the movie. At each time, the movie shows *all* allowed J, \xi combinations for the specific masses
and spin magnitudes.

This representation has several advantages:

- Phase angles suppressed: Since J and \xi specify the spin precession evolution, uniquely identifying
a phase-space trajectory for spins at each time. This plane suppresses trivial phase angles that change
on the precession time but are needed to specify the precise orbital angular momentum and spin directions.

- Easy to interpret at large distances: At large separations (large L), the "distorted parallelogram"
has a trivial 1-1 relationship with the \cos \theta_1, \cos \theta_2 plane

- Evolution "boring": Because \xi is conserved and J decreases (until and past J=0 configurations),
binaries evolve trivially to the left in this plane.

- Edges and features have meaning: Finally, as we will see shortly, the edges of the J, \xi plane
correspond to special configurations: "post-Newonian resonances", where the spins and L remain
coplanar while they precess.

We will return to the colors shown in this movie momentarily.

8: Understanding spin precession: phase trajectories at each separation, and how those trajectories evolve
Because the J,\xi plane explicitly suppresses precession, we need to use other variables to illustrate
the phase-space trajectories of the spins, and how those trajectories change over the inspiral.

This movie shows the evolution of binaries with fixed J, but a color-coded range of \xi values.
By construction, each J,\xi combination corresponds to a unique phase-space trajectory at each separation.
On the precession time, each binary evolves periodically along the color-coded contours.

In the movie’s top 3rd panel, we use two coordinates to describe the the relative spin evolution at fixed J
in the 3d spin space (e.g., \theta_1,\theta_2, \Delta \Phi, restricted to fixed J). The closed
contours clearly include two fixed points. The fixed points correspond to the largest
and smallest values of \xi allowed, at each J -- in other words, the edges seen in the J,\xi plane in
the previous slide. More broadly, the contours either circulate around one or the other maximum,
or circulate between them.

As time evolves, the binary separation shrinks and the isocontours evolve, usually adiabatically.

Now look at the top left and bottom right panel: \Delta \Phi (the angle between the spins) and \theta_1,2,
both plotted versus the precession time, showing how these quantities will periodically evolve each
precession cycle. Early on the relative spin angles all circulate through the full range of angles.
For some of the contours, eventually one of the two spins becomes aligned with L (\theta_{1} or \theta_2 ->0,\pi).
When this occurs, the evolution in \Delta\Phi undergoes a *transition* -- in this movie, the binaries illustrated
become "trapped" near \Delta\Phi =0, or coplanar spins.

9: Morphological classification
To start with, what does it mean for a binary to be trapped, with hamiltonian evolution circulating
\Delta\Phi=0 or \pi, or not? For each J, \xi, what calculation tells us which of the options, o
or "morphologies", that contours of constant \xi correspond to?

This figure shows the allowed region in the \xi, S plane at fixed ’J’. As the spins precess,
a binary evolves periodically along lines of constant \xi, with S changing periodically. Each
allowed point in this plane corresponds to a unique value of \Delta\Phi, \theta_1, and \theta_2;
contours correspoding to one spin being aligned (\cos \theta_1 =\pm 1 and \cos \theta_2 = \pm 1) are shown.

Note the following:

- A unique maximum and minimum exists, corresponding to resonant fixed points.
Mapping back to the J,\xi plane, the ’edges’ of the allowed region in J,\xi are all resonant.

Link to TOC 3 Generated January 20, 2015
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- \Delta \Phi must be either 0 or \pi on the boundary

- \Delta \Phi must be continuous on the boundary, with the option of changing discontinuously
*only* when one spin is aligned or antialigned (and hence \Delta\Phi, the angle between the spins,
is ill-defined).

Using these ideas, with careful analysis, one can show that for sufficiently large J, the phase
space breaks up into three parts.

- In the red region, above xi_{c,180}, \Delta\Phi=\pi on both the left and right edge
- In the green region, between \xi_{c,0} and \xi_{c,180}, \Delta\Phi=0 on the left and \pi on the right.
- In the blue region, below \xi_{c,0}, \Delta\Phi=0

Accounting for subtleties, this rule can be generalized to small J

10: Morphological classification: J, \xi plane
Using this rule, we color the state of each point in the J, \xi plane.

Note the following:
- Resonances at fixed \xi:

At *fixed \xi*, binaries with the smallest J are in the \Delta\Phi=180 resonance (red);
the largest J are in the \Delta\Phi=0 resonance (blue); and the rest are circulating.

- Resonances are ubiquitous:
A *significant* fraction of binary phase space evolves into being "trapped" near these
resonances.

11: Gravitational wave parameter estimation
Merging binaries emit gravitational waves which completely encode their dynamics and properties.
By systematically comparing observations with models for these generic, highly-modulated signals,
we can infer all properties of the binary.

Some properties, however, are easier to discern than others.

- The rapid increase in orbital and gravitational wave frequency encodes the masses and (aligned)
spins.

- Modulations in the gravitational wave signal traces the orientation of the orbital plane relative
to the line of sight -- in other words, the precession rate (and opening angle) of L as it evolves
around J.

- Because black hole spin scales like mass^2, and because the relative spin orientation has
a subdominant effect, in many cases the precise spin magnitude and direction of
the smaller body is difficult to constrain. This **suggested** that double-spin effects were
hard to measure.

To assess this hypothesis, we create synthetic data for "exactly resonant" sources -- in the J, \xi
plane, binaries on the edge of the allowed region -- for a range of source orientations relative
to the line of sight. We then infer what source parameters could be consistent with our synthetic data,
making *no assumptions* about the source.

These two plots show results of this analysis, for one specific degree of alignment between
the source and the line of sight. In these figures, binaries are characterized by their orbital
properties when f_{gw}=100 Hz.

- Left plot:
On the left, I plot the posterior density for \Delta\Phi for sources with different \xi.
In short, except for \xi =-1 (=aligned spins), the relative angle between the spins can be measured.
In other words, we can explicitly confirm the signature of a second, small spin.

- Right plot:
On the right, I superpose
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- the "allowed" region in the J,\xi plane for the true source [solid line]
- a sequence of injected resonant source (J,\xi) points [stars]
- our MCMC estimate of the best-fitting J,\xi parameters.

Note these include sources with generic masses, spin magnitudes, et cetera.
GW measurements well-identify both natural parameters of these double-spin systems.

These results suggest we can tell if a binary is circulating about one or the other resonance,
and measure its characteristic precession parameters or timescales well.

12: Morphological classification
A significant fraction of evolving binaries move into the red or blue trapped region. As we discuss below,
astrophysics may preferentially produce binaries near the top or bottom edge of the J, \xi plane, corresponding
to preferential alignment of the primary or secondary. So we care not only about the binary *parameter*
distribution, but whether it is ’red, blue or green’

We have applied our classification rule to our posterior, properly accounting for varying mass and spin in
candidate sources. For the "bottom edge" resonant binaries (\Delta\Phi=0), this plot shows the
fraction we *correctly* classify (as blue), for

- different angles between the line of sight to the source, and
- different values of \xi

Except for face-on systems or nearly-aligned systems (extremal \xi = -1,1), we can reliably identify the
source morphology
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