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Abstract

Addressing the Issues of Quantum Gravity

in Generalized Quantum Mechanics

by

John Thomas Whelan

Hartle’s generalized quantum mechanics (GQM) is applied to several toy models to
gain insight into issues involved in the quantization of gravity, namely spacetime alternatives,
gauge invariance, and the decoherence of spacetime.

Spacetime coarse grainings are studied in the GQM of a free relativistic particle.
For a simple coarse graining and suitable initial conditions, tractable formulas are found for
branch wave functions. Despite the nonlocality of the positive-definite version of the Klein-
Gordon inner product, which means that nonoverlapping branches are not sufficient to imply
decoherence, some initial conditions are found to give decoherence and allow the consistent
assignment of probabilities.

The GQM of a nonabelian gauge theory is developed, and predictions made for
certain alternatives, with particular attention given to those involving the constraint. In this
way, the theory is compared to other quantum-mechanical descriptions of gauge theories in
which the constraints are imposed a priori. The momentum space constraint is seen to vanish,
both through a simple formal argument and a more careful description of the Lorentzian
path integral as defined on a spacetime lattice. The configuration space realization of the
constraint is shown to behave in a more complicated fashion. For some coarse grainings,
I extend the known result from electromagnetism, that coarse grainings by values of the
constraint either predict its vanishing or fail to decohere. However, sets of alternatives defined
in terms of a more complicated quantity in electromagnetism are exhibited where definite
predictions can be made disagreeing with the assumption that the constraints vanish. The
configuration space sum-over-histories theory is exhibited in a manifestly Lorentz-invariant
formulation.

The question of whether unobserved short-wavelength modes of the gravitational
field can induce decoherence in the long-wavelength modes (“the decoherence of spacetime”)
is addressed using a simplified model of perturbative general relativity, in which the metric
perturbation is replaced by a scalar field. For some long-wavelength coarse grainings, the
Feynman-Vernon influence phase is found to be effective at suppressing the off-diagonal
elements of the decoherence functional. The requirement that the short-wavelength modes be
in a sufficiently high-temperature state places limits on the applicability of this perturbative
approach.
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Chapter I

Introduction

This dissertation is concerned with the implementation of one formalism, known
as generalized quantum mechanics (GQM), designed to address some of the problems of
quantum mechanics and its applications to gravity and cosmology. After a brief overview,
in Sec I.1, of the issues motivating the research, this introductory chapter gives some use-
ful background and develops the formalism in general terms before exploring the specific
applications in Chapters II–IV. Secs. I.2 and I.3 address some of the interpretational is-
sues in quantum theory which motivate generalized quantum mechanics. Sec. I.2 considers
one problem which gives a simple mathematical motivation for the form of GQM, and then
Sec. I.3 describes in more depth the problems with the standard Copenhagen interpretation
of quantum mechanics and gives an explicit general formulation of generalized quantum me-
chanics. Sec. I.4 turns to the issue of the quantization of gravity, discussing various issues and
techniques involved in attempts to quantize gravity, before describing, on a formal level, the
approach used by GQM to handle the task. Finally, once the background and terminology
have been developed, Sec. I.5 provides and outline for the rest of the dissertation.

Two appendices are included. Appendix I.A specifies some of the notation and
conventions used in the dissertation. Appendix I.B reviews a few of the basics of General
Relativity (GR), which successfully describes gravity on the classical level; particular atten-
tion is given to those aspects which are relevant to the rest of the dissertation.

I.1 Motivation

Each of the three chapters is primarily motivated by one issue in the quantization
of gravity; two deal with the implementation of the quantization scheme, and the third is a
physical question to be asked within that scheme.

I.1.1 Spacetime alternatives

One desirable property for a technique for quantizing gravity–the theory of space-
time–is that it treat time and space, equally. Thus traditional alternatives for which quantum

1



2 CHAPTER I. INTRODUCTION

mechanics predicts probabilities, such as whether a particle is in a given spatial region at a
moment of time, ought to be generalized to include so-called spacetime alternatives, such as
whether a particle enters a spacetime region at any point along its trajectory. Consideration
of these spacetime alternatives in non-relativistic quantum mechanics (Sec. I.2) illustrates
one of the features of generalized quantum mechanics, namely that probabilities cannot be
predicted for all sets of alternatives, only for those which exhibit a lack of quantum mechanical
interference between different alternatives.

Spacetime alternatives in non-relativistic quantummechanics are considered in some
depth in [1] and [2]; Chapter II examines spacetime alternatives in the quantum mechanics of
a relativistic particle, which has the added complications that the path of the particle need
not be single-valued in time, and which exhibits reparametrization invariance. In Chap-
ter II, I exhibit a few simple sets of spacetime alternatives, some of which can be assigned
probabilities, and calculate those probabilities.

I.1.2 Gauge invariance

General relativity is invariant under a set of transformations known as diffeomor-
phisms (Sec. I.B.3); while the relativistic particle exhibits a reparametrization invariance
which thus makes it more similar to GR than the non-relativistic particle is, the invariance
is not really central to the question of interest in Chapter II.

In Chapter III, however, gauge invariance is the principal focus in my study of the
application of generalized quantum mechanics to non-Abelian gauge theories. (The detailed
correspondence between the diffeomorphism invariance of GR and the reparametrization and
gauge invariances of the theories considered in Chapters II and III is described in Sec. I.4.6.)
Gauge invariant theories are conveniently described using more degrees of freedom than are
needed to define the physical quantities of the theory, and many quantization methods use the
constraints along with gauge-fixing conditions to isolate the “physical degrees of freedom”.
However, in a generalized quantum mechanics constructed via a sum over histories, it is
possible to predict probabilities for different values of the constrained quantities, and that is
what I do in several different contexts in Chapter III. Treating the constraints on the same
footing as the classical equations of motion allows me to determine to what extent they come
about naturally as a consequence of the quantum theory.

I.1.3 The decoherence of spacetime

Chapter IV addresses the following physical question: we know that measurements
of the gravitational field on large scales produce (classical) predictions, so does general-
ized quantum mechanics allow us to make such predictions? In other words, do sets of
alternatives describing only the long-wavelength modes of the gravitational field exhibit the
non-interference between alternatives alluded to in Sec. I.1.1, known as decoherence? De-
coherence is generally induced when the system of interest is coupled to some environment
which carries away phase information, allowing the squares of probability amplitudes to sum
linearly. In Chapter IV, I examine the question of whether sets of long-wavelength alter-
natives of the gravitational field can be made to decohere via their interaction with the
unobserved short-wavelength modes.



I.2. SPACETIME ALTERNATIVES 3

I.2 Spacetime alternatives

There are a number of unsatisfying aspects of quantum mechanics which motivate
the development of generalized quantum mechanics, and I will delve, in Sec. I.3, into the
complex interpretational issues which lead to a desire to generalize quantum mechanics. But
first, I’d like to consider a simple example of a sort of probability one might like to calculate
in an extension of quantum mechanics, and see what modifications it naturally leads to.

Ordinary quantum mechanics can predict the value of an observable A at a time t;
from a relativistic point of view, the surface of constant time t should be generalized to a
spacelike surface σ. However, in a theory which includes quantum gravity, the metric itself
will be behaving quantum mechanically, and the notion of spacelike separation of adjacent
points will not be well-defined. Since we cannot tell if a surface is spacelike without evaluating
(perhaps probabilistically) some of the variables of the theory, we should not restrict ourselves
to the values of observables on spacelike surfaces, but rather attempt to define probabilities
involving general regions of spacetime. This might be the average of a field over a spacetime
region, or, as is considered in this secion, the probability that a single non-relativistic particle
crosses, somewhere along its trajectory, a particular spacetime region S.

Since the sum-over-histories technique for calculating probabilities in quantum me-
chanics works, formally at least, with the entire trajectory of a system, it should be best
suited to describing spacetime alternatives. Before proceding there, however, let us review
the operator formalism of non-relativistic quantum mechanics.

I.2.1 Probabilities in quantum mechanics

In ordinary non-relativistic quantummechanics [3], the outcome of a measurement is
not generally predicted with certainty, but rather, the probabilities of possible outcomes can
be predicted. Typically, the system is initially prepared in a state described by a wavefunction
Ψ(q′, t′), which can be written as a vector |Ψ(t′)〉 in a Hilbert space with inner product

〈Φ|Ψ〉 =
∫
dqΦ∗(q)Ψ(q). (I.2.1)

An observable A is described by a hermitian operator Â with eigenstates1 {|a〉} normalized
so that 〈a′|a〉 = δ(a− a′). The probability that a measurement of A at a time ti will fall into
a range R is given by

pr =

∫

R

da |〈a|Ψ(ti)〉|2 , (I.2.2)

1The case considered here is for an operator Â with a continuous spectrum, but the modifications for a
discrete portion of the spectrum should be self-evident.



4 CHAPTER I. INTRODUCTION

where the state |Ψ(ti)〉 at time ti is given by evolving the initial state2 |Ψ(t′)〉 using the

operator Ĥ corresponding to the Hamiltonian of the system:

|Ψ(ti)〉 = e−i(ti−t
′)Ĥ |Ψ(t′)〉. (I.2.3)

In particular, for the position operator Q̂ we recover the original interpretation of the wave-
function Ψ(q, ti) = 〈q|Ψ(ti)〉 as a probability amplitude.

It is also useful to write the probability (I.2.2) in terms of the projection onto the

range R of eigenvalues of Â

Pr =

∫

R

da|a〉〈a|; (I.2.4)

the projection of the initial state onto this range is called the branch wavefunction

|Ψr(ti)〉 = Pr|Ψ(ti)〉, (I.2.5)

which is a probability amplitude for A to lie in the range R:

pr = 〈Ψr(ti)|Ψr(ti)〉. (I.2.6)

Finally, this probability can be written in terms of the density matrix

ρ(t) = |Ψ(t)〉〈Ψ(t)| (I.2.7)

as

pr = Tr[Pr ρ(ti)] = Tr
(
e−i(t

′′−ti)ĤPre
−i(ti−t′)Ĥρ(t′)ei(ti−t

′)ĤPre
i(t′′−ti)Ĥ

)
. (I.2.8)

The last form will ultimately lend itself most easily to generalization.

I.2.2 Sum-over-histories quantum mechanics

Another formulation of quantum mechanics, equivalent for many cases, was pro-
posed by Feynman [4]. In the so-called sum-over-histories formulation, the transition ampli-
tude between a position q′ at a time t′ and a position q′′ at a time t′′ is given by the sum
over all paths q(t) beginning at q(t′) = q′ and ending at q(t′′) = q′′ of exp(i action):

〈q′′|ei(t′′−t′)Ĥ |q′〉 =
∫

q′′q′

DqeiS[q]. (I.2.9)

This path integral can be more explicitly described if the path is skeletonized, i.e., the formal
integral over continuous paths q(t) is replaced with an approximation wherein the interval

2I will, unless otherwise noted, be working in the Schrödinger representation, in which the states, rather
than the operators, evolve, as that is more convenient for the sum-over-histories formulation which I will
eventually use. Even when states are written without time labels, they are to be thought of as Schrödinger
states at the “default” times, e.g., |Ψ〉 is shorthand for |Ψ(t′)〉.
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from t′ to t′′ is divided into J + 1 sub-intervals of width δt = t′′−t′
J+1 = T

J+1 , and the inte-

gral is reëxpressed in terms of qM = q(t′ +Mδt). In the limit J → ∞, the skeletonized
description should describe the integral over continuous paths.3 Then the measure Dq will
be proportional to

J∏

M=1

dqM ; (I.2.10)

the proportionality constant, which depends upon J , is most easily calculated by starting
with a canonical path integral and integrating out the momentum variables. The canonical
path integral has the form

〈q′′|ei(t′′−t′)Ĥ |q′〉 =
∫

q′′q′

DqDpeiScan[q,p] (I.2.11)

in terms of the canonical action

Scan[q, p] =

∫ t′′

t′
dt[pq̇ −H(q, p)]. (I.2.12)

It has the natural measure

DqDp =

(
J∏

M=1

dqM

)(
J∏

M=0

dpM

2π

)
, (I.2.13)

where the skeletonized momenta are given by pM = p
(
t′ + [M + 1

2 ]δt
)
.

The probability rule (I.2.8) can be adapted to the sum-over-histories formulation
by replacing the projection operator Pr with a restriction of the range of integration on the
time slice corresponding to ti. For example, if the operator Â is the position operator Q̂, the
projection in (I.2.8) is replaced according to

e−i(t
′′−t)ĤPre

−i(t−t′)Ĥ = |q′′〉
∫

R

dqi

∫

q′′qi

Dqei
∫

t′′

ti
dtL(t)

∫

qiq′

Dqei
∫ ti
t′
dtL(t)〈q′|

= |q′′〉
∫

q′′q′

qi∈R

Dqei
∫ t′′

t′
dtL(t)〈q′|

(I.2.14)

and so the branch wavefunction appearing in (I.2.6) can be written

Ψr(q
′′, t′′) =

∫
dq′

∫

q′′q′

qi∈R

DqeiS[q]Ψ(q′, t′). (I.2.15)

3Some of the stickier issues involved in making this correspondence will be discussed in Chapter III,
especially Secs. III.3.3–III.3.5 and the discussion at the end of Sec. III.5.4. For now, however, all that is
needed is the basic concept.
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S

t"

t'

x"

x'

Figure I.1: Defining a set of spacetime alternatives in non-relativistic quantum mechanics.
The path on the left never enters the spacetime region S and is thus in the class cs. The
path on the right spends part of its trajectory in S and is thus in the class cs.

Spacetime alternatives

Equation (I.2.15) describes the construction of a probability amplitude for a non-
relativistic particle to pass through a given region of space R at a particular moment ti of
time by restricting the paths summed over to be those in which the particle does so. It is a
short step to consider broadening the construction to produce the probability amplitude for
the particle path to have any property by summing only over those paths which have that
property. For example, as originally proposed by Feynman [4], one could define the branch
wave function for the particle to pass through a spacetime region S at some point along its
trajectory (see Fig. I.1) by restricting the sum to the class of paths cs which pass through
the region:

Ψs(q
′′, t′′) =

∫
dq′

∫

q′′csq′

DqeiS[q]Ψ(q′, t′). (I.2.16)

The problem with this is that by the same reasoning, the probability amplitude
that the path never enters S ought to be given by a sum over the class of paths cs which
never enter S:

Ψs(q
′′, t′′) =

∫
dq′

∫

q′′csq′

DqeiS[q]Ψ(q′, t′). (I.2.17)

Since the sum over histories is linear, this branch wavefunction is obviously given by

Ψs(q
′′, t′′) = Ψ(q′′, t′′)−Ψs(q

′′, t′′) (I.2.18)
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and hence

ps = 〈Ψs|Ψs〉 = 〈Ψ|Ψ〉 − 2Re〈Ψ|Ψs〉+ 〈Ψs|Ψs〉 = 1− ps − 2Re〈Ψs|Ψs〉. (I.2.19)

On the other hand, simple logic tells us that as the particle either passes through the region
or doesn’t, the sum of the two probabilities must be unity: ps + ps = 1. This can only be
true if

Re〈Ψs|Ψs〉 = 0. (I.2.20)

That is always true in the case of a spatial region R at a time ti by virtue of the construction
(I.2.5), since PrPr = 0, but for a spacetime region of the sort shown in Fig. I.1, will in general
be true only for some values of the initial state |Ψ〉. Evidently (I.2.20) is a prerequisite for
the squared norms of the amplitudes |Ψs〉 and |Ψs〉 to behave as proper probabilities.

I.2.3 Generalized quantum mechanics

The simple demonstration in the previous section that spacetime probabilities can-
not always be consistently assigned has provided the motivation for a more careful consid-
eration of quantum mechanical probabilities and their applicability. I shall now describe the
problem of spacetime alternatives in the language of one formalism designed to do this.

Sets of alternatives

The statement “the particle is in a spatial region R at time ti”, as well as the space-
time alternatives cs and cs considered in the previous section, are all examples of alternatives.
An alternative is in general a statement which is either true or false for each fine-grained

history of the system. In the current example of the relativistic particle, a fine-grained history
is an arbitrary path q(t); the sum over histories in (I.2.9) is over the set of all fine-grained
histories. The class of fine-grained histories defined by an alternative is the set of all those
histories for which the alternative is true. It is useful to consider a set of alternatives such
that each history falls into exactly one of the classes (i.e., the classes are mutually exclusive,
and the set of classes is exhaustive). This partition of the histories is called a coarse graining;
we write a given class or alternative as cα and the complete set as {cα}.

Requirements on probabilities

One might try to define a probability pα for each alternative cα to occur. But
we must require that the probability for a coarser-grained alternative which combines two
disjoint alternatives (cα ∩ cα′ = ∅) be equal to the sum of the two individual probabilities:

p(cα ∪ cα′) = p(cα) + p(cα′). (I.2.21)

This means that if {cα} is a complete set of alternatives for which probabilities {pα} can be
defined, they must sum to unity: ∑

α

pα = 1. (I.2.22a)
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Also, if {cα} is a coarser-grained set formed by combining classes from the first set (cα =⋃
α∈α

cα), one can assign probabilities to the alternatives in the second set by

pα =
∑

α∈α
pα. (I.2.22b)

These are known as the probability sum rules, and follow from (I.2.21).

Consistent assignment of probabilities

For any alternative cα we can define a branch wave function by a sum restricted to
the histories in the class:

Ψα(q
′′, t′′) =

∫
dq′

∫

q′′αq′

DqeiS[q]Ψ(q′, t′); (I.2.23)

however, the requirement (I.2.21) means that we can assign probabilities

pα = 〈Ψα|Ψα〉 (I.2.24)

to a complete set of alternatives if and only if each pair of alternatives in the set obeys

pα + pα′ = (〈Ψα|+ 〈Ψα′ |)(|Ψα〉+ |Ψα′〉) = pα + pα′ + 2Re〈Ψα′ |Ψα〉 (I.2.25)

or

Re〈Ψα′ |Ψα〉 = 0. (I.2.26)

This requirement (which is a condition on the alternatives and the states together) is called
the condition of weak decoherence by Gell-Mann and Hartle [5], consistency by Griffiths [6]
and Omnès [7] and non-interference by Yamada and Takagi [2].

Under Hartle’s formulation of generalized quantummechanics for the non-relativistic
particle, the question of whether decoherence allows the assignment of probabilities to the
alternatives in a coarse graining, and the values of those probabilities, are both encoded in
the decoherence functional

D(α, α′) = 〈Ψα′ |Ψα〉. (I.2.27)

If the off-diagonal elements of the decoherence functional [which is, in this description, a
hermitian matrix with elements {D(α, α′)}] vanish, then the diagonal elements can be iden-
tified as probabilities for the corresponding alternatives, pα = D(α, α). If not, we cannot
assign probabilities consistent with the sum rules (I.2.22). Mathematically, this is because
the branch wavefunctions, which are probability amplitudes, add according to linear super-
position, and the only way their squares–the probabilities–can add linearly as well is if the
interference between two branches vanishes. I will return to the physical significance of this
in Sec. I.3.
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I.3 Formulations of quantum mechanics

Having illustrated the use of generalized quantum mechanics in the practical case
of assigning probabilities to spacetime alternatives, I now consider the interpretational mo-
tivations involved in replacing the Copenhagen interpretation of quantum mechanics with a
more general formalism. Then, in Sec. I.3.3, I describe GQM in its general form.

I.3.1 The two-slit experiment

The idea that not every set of alternatives can be assigned probabilities is one of
the central interpretational challenges of quantum mechanics. The classic illustration is the
two-slit experiment, wherein an electron gun is fired at an absorbing screen with two holes
in it, beyond which lies another screen made up of detectors which will register the arrival of
an electron. If the lower slit in the first screen is covered, the probability amplitude Ψu(x)
for the electron to arrive at a position x on the screen can be calculated by propagating
the initial wavefunction freely up to the screen, discarding the portion which lies outside the
upper slit, then propagating the remaining wavefunction freely up to the final screen. The
probability density for the electron to pass through the upper slit and arrive at a position x
is thus |Ψu(x)|2. Similarly, if the upper slit is closed, we have a probability amplitude Ψl(x)

and density |Ψl(x)|2 for the electron to pass through the lower slit and arrive at a point x
on the second screen.

If both slits are opened, the principle of superposition tells us that the total proba-
bility amplitude for the electron to arrive at a position x on the second screen is Ψu(x)+Ψl(x).
This means that the total probability density

|Ψu(x) + Ψl(x)|2 6= |Ψu(x)|2 + |Ψl(x)|2 (I.3.1)

is not simply the sum of the probability densities for each slot alone, due to interference
effects. This is true even if the electrons are released from the gun one at a time. Because
of this interference, it is not possible to say that a given electron which lands on the second
screen passed through one hole or the other. If a measurement is made at the first screen
to detect the electron as it passes through one of the holes, the interference pattern is
destroyed, and the probability density for arrival at point x does equal the expression on
the right-hand side of (I.3.1). This means that something more complicated than simple
Schrödinger evolution of the wavefunction must occur when it interacts with the measuring
apparatus. All of these phenomena are confirmed by experiment.

In the language of Sec. I.2.3, this means that we cannot assign probabilities to a set
of alternatives which includes

• passage through slit not observed/electron passes through upper slit/electron arrives
at position x±∆x

• passage through slit not observed/electron passes through lower slit/electron arrives at
position x±∆x,

while we can assign probabilities to the set
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• passage through slit not observed/electron arrives at position x±∆x

• passage through slit observed/electron passes through upper slit/electron arrives at
position x±∆x

• passage through slit observed/electron passes through lower slit/electron arrives at
position x±∆x.

I.3.2 The Copenhagen interpretation

The standard method for resolving this issue, and those like it, was developed
primarily by Niels Bohr at the Copenhagen Institute (see Chapter 2, Sec. 6-8 of [3] for more
details), and is known as the Copenhagen interpretation. In the Copenhagen interpretation,
the wavefunction for a quantum system evolves freely according to (I.2.3) until a measurement
is made, say at time ti. The measurement not only yields an answer with probabilities given
by (I.2.5–I.2.6), it also alters the wavefunction. If the alternative corresponding to Pr is the
result of the measurement, the wavefunction becomes [cf. (I.2.5)]

|Ψr(ti)〉√
〈Ψr(ti)|Ψr(ti)〉

=
Pr|Ψ(ti)〉√
〈Ψ(ti)|Pr|Ψ(ti)〉

. (I.3.2)

This is known as “collapse of the wavefunction” or “reduction of the wavepacket”.
The Copenhagen interpretation explains the results of the two-slit experiment nicely;

if no observation of the wavefunction is made at the first screen, it propagates freely through
both slits, and the arrival pattern on the second screen exhibits quantum-mechanical inter-
ference effects, while if the electron is observed to go through one slit, the wavefunction is
collapsed by a projection onto that slit. Even if the result of the first measurement is ig-
nored, we cannot recover the quantum-mechanical interference pattern; the probabilities for
different ranges of arrival position x are given by the rule (I.2.8), where the density martix
involved is now the mixed state

ρ = |Ψu〉pu〈Ψu|+ |Ψl〉pl〈Ψl|, (I.3.3)

where pu = 〈Ψu|Ψu〉 and pl = 〈Ψl|Ψl〉 are the probabilities for the outcome of the ignored
measurement.

The Copenhagen interpretation is quite successful in predicting and explaining the
results of laboratory experiments, for which it was designed. It cannot, however, provide a
complete quantum-mechanical description of an arbitrary system. Setting aside the aesthetic
objection that the two evolution laws (I.2.3) and (I.3.2) are of markedly different nature, a
major flaw is the fuzzy notion of a measurement. What are the criteria for an object with
which the quantum system interacts to qualify as an observer? There are many metaphysical
answers to that question, but the most conservative one would seem to be that the “measuring
apparatus” is a classical object with many internal degrees of freedom. One possible outlook
is that objects in the classical world are described by classical physics, quantum-mechanical
objects by quantum physics, and the reduction of the wavefunction describes what happens
when the two regimes interact. However, results such as Ehrenfest’s theorem, which show that
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the laws of classical physics are the limits of the laws of quantum physics when the actions
involve become much larger than ~, lead us to believe that both the quantum and classical
worlds should be described on the fundamental level by the same set of physical laws. From
that perspective, it is natural to think of the Copenhagen interpretation as an approximation,
wherein the complex interaction between the quantum system and the classical object’s many
degrees of freedom is described simply by the collapse of the wavefunction. (The details of this
question touch on the rich subject of measurement theory, and the reader is again directed
to [3] for a more in depth discussion.)

At any rate, a more general formulation of quantum mechanics is required to predict
probabilities for closed systems without an external classical observer. This could either be a
description of an open system together with an external observer, where both the “system”
and the “classical observer” are combined to produce a single closed system, treated quantum
mechanically, or a system like the early universe, where there is no classical subsystem to
perform the measurements.

I.3.3 The generalized quantum mechanics formalism

One prescription for replacing the notions of “observers” and “measurements” is
generalized quantum mechanics, as described in Sec. I.2.3 for a system consisting of a single
non-relativistic particle. Probabilities can be assigned to any set of alternatives which deco-
here, which is a mathematical property of the system; an external classical observer is not
required. The formulation given here was codified by Hartle [5], expanding upon earlier work
of Gell-Mann and Hartle [8], inspired by the work of Żurek [9] on decoherence and related
to the previous independent work of Griffiths [6] and Omnès [7].

Fundamental elements

In its most general form, a generalized quantum mechanics requires three things,
which are generalizations of the objects described in Sec. I.2.3:

1. a specification of the fine-grained histories of the system,

2. a rule defining how one is allowed to combine those fine-grained histories into coarse-
grained classes, and

3. a decoherence functional, which describes both the interference between pairs of those
classes, as well as probabilities of individual classes when the interference terms vanish.

In general, the decoherence functional, whose elementsD(α, α′) can be thought of as elements
of a complex matrix for each coarse graining, can be constructed in an arbitrary fashion. It
must, however, obey the following rules:

• “Hermiticity”:
D(α′, α) = D(α, α′)∗; (I.3.4a)

• positivity of diagonal elements:
D(α, α) ≥ 0; (I.3.4b)



12 CHAPTER I. INTRODUCTION

• normalization: ∑

α

∑

α′

D(α, α′) = 1; (I.3.4c)

• superposition: If {cα} is a coarse graining constructed by combining classes in {cα} to
form larger classes (“coarser graining”), i.e., cα =

⋃
α∈α

cα, the decoherence functional

for {cα} can be constructed from the one for {cα} by

D(α, α′) =
∑

α∈α

∑

α′∈α′

D(α, α′). (I.3.4d)

The diagonal elements D(α, α) can be interpreted as probabilities if the coarse
graining {cα} obeys some decoherence condition. The minimal one neccessary to ensure the
probability sum rules (I.2.22) is weak decoherence, i.e., vanishing of off-diagonal elements of
ReD(α, α′). In practice, it is useful to impose the decoherence condition only approximately:4

ReD(α, α′) ≈ δαα′pα, (I.3.5)

with the diagonal elements then being interpreted as approximate probabilities whose accu-
racy is limited by the size of the off-diagonal elements. Another decoherence condition, more
useful from a mathematical point of view, is the medium decoherence condition

D(α, α′) ≈ δαα′pα. (I.3.6)

I will adopt the practice of using “decoherence” with no modifier to mean medium deco-
herence. (There are stronger definitions of decoherence [11], but they will not be needed
here.)

The notion of decoherence replaces the Copenhagen idea of a measurement in de-
termining when classical probabilities can be assigned. In the case of a classical measuring
apparatus interacting with a quantum system, it had been shown [12, 9] that the classical
object can carry away phase information and induce decoherence between alternatives of the
quantum system.

Operator generalized quantum mechanics

As an example of how a decoherence functional is constructed, return to the exam-
ple of nonrelativistic operator quantum mechanics discussed in Sec. I.2.1. The formula for
the decoherence functional should reduce to the probability formula (I.2.8) for the case of
projections on a single time slice. A more general coarse graining can consist of a series of n
time slices {ti}, each of which has a complete set of projection operators P iαi

obeying

∑

αi

P iαi
= I (I.3.7a)

P iαi
P iα′

i
= δαiα′

i
P iαi

. (I.3.7b)

4Readers disquieted by this concept will be reassured by the result [10] that for every approximately
decohering coarse graining, there is a nearby coarse graining which decoheres exactly.
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(The superscript i labels the set of projection operators, while the subscript αi labels the
particular projection within the set.) A class cα is now labelled by the sequence of values
{α1, . . . , αn}, which we abbreviate in the shorthand α, and the place of a projection operator
for cα is taken by the chain of projections

Cα = e−i(t
′′−tn)ĤPnαn

e−i(tn−tn−1)ĤPn−1
αn−1

. . . P 2
α2
e−i(t2−t1)ĤP 1

α1
e−i(t1−t

′)Ĥ . (I.3.8)

This is used in the formula for the decoherence functional,

D(α, α′) = Tr[CαρC
†
α′ ]. (I.3.9)

It is straightforward to show that when the class operator consists of a single projection

(Cα = e−i(t
′′−ti)ĤPαe−i(ti−t

′)Ĥ), the decoherence functional reduces exactly to the diagonal
form in (I.3.6) with the probabilities given by (I.2.8).

One final generalization can be made, by replacing the initial condition ρ(t′) with
initial and final states described by ρ′ = ρ′(t′) and ρ′′ = ρ′′(t′′), respectively, to give

D(α, α′) =
Tr[ρ′′Cαρ′C

†
α′ ]

Tr[ρ′′e−i(t′′−t′)Ĥρ′ei(t′′−t′)Ĥ ]
. (I.3.10)

This is construction is most useful when considering the origins of the “arrow of time” [13],
since it provides a time-reversal invariant formulation of the theory. The form (I.3.10) is
recovered as a consequence of the final condition ρ′′ = I, known as the condition of future
indifference.

As a consequence of (I.3.7) the class operator obeys

Cu =
∑

α

Cα = e−i(t
′′−t′)Ĥ . (I.3.11)

In the sum-over-histories formulation, the chain of projections Cα is replaced by a
class operator whose matrix elements are defined via a path integral, as described below.

Sum-over-histories generalized quantum mechanics

In a sum-over-histories formalism, one replaces objects defined by operators on
a Hilbert space with corrseponding quantities defined by functions (or functionals) of the
configuration space coördinates of the system, which are written generically as q. Along
those lines, the initial density matrix ρ′ is replaced by a set of wave function(al)s5 {Ψj(q′)}
with corresponding non-negative weights (or “probabilities”) {p′j}. (In a Hilbert space theory
this would mean defining ρ′ =

∑
j |Ψj〉p′j〈Ψj |.) Similarly, the final state is now defined by a

set of wave function(al)s {Φi(q′′)} and weights {p′′i }, which replace the density matrix ρ′′.
With these conventions, the definition (I.3.10) for the decoherence functional is

replaced by

D(α, α′) =

∑
i,j

p′′i 〈Φi|Cα|Ψj〉〈Φi|Cα′ |Ψj〉∗p′j
∑
i,j

p′′i |〈Φi|Cu|Ψj〉|2 p′j
. (I.3.12)

5I have suppressed the labels t′ and t′′ here, in part because I wish to describe more general definitions
of the endpoints of histories. For example, the initial state might be attached on a surface σ′ in spacetime.
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Here the quantity 〈Φi|Cα|Ψj〉 is analogous to a matrix element of the class operator for the
class cα, but it is constructed by a sum over the histories in the class cα, with the initial
and final wave function(al)s Ψj and Φi attached at the endpoints of the history (which are
included in the sum). Schematically:

〈Φi|Cα|Ψj〉 = Φi(q
′′) ◦ 〈q′′‖Cα‖q′〉 ◦Ψj(q′) (I.3.13a)

〈q′′‖Cα‖q′〉 =
∑

history∈α
endpts=q′′q′

eiS[history]. (I.3.13b)

The inner product ◦ (which is in general necessary to ensure a non-divergent construction
for cosntrained theories) used to attach the initial and final wave function(al)s must be
Hermitian6 but not necessarily positive definite.

This construction satisfies the requirements (I.3.4) for a decoherence functional with
positivity of diagonal elements (I.3.4b) holding as long as the weights {p′j} and {p′′i } are non-
negative. Note that the inner product ◦ need not be positive definite to ensure positivity
of the decoherence functional. The superposition property (I.3.4d) holds because the class
operators are constructed linearly, and thus satisfy their own superposition property:

〈q′′‖Cα‖q′〉 =
∑

α∈α
〈q′′‖Cα‖q′〉 (I.3.14a)

∑

α

〈q′′‖Cα‖q′〉 = 〈q′′‖Cu‖q′〉. (I.3.14b)

It is convenient to refer to a “class operator Cα” even in the sum-over-histories
theory, and when I do, I mean the object defined by (I.3.13). Cu is the class operator
corresponding to the class cu of all paths, which is just the propagator.

Another way of expressing (I.3.12–I.3.13) is to write down the decoherence func-
tional between two classes which are ultimately fine-grained, so that each class contains a
single history q(t). This is then truly a functional of its two arguments, given by

D[q1, q2] =
ρ′′(q′′2 , q

′′
1 )e

i(S[q1]−S[q2])ρ′(q′1, q
′
2)∫

Dq1
∫
Dq2ρ′′(q′′2 , q′′1 )ei(S[q1]−S[q2])ρ′(q′1, q′2)

, (I.3.15)

where the function(al)s corresponding to the initial and final density matrices are just

ρ′(q′1, q
′
2) =

∑

j

Ψ∗
j (q

′
1)p

′
jΨj(q

′
2) (I.3.16a)

ρ′′(q′′1 , q
′′
2 ) =

∑

i

Φ∗
i (q

′′
1 )p

′′
i Φi(q

′′
2 ) (I.3.16b)

The coarse-grained decoherence functional is then given by (I.3.4d) as

D(α1, α2) =

∫

α1

Dq1
∫

α2

Dq2D[q1, q2]. (I.3.17)

6By which I mean Φ ◦Ψ = (Ψ ◦ Φ)∗.
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Field theory In the previous section, I described formally the sum-over-histories formula-
tion of generalized quantum mechanics where the configuration space variables of the theory
were either some set of coördinates {qi(t)} or a field q(x, t) on the background spacetime. One
can of course always switch between the two by imagining the (D-dimensional) space spanned
by x to be divided up into a small lattice with lattice spacing δx and using expressions like

δD(x − x′)⇔ δxx′

(δx)D
(I.3.18)

to make the correspondence

qx(t)⇔ (δx)D/2q(x, t), (I.3.19)

but it is useful to be explicit about the form of some of the field theory expressions.
The initial condition q(t′) = q′, formerly imposed at the initial time t′, is now

imposed on the initial surface labelled by t′ as q(x, t′) = q′(x). The initial wave functional7

Ψ[q′; t′) is a functional of the function q′(x). Similarly, the final wave functional Φ[q′′; t′′)
attached to 〈Φ|Cα|Ψ〉 is a functional of q′′(x) = q(x, t′′).

I.4 Quantum gravity

I.4.1 Motivation

We have now come to the main purpose of this dissertation: applying the lessons
learned about quantum theory in Secs. I.2–I.3 to the quantization of the geometric theory
of gravity, reviewed in Appendix I.B. Two obvious questions arise as to why a quantum
theory of gravity is necessary. Firstly, the classical theory of gravity given by GR has held
up under every experimental test required of it. Perhaps the classical theory really is the
true fundamental theory.

The second question is a practical one. One might ask if a quantum theory of gravity
is relevant to any observable phenomena. On dimensional grounds, we expect quantum effects
to become important at length scales around the Planck length

ℓp = G1/2 =

√
G~

c3
, (I.4.1)

which we see from the form with c and ~ inserted explicitly is the unique combination of G,
c and ~ with units of length. Since G and ~ are so small in practical units, and c so large, ℓp
turns out to have the incredibly small value of

ℓp = 1.6× 10−33 cm, (I.4.2)

Which is far below the resolution limits of any experimental device. The corresponding
energy Ep = 1.3×1019GeV is beyond the range of any conventional particle accelerator that
could be built on the surface of the earth.

7The mismatched parentheses indicate that Ψ is a functional of q′(x) and a function of t′; see Appendix I.A.
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Addressing the first question first, there are a number of reasons to believe that there
is a fundamental quantum theory of gravity underlying classical GR [14]. First of all, the
other forces of nature can be explained on a fundamentally quantum level (electroweak theory
and quantum chromodynamics), and it seems odd for one force to be fundamentally classical
while the others are quantum mechanical. This is especially true if one has aspirations
of unifying gravity with the other forces as Maxwell’s classical electromagnetism unified
electricity with magnetism, the Weinberg-Salam electroweak theory [15] unified quantum
electrodynamics with the weak interaction, and a hypothetical grand unified theory might
unify electroweak theory with quantum chromodynamics. To put an even finer point on it,
the Einstein equation (I.B.22) couples the curvature tensor Gµν = Rµν − gµν

2 R, which is
supposed to behave classically, with the stress-energy tensor {Tµν}, which is generated by
quantum-mechanical matter fields. The straightforward fix to this problem, replacing the
quantum stress-energy tensor with its expectation value in the state |Ψ〉 to give

Gµν = 8πG〈Ψ|Tµν |Ψ〉, (I.4.3)

produces useful results in the field of semiclassical gravitational physics, but still suffers
conceptual problems when {Tµν} describes a superposition of widely differing matter config-
urations [14].

Another reason why classical GR ought not to be taken as a fundamental theory
is its prediction of spacetime singularities [16]. There are theorems which demonstrate that
generic non-singular initial data can collapse into a black hole, which contains a spacetime
singularity at which the curvature diverges; in the presence of this divergence, GR is unable
to predict the subsequent evolution of the system. There is an escape from the problem of
singularities formed by collapse, in that most if not all such singularities predicted by classical
GR will be surrounded by “event horizons”, regions from which no timelike or lightlike signal
can escape to the external spacetime. This means that it doesn’t matter that we don’t know
how to interpret the future evolution of such singularities, as they will not lie in the past light
cone of any exterior observer. However, the same singularity theorems predict that evolving
our expanding universe backwards in time will always lead to an initial singularity, or “big
bang”. This singularity is on everyone’s light cone, and thus General Relativity predicts that
our universe originated in a phenomenon it is unable to describe adequately.

Turning now to the question of whether a fundamental quantum theory of gravity,
if it exists, is of practical interest, the singularity theorems again argue for the affirmative.
As the system evolves towards an infinite-curvature singularity, the curvature will go through
arbitrarily large values, and when it exceeds the Planck curvature ℓ−2

p , quantum gravitational
effects should become relevant. Again, GR is probably safe from ordinary astrophysical black
holes, as the curvature at the event horizon of a black hole is of the order of (GMBH)

−2 =
m4
p/M

2
BH

[17], so that it will only reach the Planck curvature in observable regions if MBH .

mp. Although semiclassical physics predicts that black holes will lose mass with time due to
Hawking evaporation, the time required for a solar mass black hole to evaporate to Planck size

will be [14] on the order of
(
M⊙

mp

)3
tp ∼ 1.3× 1063 yr, fifty-four orders of magnitude greater

than the age of the universe. However, the initial singularity predicted by comsmology again
compels us to consider quantum gravity, as the early universe must have had curvatures
in the Planck regime, and hence the “initial condition” from which the classical evolution
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of our universe began came about as a result of quantum gravitational phenomena. An
understanding of these phenomena could allow us to explain, for example, the recently-
observered inhomogeneities in the cosmic microwave background radation (CMBR) [18].

In addition, there are the obvious intellectual motivations to pursue a fully quantum-
mechanical theory of gravity. If there is a more fundamental theory of gravity than classical
GR, it is the job of theoretical physics to formulate it. While this is difficult in the absence
of experimental data8 to distinguish between competing theories, the inherent challenges in
formulating a consistent theory in the first place (see the following section) provide their
own tests for what is a “good” theory of gravity. And finally, just as special and general
relativity, as well as quantum mechanics, gave physicists new insight into the nature of the
universe, the pursuit of a quantum theory of gravity will lead to new ways of thinking about
the universe. String theory and the loop representation (see Sec. I.4.4) certainly fall into
that category, as does generalized quantum mechanics itself!

I.4.2 Difficulities in quantizing gravity

The dual role of geometry

The first obstacle to be overcome in formulating a quantum theory of gravity is the
fundamental role played by the spacetime geometry. Replacing the external gravitational
field of Newton with the beautiful geometric theory summarized in Appendix I.B, prevents
a straightforward application of the usual recipies for quantization. For example, [14] the
causality condition

[ĝµν(x), ĝλσ(x
′)] = 0, x and x′ spacelike separated (I.4.4)

is difficult to interpret when the geometry itself is behaving quantum mechanically. If the
spacetime metric is now an operator {ĝµν} rather than a classical quantity with a well-
defined value, what metric is being used to determine whether or not x and x′ are spacelike
separated? Clearly, any fully quantum-mechanical theory of gravity must be constructed
with some deeper insight as to how to quantize geometry.

The problem of time

A related issue is the “problem of time”, namely that the time direction enjoys
a special role in most methods of quantization, inconsistent with the Lorentz invariance of
special relativity and the diffeomorphism invariance of general relativity. States of the system
are defined on constant-time surfaces, as are spaces of eigenstates onto which projections
defining measurements are made. Commutation relations and canonical methods are defined
using conjugate momenta, which also single out a preferred time direction. Even when
surfaces of constant time are generalized in these definitions to include arbitrary timelike
surfaces, there is still a problem, as the question of whether two spacetime points are timelike
or spacelike separated will be ill-defined if the metric is behaving fully quantum mechanically.

It is these sorts of considerations which make the spacetime alternatives of Sec. I.2
so appealing, and they will be the focus of Chapter II.

8Other, that is, than the indirect information afforded us by cosmological observations.
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Renormalization

Another problem which faces would-be quantum theories of gravity is that of renor-
malizibility. Interacting and self-interacting field theories are only fully understood at the
perturbative level, where quantities of interest are expressed as perturbation series in the
coupling contant. Unfortunately, terms in the perturbation series beyond zero order will
generally be equal to divergent integrals over the momenta of intermediate particles. If some
sort of artificial cutoff is introduced to remove this divergence, the theory will then depend
on these cutoff parameters (and the values of physical constants will diverge as those cutoffs
are taken to infinity). The dependence on the cutoffs can be cancelled out if additional terms
(“counter-terms”) are added to the action which contain the same divergences. In general,
then, the action will then have a number of arbitrary parameters on which the theory will
depend.

The one way out of this jam is if suitable counter-terms can be constructed which
have the same form as terms already in the action. Then the new parameters can be ab-
sorbed into redefinitions of the old ones. This scheme only works if the coupling constant
is dimensionless, so that the divergent parts of simple diagrams can cancel those of more
complex ones including additional verticies. If the coupling constant has dimensions which
are some inverse power of length (positive mass dimensions), later terms in the expansion will
involve more factors of momentum in the denominator, and won’t diverge in the ultraviolet
limit. However, if the coupling constant has positive length (negative mass dimensions) the
theory should be non-renormalizable.

A simple way to analyze the expected behavior of GR under perturbative quantiza-
tion is to expand the metric about some classical solution, replacing gµν by gµν + γµν . The
gravitational action in this case is calculated in Appendix IV.A to chapter IV, and is given
by [cf. (IV.A.41)]

S =
1

16πG

∫ √
|g| d4x

[
−1

4
(∇λγµν)(∇λγµν) +

1

2
γµνRµλνσγ

λσ +O({γµν}3)
]
. (I.4.5)

In order that the lowest order term resemble that of a free field [cf. (I.B.15)] we need to
quantize the field 1√

16πG
γµν = 1

ℓp4
√
π
γµν , which means that each additional factor of γµν

entering the integral brings an additional power of the coupling constant ℓp. This coupling
has dimensions of length and thus the theory is non-renormalizable.

Constraints

Another issue to be considered is the diffeomorphism invariance described in Sec.
I.B.3. The constraints (I.B.30) it implies in a 3+1 formulation require careful treatment.
For example, if one attempts to perform a canonical quantization where the variables {hij}
and their conjugate momenta {πij} are turned into operators, one must make sure that their
commutation relations respect the constraints. This cannot be done in a straightforward
manner with the Hamiltonian constraint (I.B.30a) [19].
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I.4.3 Quantum cosmology

Related to the issue of applying quantum mechanics to gravity is that of applying it
to cosmology. Since this means in principle treating the entire universe as a closed quantum
system, the Copenhagen interpretation of quantum mechanics (Sec. I.3.2), with its reliance
on an external classical observer performing measurements on the system is inappropriate
for quantum cosmology. The early universe presumably contained no sentient observers,
and in the vicinity of the Planck time did not even contain any classical subsystems. So a
formalism designed for quantum cosmology must be able to describe the quantum mechanics
of an entire closed system, and ought to generalize the notion of “measurement” to something
defined without reference to an external observer.

I.4.4 Alternate approaches

Before describing the application to quantum gravity of the generalized quantum
mechanics formalism, with which this dissertation is concerned, I will briefly mention a few
other approaches to quantizing gravity and how they address some of the issues mentioned
previously.

String theory

By far the most ambitious of these approaches is string theory [20], which seeks
not only to describe gravity quantum mechanically, but to unite it with the other forces of
nature as well. Its goal is to describe all particles and forces as a result of the interactions
of extended objects. By replacing pointlike particles with one-dimensional strings, string
theory introduces a parameter with dimensions of length which provides a natural cutoff
scale. This provides a way to overcome the ultraviolet divergence of gravity, and indeed,
the theory is perturbatively finite. In addition, since string theory is designed to describe
elementary particles as different energy levels in the string spectrum, it has the laudable goal
of removing the many arbitrary parameters (masses of quarks and leptons, mixing matrices,
etc.) found in the standard model of particle physics.

Ashtekar’s new variables

This is another prescription whose goal is to avoid the problem of renormalizability,
this time by circumventing it altogether and treating gravity non-perturbatively [21]. The
idea is to perform a non-perturbative canonical quantization of general relativity. The pro-
gram avoids some of the constraint problems by working in a new set of variables in which the
constraints are more manageable.9 The spatial metric {hij} and its conjugate momentum
{πij} are replaced by variables related to the Christoffel symbols (also known as connection
coëfficients) {Γαβγ} [cf. (I.B.6)], whose conjugate momenta are related to a tetrad of four

four-vectors {Eaµ|a = 0, 1, 2, 3} which define the spacetime metric via gµν = EaµE
b
νηab (where

{ηab} is the Minkowski metric diag{−1, 1, 1, 1}).
9It should be noted that as a fundamentally canonical theory, this approach is susceptible to criticisms

related to the problem of time.
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Recent formulations [22] have taken advantage of the theory’s resemblence to Yang-
Mills theory to reformulate it in terms of an analogy to Wilson loops. This “loop represen-
tation” makes the fundamental objects of the theory loops and knots, thereby providing a
candidate for a more fundamental theory underlying spacetime, just as string theory does.

Euclidean path integrals

This approach [23] applies the path integral quantization methods of field theory
to GR, so that the amplitude to make a transition between one metric on a three-surface
to another metric on another three-surface is given by a path integral over all possible four-
metrics which join the two surfaces. One of the difficulties in performing this path integral
is that the integral of exp(iS) does not converge, but has an oscilatory behavior, and the
euclidean path integral approach circumvents this by analytically continuing the metric to
one with signature (+,+,+,+) rather than (−,+,+,+).

This is analogous to the sort of continuation performs on a Lorentz metric

ds2 = −dt2 + dx2 + dy2 + dz2; (I.4.6)

by defining τ = it, the metric takes the form

ds2 = dτ2 + dx2 + dy2 + dz2, (I.4.7)

which is simply a Euclidean metric. This coördinate transformation is not very useful when
t is real, and thus τ pure imaginary, but if one performs calculations for real τ , one can
often analytically continue the results back to imaginary τ (and this real t). This is useful
for the integral of eiS because of the form the action often takes in the new coördinates. For
example, the Klein-Gordon action (I.B.15) on a Minkowski background can be transformed
into

Skg = −1

2

∫
dt d3x[−(∂tϕ)2 + (∇ϕ)2 +m2ϕ2]

=
i

2

∫
dτ d3x[(∂τϕ)

2 + (∇ϕ)2 +m2ϕ2] = iSE

(I.4.8)

where the Euclidean action SE is positive definite for real τ . This means that eiS = e−SE is
exponentially damped rather than oscilliatory as the action moves away from its minimum
value. Results calculated in this manner can then be analytically continued back to real t.

The problem with this as a scheme for quantizing gravity is that a general curved
metric cannot be analytically continued in this way [14], so its usefulness is limited to situa-
tions such as scattering where there is a background spacetime (usually asymptotically flat)
on which this phase rotation can be performed.

I.4.5 The decoherence functional for GR

Generalized quantum mechanics is not really a quantization scheme on the same
footing as the other approaches just described; it is a way to formulate a quantum-mechanical
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theory of the universe, whatever the details of that theory might be. As such, it could be
used as a framework for one of the approaches discussed in Sec. I.4.4. For example, one might
construct the decoherence functional between pairs of histories described by string variables,
or use Ashtekar’s new variables to produce a decoherence functional rather than a canonical
operator description.

As a first application, however, it is worthwhile to write down the decoherence
functional for simple general relativity. While we might expect that problems related to
renormalization and constraints will still exist, we can see how generalized quantum me-
chanics addresses the problem of time and the interpretational issues of quantum cosmology
without committing to the details of one specific modification of GR.

In addition [24], it seems reasonable that since the fundamental quantum theory
of gravity, whatever it is, must reduce to GR in the classical limit, there may be some
intermediate regime in which quantum gravitational effects are important, but the differences
between the more fundamental theory and GR are not significant. For coarse grainings
describing that regime (presumably those which consider averages of fields over regions of
Planckian size or larger), we then expect (for suitable initial and final conditions)

Dfundamental(α, α
′) ≈ Dquantum GR(α, α

′). (I.4.9)

Let us then attempt to write down the decoherence functional for general relativity
coupled to matter fields, which we write schematically as ϕ. The sum-over-histories prescrip-
tion is the most generic, at least in its formal form, so it will be of almost exclusive interest
for this dissertation. The decoherence functional is written as

D(α, α′) =

∑
i,j

p′′i 〈Φi|Cα|Ψj〉〈Φi|Cα′ |Ψj〉∗p′j
∑
i,j

p′′i |〈Φi|Cu|Ψj〉|2 p′j
. (I.3.12)

The tricky question is how to realize the sum-over-histories prescription (I.3.13) for the matrix
elements {〈Φ|Cα|Ψ〉}. The straightforward answer would seem to be

〈Φ|Cα|Ψ〉 = Φ∗[{g′′µν}, ϕ′′] ◦ 〈{g′′µν}ϕ′′|Cα|{g′µν}ϕ′〉 ◦Ψ[{g′µν}, ϕ′] (I.4.10a)

〈{g′′µν}ϕ′′|Cα|{g′µν}ϕ′〉 =
∫

{g′′µν}α{g′µν}

D6hD6πD4NDϕei(Scan[{gµν}]+Sϕ[ϕ]), (I.4.10b)

with such niceties as the inner product ◦ and the practical realization of the formal sum over
histories yet to be specified. However, that is not quite right because of the diffeomorphism
invariariance of the theory. First of all, for 〈Φ|Cα|Ψ〉 to be diffeomorphism invariant (see
Sec. III.6) the wavefunctions must actually depend only upon the spatial metric and not the
lapse and shift, so, for example, Ψ[{g′µν}, ϕ′] is replaced with Ψ[{h′ij}, ϕ′]. And secondly, to
avoid an infinite factor related to the volume of the gauge group, we must impose a gauge-
fixing prescription [25] by including a gauge-fixing delta function δ[G] and its associated
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Fadeev-Popov determinant ∆G. With these modifications, (I.4.10) becomes

〈Φ|Cα|Ψ〉 = Φ∗[{h′′ij}, ϕ′′] ◦ 〈{h′′ij}ϕ′′|Cα|{h′ij}ϕ′〉 ◦Ψ[{h′ij}, ϕ′] (I.4.11a)

〈{h′′ij}ϕ′′|Cα|{h′ij}ϕ′〉 =
∫

{h′′
ij}α{h′

ij}

D6hD6πD4Nδ[G]∆G[{gµν}]ei(Scan[{gµν}]+Sϕ[ϕ]).

(I.4.11b)

There are still many delicacies involved in this path integral, and my approach will
be to consider them a few at a time by studying the application of generalized quantum
mechanics to simpler theories exhibiting some of the same features.

I.4.6 Toy models

Analogy to the relativistic particle

As discussed in Sec. I.B.3 of Appendix I.B, GR is invariant under diffeomorphisms
xµ → xµ({xµ}). One subset of the diffeomorphism group is the set of time reparametrizations
({xi}, t) → ({xi}, t(t)). The details of a particular time parametrization are described by
the lapse N and shift {N i} from the 3+ 1 formulation of GR (see Appendix I.B). The lapse
N describes the spacing of the surfaces, while the shift {N i} describes the relation between
spatial coördinates {xi} and those on a surface dt into the future.

A much simpler parametrized theory is that of a free relativistic particle in Min-
kowski space. There the fine-grained histories are paths through spacetime which can be
parametrized as functions of a parameter λ, namely x(λ). Since a free relativistic particle
follows a path of maximal proper time, one expression for its action is

S[x] =

∫ 1

0

dλL−m
∫ 1

0

dλ
dτ

dλ
= −m

∫ 1

0

dλ

√
−ηµν

dxµ

dλ

dxν

dλ
(I.4.12)

This is a difficult action to deal with since it is not quadratic in the velocities { dxµ

dλ }. To
obtain a quadratic action with the same extrema, one can convert to canonical form. The
conjugate momenta are

pµ = mηµν
dxν/dλ

dτ/dλ
m
dxµ/dλ

dτ/dλ
; (I.4.13)

the Hamiltonian

H = pµ
dxµ

dλ
− L (I.4.14)

vanishes, but there is a constraint

ηµνpµp
µ +m2 = p2 +m2 = 0 (I.4.15)

obeyed by the momenta, so the canonical action is

Scan =

∫ 1

0

dλ

(
p · dx

dλ
−N p2 +m2

2m

)
, (I.4.16)
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where N(λ) is a Lagrange multiplier. The constraint hamiltonian in (I.4.16) has been ex-
pressed in a form which makes the action quadratic in the momenta. Varying (I.4.16) with
respect to N gives (I.4.15), varying with respect to x gives the equation of motion

dp

dλ
= 0, (I.4.17)

and varying with respect to p gives

pµ = m
dxµ/dλ

N
. (I.4.18)

Classically, then, the multiplier takes on the value N = dτ
dλ .

The analogy between this theory of a relativistic particle and GR is then as follows:

• A reparametrization λ(λ) of the relativistic particle corresponds to a reparametrization
t(t) of GR.

• The lagrange multiplier N of the relativistic particle theory, which classically obeys
dτ = Ndλ, corresponds to the lapse function of GR, which obeys, when {N i} and
{dxi} both vanish, dτ = Ndt.

• In each theory, the multiplier imposes a quadratic constraint. For the relativistic
particle, this is the mass-shell constraint 1

2m (p2 + m2) = 0, while for GR it is the
hamiltonian constraint (I.B.30a).

Chapter II is concerned with the generalized quantum mechanics of this theory,
particularly with spacetime coarse-grainings of the particle paths.

Analogy to non-Abelian gauge theory

Another subset of diffeomorphism invariance is that in which the time parametriza-
tion is unchanged and a spatial diffeomorphism ({xi}, t)→ ({xj({xi})}, t) is executed. under
this spatial diffeomorphism the spatial metric is changed according to

δhij = − 3∇iδxi − 3∇jδxj , (I.4.19)

along with changes in the momenta, lapse and shift. These spatial diffeomorphisms are
analogous to the gauge transformations in a non-Abelian gauge theory with canonical action

Scan =

∫
d4x(πa · Ȧa −H[A,π]− ϕaKa). (I.4.20)

The infinitesimal gauge transformations under which this theory is invariant change the
vector potential acording to

δAa = −∇δΛa − gf cabAcδΛb = (−DδΛ)a , (I.4.21)

along with changes in the momenta and the scalar potential ϕ.
The analogy between GR and a non-Abelian gauge theory (NAGT) is thus
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• The gauge transformations (I.4.21) in a NAGT correspond to spatial diffeomorphisms
(I.4.19) in GR.

• The scalar potential ϕ in a NAGT is a lagrange multiplier, corresponding to the shift
vector {N i} in 3+1 GR.

• The scalar potential enforces the Gauss’s law constraint K = D ·π in a NAGT, which
corresponds to the momentum constraint (I.B.30b) of GR.

I.5 Outline

The plan for the rest of this dissertation is as follows:

I.5.1 Chapter II: Spacetime coarse grainings in relativistic particle

QM

In Chapter II, I use generalized quantum mechanics to predict probabilities for
sets of spacetime alternatives (see Sec. I.2) in the quantum mechanics of a single relativistic
particle (see Sec. I.4.6). In earlier work, Yamada and Takagi [2] considered certain spacetime
coarse grainings in nonrelativistic quatum mechanics, and exhibited such coarse grainings
which decohered for initial conditions with particular symmetry properties. In Chapter II, I
examine similar coarse grainings in the case of the relativistic particle, and find that some,
but not all, of them decohere and allow the consistent assignment of probabilities.

While these alternatives are extremely simple and idealized, they do provide an
example of how generalized quantum mechanics can make predict probabilities for non-trivial
sets of spacetime alternatives in this simple relativistic theory.

I.5.2 Chapter III: Non-Abelian gauge theories

Gauge invariance is the primary focus of Chapter III, which describes a sum-over-
histories generalized quantum mechanics of a non-Abelian gauge theory (NAGT) with an
arbitrary gauge group and no matter. [The motivation is not to apply this generalized
quantum mechanics directly to the strong or weak interaction, but to learn more about
the consequences of the gauge symmetry with an eye towards applying these lessons to the
gauge (diffeomorphism) symmetry of general relativity, according to the analogy described
in Sec. I.4.6.] In a NAGT, because of the gauge symmetry, there are a number of choices
to be made in the formulation of the quantum mechanics itself. A frequently-used tactic in
quantizing gauge theories is to impose a priori the constraints corresponding to the gauge
symmetries, and quantize only the variables in the so-called physical subspace. Since it
generally difficult to isolate the physical subspace, and because giving the constraints special
status breaks the manifest Lorentz invariance of the theory, I instead take the more general
approach of performing a sum-over-histories quantization of the entire theory and observing
in which ways the constraints manifest themselves. This is done with coarse grainings which
ask physical questions corresponding to the constraints. For instance, one can coarse grain
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by the value of the covariant divergence of the non-Abelian electric field. I use a sum-over-
histories generalized quantum mechanics to make such predictions, and compare the results
to those of quantum-mechanical descriptions of gauge theories in which the constraints are
imposed by hand. When the constraint is expressed in the natural way in terms of phase space
variables, it is seen to hold, both through a simple formal argument and via a more careful
description of the Lorentzian path integral as defined on a spacetime lattice. However, if the
constraint is defined using only configuration space variables (the scalar and vector potential,
as opposed to the momentum conjugate to the latter), the situation is more complicated.
For some coarse grainings, I recover the known result from an abelian theory, that coarse
grainings by values of the constraint either predict its vanishing or fail to decohere. However,
sets of alternatives defined in terms of a more complicated quantity in the abelian case are
exhibited where definite predictions can be made which disagree with the assumption that
the constraints vanish. Despite this seeming failure, the configuration space approach is
appealing because, as is shown in Sec. III.6, it can be formulated in a manifestly Lorentz-
invariant way. In this formulation, the constraints obeyed by the wave functionals are directly
related to the surfaces in spacetime on which those wave functionals are defined.

The methods for inducing decoherence in Chapters II and III are somewhat artificial.
In Chapter II, some sets of alternatives decohere because symmetries of the initial states cause
the interference terms to cancel. In Chapter III, with the exception of Sec. III.5.4, all the
decohering sets of alternatives have the property that the probability is one for one alternative
and zero for the others. In this sense they are more identities than quantum mechanical
predictions. The process which is believed to result in most real-world decoherence [12]
involves a division into a “system” of physical interest coupled to an “environment” which
carries away phase information, causing coarse grainings describing only “system” variables
to decohere.

I.5.3 Chapter IV: Modelling the decoherence of spacetime

Chapter IV poses the question of when such physical decoherence occurs in the
gravitational field, a phenomenon known as the decoherence of spacetime. Previous work [26,
27] has used an additional field to obtain decoherence of the gravitational field in cosmological
models. In Chapter IV I address the question of whether decoherence can be induced in
the gravitational field itself by separating the field into short- and long-wavelength modes
and allowing coarse grainings to refer only to the long-wavelength modes. In this way one
may model the intuitively reasonable effect that if we examine the gravitational field on
scales long compared to the Planck length, quantum gravitational interference will become
unimportant, and one will be able to make predictions for alternatives defined on those
scales. (And presumably, at large enough scales, those predictions will corrsepond to those
of classical GR.) For a toy model in which the perturbative action for gravity is mimicked
by a scalar field, I demonstrate such decoherence for coarse grainings which have certain
properties. Namely, the short-wavelength modes are taken to be in a thermal state, whose
temperature is higher than that corresponding to the length scale dividing “short” and
“long” wavelengths, and the modes defining the coarse graining have temporal frequencies
lower then their spatial frequencies. Under these circumstances, decoherence will occur when
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the alternatives are sufficiently coarse-grained. The question of decoherence in other regimes
cannot be addressed by the perturbative analysis in Chapter IV.

I.A Notation and conventions

I.A.1 Units

Except when it is convenient to show factors of c or ~ explicitly, I will be using
the system of units in which c = 1 = ~, so for instance 1 cm = 1 cm = 3.3 × 10−11 s =
5.1×1010MeV−1. Factors of Newton’s constant, will, however, always be explicitly included,
and its value is G = m−2

p = ℓ2p.

I.A.2 Sign conventions

In general, I will use the sign conventions of [14] for relativity. In particular, the
spacetime metric has one negative eigenvalue and three positive ones, so the Minkowski
metric is

{ηµν} =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 (I.A.1)

I.A.3 Vectors and indices

I.A.4 Indices

I will represent spacetime indices with greek letters (µ, ν, . . .), and such indices take
on values 0, . . . , D, where D is the number of spatial dimensions, usually 3. Spatial indicies
are represented by latin letters from the middle of the alphabet (i, j, . . .) and run from 1
to D. Except in Chapter IV, latin indices from the beginning of the alphabet (a, b, . . .)
are “other” indices, either labelling the vectors in a tetrad or generator indices in a gauge
theory. Their position as superscripts or subscripts is arbitrary, as opposed to spacetime
indices which are raised and lowered with the metric {gµν} and spatial indices which are
raised and lowered with the metric {hij}. In Chapter IV, latin indices a, b, . . . are part of
the abstract index notation described in Sec. IV.3.1. All of these indices obey the Einstein
summation convention in which repeated indices are summed over their entire range. For any
other indices (such as M and N from Chapter IV), summation occurs only where explicitly
stated.

Vectors and tensors

General D or D+1 vectors on curved space(time) are written as sets of components
{vi} or {vµ}. Spatial vectors on flat Euclidean space are also written in boldface, as in E.
Assorted vectors and matrices, the interpretation of which should be apparent from context,
are written as unadorned letters v. This includes vectors in flat D + 1 Minkowski space.
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When an object such as k or ∇ is to be interpreted as a scalar rather than a four-vector, I
will endeavor to point this out.

I.A.5 Functions and functionals

The argument of a function will generally be written in parentheses, A′(x); the
argument of a functional will be written in square brackets, Ψ[A′]. When an object is a
function of some variables and a functional of others, I will use a mixed-parentheses nota-
tion. For example, Ψ[A′; t′) is a functional of A′(x) and a function of t′. In the case of
propagators, I will divide the arguments with a semicolon on each side of the vertical bar,
as in G [A′′; t′′| A′; t). Finally, wherever possible, I will try to distinguish between functions
over spacetime x and functions over space x by writing the latter with a prime, an index,
or the like. So S[ϕ] is a functional of spacetime field configurations ϕ(x) while Φ[ϕ′] is a
functional of spatial field configurations ϕ′(x).

Miscellaneous

The Heavyside step function is given by

Θ(x) =

{
1, x > 0

0, x < 0.
(I.A.2)

I.B General Relativity

Gravitational phenomena at scales ranging from small macroscopic bodies falling
on the Earth to the motion of clusters of galaxies are accurately described by Einstein’s
general theory of relativity (GR). This replaced the Newtonian theory of gravity, in which
the gravitational potential ϕ is an external field which acts upon objects according to

F ≡ md2x

dt2
= −m∇ϕ (I.B.1a)

and is generated by the mass density ρ of matter:

∇2ϕ = 4πGρ, (I.B.1b)

In contrast, the action of gravity in GR is not some external force field, but an alteration
in the geometry of spacetime itself. This formulation has built into it what is a seeming
cöıncidence in the Newtonian theory, namely that the inertial mass m appearing on the
left-hand side of (I.B.1a) is the same as the parameter m on the right-hand side which
describes how an object couples to the gravitational field, and thus the parameters cancel
out. This is known as the equivalence principle, and means that any object, regardless of its
mass, will follow the same trajectory in a gravitational field. (Contrast this with the case of
electromagnetic fields, where the charge-to-mass ration of the object comes into play.) This
allows the effect of gravity to be described as a property of the spacetime in which all objects
move.
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Among other things, the equivalence principle also means that if an entire system
is falling in a gravitational field, it is impossible, by conducting experiments within that
system, to detect the gravitational field. It is only possible to detect inhomogeneities in the
field, if the system is large enough that the difference between the fields at both extremes
becomes detectable. Then there will be a relative acceleration between different elements of
the system. This also has a mathematical expression in general relativity.

I.B.1 The geometry of spacetime

The spacetime metric

The geometry of spacetime is described by the metric gµν , which is used to define
the spacetime interval ds2 between two points by

ds2 = gµνdx
µdxν . (I.B.2)

In flat (Minkowski) spacetime, it is possible to choose a global set of coördinates {x0, x1, x2,
x3} such that

ds2 = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2, (I.B.3)

but this is only true locally in a general curved spacetime. To see this, consider a general
metric {gµν(x)}, which is a four-by-four symmetric matrix, and thus has ten independent
components which are functions of the position x in spacetime. Under a change of coördi-
nates from {xµ} to {xµ}, application of the chain rule of multivariable calculus to (I.B.2)
and ds2 = gµνdx

µdxν gives the transformation law

gµν = gµν
∂xµ

∂xµ
∂xν

∂xν
(I.B.4)

Thus we see that we have sixteen first derivatives {∂xµ/∂xµ} which can be chosen to set the
ten10 independent components {gµν} to their flat-space values gµν = ηµν (where η00 = −1,
η01 = 0, η02 = 0, η03 = 0, η11 = 1, etc.) at a single point, with six degrees of freedom to

spare. If we move on and try to set the first derivatives
{
∂gµν

∂xλ

}
to their flat-space values,

namely zero, this gives us 10 × 4 = 40 additional values to fix, and we have at our disposal

the 4 × 10 = 40 second derivatives
{

∂2xµ

∂xµ∂xν

}
describing the coördinate transformation.

Finally we lose the ability to fix things completely when we consider the second derivatives{
∂2gµν

∂xλ∂xσ

}
of the metric. There are 10 × 10 = 100 of these, and only 4 × 20 = 80 third

derivatives
{

∂3xµ

∂xµ∂xν∂xλ

}
. This means that, at least by this simple counting argument, there

should be 100− 80 = 20 independent components
{

∂2gµν

∂xλ∂xσ

}
which cannot be set to zero by

a coördinate transformation.

10A four-by-four symmetric matrix has
(4
1

)
= 4 diagonal components plus

(4
2

)
= 6 off-diagonal components.

A fully-symmetric three-index object like dxµdxνdxλ has 4 “diagonal” components, 2!×
(4
2

)
= 12 components

where two indices are the same and the third is different, and
(4
3

)
= 4 components where all four indices are

different, for a total of 20 independent components.
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Transformations, tensors and the invariant description of curvature

To see what these twenty combinations of
{

∂2gµν

∂xλ∂xσ

}
are requires just a bit of ge-

ometry. Equation (I.B.4) tells us that the metric behaves as a second rank covariant11

tensor under changes of coördinates; likewise, a spacetime displacement dx is a contravariant
four-vector (first rank tensor) obeying transformation the law dxµ = ∂xµ

∂xµ dx
µ. These are all

examples of the general tensor transformation law

T ν1···νnµ1···µm
= T ν1···νn

µ1···µm

∂xµ1

∂xµ1
. . .

∂xµm

∂xµm

∂xν1

∂xν1
. . .

∂xνn

∂xνn
(I.B.5)

which is the generalization of the familiar Lorentz transformation law, with the Lorentz trans-

formation matrix {Λµµ} replaced by
{
∂xµ

∂xµ

}
. The ordinary gradient ∂λT

ν1···νn
µ1···µm

=
∂T

ν1···νn
µ1···µm

∂xλ of

a tensor does not have these transformation properties, as must be the case in light of our
demonstration that ∂λgµν can always be made to vanish at a point in some coördinate sys-
tem, while this is clearly not true for an arbitrary metric in an arbitrary coördinate system.
(Since the transformation law (I.B.5) is homogeneous and linear, a tensor which vanishes in
one coördinate system must vanish in every one.) Instead, the operation must be converted
to a covariant derivative ∇λ which is corrected from ∂λ as follows:

∇λT ν1···νnµ1···µm
= ∂λT

ν1···νn
µ1···µm

+

n∑

j=1

Γ
νj
λσT

ν1···σ···νn
µ1···µm

−
n∑

i=1

Γσλµi
T ν1···νnµ1···σ···µm

(I.B.6)

The quantity ∇λT ν1···νnµ1···µm
will transform as a tensor under coördinate changes, and can thus

be used to contruct coördinate-invariant physical laws. The Christoffel symbols {Γλµν} which
accomplish this are given by

Γλµν =
gλσ

2
(∂µgσν + ∂νgµσ − ∂σgµν) , (I.B.6a)

where gµν are the components of the inverse metric defined by gµλgλν = δµν . The Christoffel
symbols {Γλµν} are not the components of a tensor (since they can always be made to vanish
at a point by a suitable coördinate transformation), and are thus a property of the coördinate
system and not of the spacetime geometry alone. In fact, the statement that there is always
a coördinate system for which, at a particular point, gµν = ηµν and Γµνλ = 0 is another
statement of the equivalence principle.

The tensorial object describing the curvature of the geometry is given by considering
the fact that covariant derivatives, unlike ordinary ones, do not commute, and it turns out
[14] that given any tensor {T ν1···νnµ1···µm

}

∇λ∇σT ν1···νnµ1···µm
−∇σ∇λT ν1···νnµ1···µm

= −
n∑

j=1

Rλσρ
νjT ν1···ρ···νnµ1···µm

+
n∑

i=1

Rλσµi

ρT ν1···νnµ1···ρ···µm
(I.B.7)

11In the language of differential geometry, a subscripted index is known as a covariant index, while a
superscripted index is called contravariant. The tensor transformation laws are designed so that if all of
the contravariant and covariant indices are paired off and summed over (as in, for example, gµνuµuν), the
resulting object is a scalar, i.e., is unchanged by a coördinate transformation.
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{Rµνλσ} are the components of a tensor known as the Riemann curvature tensor, and are
given in a particular coördinate system by

Rµνλ
σ = ∂νΓ

σ
µλ − ∂µΓσνλ + ΓρµλΓ

σ
ρν − ΓρνλΓ

σ
ρµ (I.B.8)

These combinations of second derivatives of the metric (and there turn out to be twenty
independent quantities among them) are what describe the curvature of the spacetime. They
have, among others, the following symmetries:

Rµνλ
σ = −Rνµλσ = Rλ

σ
µν , (I.B.9)

where we have used the metric and its inverse to “raise” and “lower” indices (Rλ
σ
µν =

gσρgνξRλρµ
ξ). They are clearly zero for flat spacetime described by the metric (I.B.3) (which

has vanishing Christoffel symbols), but because of the tensorial nature of the Riemann tensor,
they also vanish for any description of the same geometry in another coördinate system, for
example spherical polar coördinates, in which

ds2 = −dt2 + dr2 + r2dθ2 + r2 sin2 θdφ2. (I.B.10)

In this coördinate system, some of the first derivatives of the metric coëfficients are non-zero
(for example, ∂rgθθ = 2r), but all of the components of Rµνλ

σ still vanish, showing that the
spacetime is still flat.

The motion of particles in curved spacetime

This, then, is how one describes the geometry of spacetime mathematically. Its
effects on the motion of objects are as follows: A particle’s trajectory is given by some path
x(λ) through spacetime, where λ parametrizes the path. A convenient choice of parameter is
the proper time τ , given by dτ2 = −ds2 along the path. Given that τ is an invariant (scalar)
quantity, the four-velocity with components uµ = dxµ

dτ is a contravariant four-vector, and by

the chain rule d
dτ = uµ∂µ. Now, a particle moving under the influence of no external forces

in non-relativistic mechanics obeys
d2x

dt2
= 0. (I.B.11)

Keeping in mind that general relativity is constructed so that the action of gravity is not
an explicit force, but a consequence of geometry, the motion of an object moving under
the influence only of gravity must obey a similar, relativistic equation, as dictated by the
equivalence principle. Replacing the time with proper time and the three-vector dx with the

four-vector dx, the left hand side of (I.B.11) becomes d2xµ

dτ2 . This is not quite a contravariant

vector, since it is equal to duµ

dτ = uν∂νu
µ. The obvious modification is to replace the ordinary

gradient with a covariant one to give

uν∇νuµ =
d2xµ

dτ2
+ Γµνλ

dxν

dτ

dxλ

dτ
= 0. (I.B.12)

This is called the geodesic equation, and it describes the motion of an object effected only by
the spacetime geometry, just as (I.B.1a) describes the motion of an object effected only by
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the gravitational field. [The effect of external forces is be described by adding terms to the
right hand side of (I.B.12), just as the effect of forces other than gravity would be described
by adding terms to the right hand side of (I.B.1a).]

The geodesic equation also allows one to calculate the relative acceleration described
in the preamble to this section. If two particles are initially moving along parallel trajectories
with a four-velocity {uµ} and separated by a small displacement {nµ}, their separation will
change with time according to the equation of geodesic deviation [17]

unu∇νuλ∇λnµ = −Rνλσµuνnλuσ (I.B.13)

I.B.2 How matter generates curvature

The stress-energy tensor

With (I.B.12) describing the effect of the spacetime geometry on the motion of
particles, taking the place of the non-relativistic, Newtonian formula (I.B.1a), the other half
of general relativity describes the way in which matter generates spacetime curvature, which
takes the place of (I.B.1b). The relativistic quantity corresponding to the mass density ρ
appearing in (I.B.1b) is the stress-energy tensor {Tµν}. In Minkowski space, the component
T00 is equal to the energy density ρ, the mixed components {Ti0 = T0i} are equal to the
momentum density in the ith spatial direction, or the flux of energy across a surface oriented
in that direction, and the spatial components {Tij} are the components of stresses. Given
a matter field with action SM , the stress-energy is defined12 as the functional derivative of
SM with respect to the metric:

Tµν = − 2√
|g|
DSM
Dgµν . (I.B.14)

For example, a Klein-Gordon scalar field ϕ has an action13

Skg = −1

2

∫ √
|g| d4x[gµν(∇µϕ)(∇νϕ) +m2ϕ2]; (I.B.15)

Using the identity

D
Dgµν

∫ √
|g| d4xL(x) =

∫ √
|g| d4xDL(x)Dgµν −

√
|g|
2
Lgµν (I.B.16)

one can calculate

T kg

µν = (∇µϕ)(∇νϕ)−
gµν
2

[
gλσ(∇λϕ)(∇σϕ) +m2ϕ2

]
(I.B.17)

for the stress-energy tensor.

12There are actually some subtleties in the relationship between this definition of the stress-energy tensor
and the perhaps more familiar definition as a Noether current. See [28] for details.

13Since
√

|g| d4x =
√

|det{gµν}| dx0dx1dx2dx3 is the invariant volume element, the action (I.B.15) is
invariant.



32 CHAPTER I. INTRODUCTION

Likewise, the action for an electromagnetic field (not including the source terms) is

Sem = −1

4

∫ √
|g| d4xFµνFµν = −1

4

∫ √
|g| d4x gµνgλσFµλFνσ (I.B.18)

which leads to the stress-energy tensor

T em

µν = gλσFµλFνσ −
gµν
4
FλσF

λσ. (I.B.19)

The gravitational action

The spacetime geometry is coupled to the stress-energy tensor via an action prin-
ciple. Requiring the total action S = SG + SM to be stationary under changes of the metric
gives

2√
|g|
DSG
Dgµν = Tµν , (I.B.20)

which is the GR counterpart of (I.B.1b). If we wish to construct the gravitational action SG
out of the spacetime geometry alone, the only tensors at our disposal are {gµν} and {Rµνλd}.
The simplest scalar which can be created from these two is just a constant Λ, but this does
not lead to an interesting theory by itself. To create a scalar which is linear in the curvature
tensor, we “contract” it with the metric to get first the Ricci tensor Rµν = Rµλν

λ and finally
the curvature scalar R = gµνRµν . The simplest non-trivial action for the gravitational field
is thus

SG =
1

16πG

∫ √
|g| d4x(R − 2Λ) (I.B.21)

which leads (ignoring surface terms in the variation) to the Einstein equation

Rµν −
gµν
2
R+ Λgµν = 8πGTµν . (I.B.22)

This replaces (I.B.1b), and the effects of the theory reduce to those of Newtonian gravity for
small curvature [17].

The constant Λ is known as the cosmological constant, and has had a long and
checkered history [29], but as current experimental limits [30] set

|Λ| . 5× 10−56 cm−2, (I.B.23)

it will suffice to take Λ = 0 for the purposes of this dissertation.

I.B.3 Features of the gravitational action

Diffeomorphism invariance

Having briefly described GR, I will now discuss one of its salient features, namely
its invariance under changes in coördinate system.14 This would seem to be little more than

14I will describe this transformation as a change of coördinates, i.e., a passive transformation in which a
given point in spacetime is relabelled from {xµ} to {xµ+δxµ}. It could, of course, also be described in terms
of an active diffeomorphism which moves the point originally labelled by {xµ} to a new location, which is
the point labelled in the original coördinates by {xµ − δxµ}.
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a restatement of the fact that since the entire theory is expressed in covariant language, the
predictions of the theory are unchanged when the metric is transformed according to (I.B.4).
However, there is a subtle, if familiar, point to be taken into consideration, namely that since
the left- and right-hand sides of (I.B.4) are supposed to be evaluated at the same point in

spacetime, the values of the coördinates in the arguments of gµν({xλ}) and gµν({xλ}) will
not be the same. Thus the effect of an infinitesimal coördinate change15 xµ → xµ = xµ+δxµ

will be, to first order in δxµ

δgµν = gµν({xλ})− gµν({xλ})
= gµν({xλ}) + δxλ∂λgµν − gσρ({xλ})(δσµ + ∂µδx

σ)(δρν + ∂νδx
ρ)

= δxλ∂λgµν − gλν∂µδxλ − gµλ∂νδxλ = −∇µδxν −∇νδxµ;
(I.B.24)

it is under these infinitesimal changes of the function gµν({xλ}) that the action (I.B.21) is
invariant.

3+1 and Hamiltonian formulation

The nature of diffeomorphism invariance, and of the conservation laws to which
it leads, is further elucidated by dividing the four spacetime coördinates {xµ} into three
“space” coördinates {xi} and one “time” coördinate t. The ten metric functions {gµν({xµ})}
are replaced by the lapse function N(t, {xi}), the three components {N i(t, {xi})} of the
shift vector and the six independent components {hij(t, {xi})} of the spatial metric on a
constant-t surface. The metric written in terms of these variables is (see Fig. I.2 for a
physical interpretation)

ds2 = −N2dt2 + hij(N
idt+ dxi)(N jdt+ dxj). (I.B.25)

In terms of these variables, the gravitational action becomes [14], up to a surface term,

SG =
1

16πG

∫
dtd3xN

√
h( 3R+KijKij −K2) =

∫
dtLG, (I.B.26)

where 3R is the scalar curvature of the surface of constant time, calculated from the three-
metric {hij} just as the scalar curvature R is calculated from the four-metric gµν using

(I.B.8), Kij is the extrinsic curvature (defining ḣij = ∂thij)

Kij =
1

2N

(
ḣij − 3∇iNj − 3∇jNi

)
(I.B.27)

of a constant-time surface, and 3∇i is the covariant derivative on the three-surface con-
structed from the metric {hij}. Spatial indices are “raised” using the inverse three-metric

15It is now useful to change our notation for the new coördinates from xµ to xµ. This is because in
an infinitesimal transformation it is useful to compare xµ to xµ. For general transformations, there is no
correspondence between components xµ and xµ, so it is more important to stress that, for example gµν and
gµν are different component realizations of the same physical object.
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Figure I.2: Dividing a spacetime displacement {dxµ} into a spatial displacement {dxi} and
a time displacement dt. The spacetime displacement ds consists of a timelike displacement
Ndt where the lapse function N quantifies the separation of two “consecutive” time slices t
and t+ dt and a spacelike displacement N idt+ dxi where the shift vector N i describes how
far the spatial coördinates have “moved” between the two time slices.

{hij} (satisfying hikhkj = δkj ) to give Kij = hikhjℓKkℓ, and K = hijKij is the trace of the
extrinsic curvature.

To convert this Lagrangian formulation to a Hamiltonian one, we determine the
canonical momenta conjugate to {hij} by16

πij = 16πG
DL
Dḣij

=
√
h(Kij −Khij); (I.B.28)

since the time derivatives Ṅ and {Ṅ i} do not appear in the Lagrangian, N and {N i} have
no conjugate momenta (they are Lagrange multipliers), and the gravitational action can be
rewritten in the canonical form

Scan =
1

16πG

∫
dtd3x

(
πij ḣij −NH −N iHi

)
(I.B.29)

where

H =
1

2
√
h
(hikhjℓ + hiℓhjk − hijhkℓ)πijπkℓ − 3R

√
h (I.B.30a)

and
Hi = 2 3∇jπji . (I.B.30b)

( 3∇i is the covariant derivative constructed from the three-metric {hij}.) Variation of the
canonical action with respect to N and {N i} produces the constraints H = 0 and Hi = 0.

16Note that the object with components {hij/
√
h} transforms as a tensor under changes of the spatial

coördinates {xi}.
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These constraints are used as inspiration for the toy models in the next two chapters: the
mass-shell constraint of the relativistic particle action considered in Chapter II is analogous
to the Hamiltonian constraint (I.B.30a) while the Gauss’s law constraint of the non-Abelian
gauge theory action in Chapter III is similar to the momentum constraint (I.B.30b).
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Chapter II

Spacetime Alternatives for the

Relativistic Particle

II.1 Introduction

One of the reasons why one expects a standard quantum mechanics, described by
states on a spacelike surface, to be inadequate to describe quantum gravity is that the notion
of “spacelike” should be ill-defined in a theory where the metric itself is behaving quantum
mechanically. Standard quantum mechanics makes reference to spacelike surfaces not only
in its description of the state of the system “at a moment of time”, but also in the very
alternatives for which it makes predictions. A theory which predicts spacetime probabilities,
such as the probability that a particle passes through an extended region of spacetime during
its trajectory, can thus be thought of as one step on the road towards a quantum theory of
gravity. Spacetime alternatives in nonrelativistic quantum mechanics have been considered
in the past by Feynman [4], Yamada and Takagi [2], and Hartle [1].

This chapter considers spacetime alternatives for the quantum mechanics of a free
relativistic particle. This is not meant as a quantum theory of actual relativistic particles
(which are described by quantum field theory) but rather as a toy model for quantum cosmol-
ogy. As described in Sec. I.4.6, the reparametrization invariance of the relativistic particle
mimics part of the diffeomorphism invariance of GR and makes this a good toy theory.

This chapter calculates the decoherence functionals for some simple coarse grainings
according to the following steps: Section II.2 describes the construction of the decoherence
functional for a set of general spacetime alternatives. Section II.3 defines a particular simple
spacetime region and solves, for that region, the differential equation involved in the deco-
herence functional. Section II.4 describes how the effect of that solution depends upon the
spacelike surfaces on which the initial and final states are attached. Section II.5 describes a
set of three alternatives defined with respect to the region defined in Sec. II.3. Sec. II.6 dis-
cusses certain initial and final conditions and their implications, while Section II.7 calculates
the decoherence functional for the spacetime coarse graining defined in Sec. II.5. For one
class of initial state, the full set of alternatives decoheres and allows prediction of spacetime

37



38 CHAPTER II. S-T ALTERNATIVES FOR THE RELATIVISTIC PARTICLE

probabilities, while for a wider class of initial state, decoherence can be achieved by a coarser
graining which combines two of the three alternatives into one. Section II.8 summarizes these
results and contemplates their shortcomings.

II.2 Decoherence functional and class operators

II.2.1 General prescription

To construct a generalized quantum mechanics of a free relativisitic particle, I fol-
low the approach of [24] in applying the sum-over-histories prescription of Sec. I.3.3 to the
parametrized theory described in Sec. I.4.6. The decoherence functional has the form (I.3.12–
III.2.17), with the configuration space variables q of the theory realized as spacetime points
x. Although we do not presuppose the existence of a Hilbert space of wave functions (in fact
the inner product we define below will not be positive definite, it is illustrative to think of the
conditions as being described by initial and final “density matrices” as defined in (I.3.16).

We express the action for a free relativistic particle in (D+1)-dimensionalMinkowski
spacetime in the canonical form

Scan =

∫ 1

0

dλ

(
p · dx

dλ
−N p2 +m2

2m

)
, (I.4.16)

where p2 = p · p = pµpµ = −(p0)2 + p2; the fine-grained histories summed over are
parametrized paths {p(λ), x(λ)} through phase space and multiplier histories N(λ). The
multiplier N is a quantity which classically (i.e., for the path of least action) defines the
relationship between proper time and the arbitrary parameter λ: N = dτ

dλ . Note that the
paths are allowed to move forward and backward in the “time” coördinate x0. This set of
fine-grained histories is Lorentz invariant, as opposed to a theory which restricts the paths
to move forward in time in a given Lorentz frame.

Note also that the action is invariant under reparametrizations of the parameter
λ, if N transforms as the derivative of an invariant quantity. Since only reparametrization-
invariant coarse grainings are considered as being physically meaningful, one may restrict
the sum over histories to those histories which satisfy the “gauge condition” dN

dλ = 0. In this
gauge, one needs only integrate over a single N , which is the total proper time of the path.
The theory will turn out to have a closer correspondence to field theory if one integrates only
over positive values1 of N . The class operator is thus defined by

〈x′′‖Cα‖x′〉 =
∫ ∞

0

dN

∫

x′′αx′

DD+1xDD+1p exp

[
i

∫ N

0

dτ

(
p · dx

dτ
− p2 +m2

2m

)]
. (II.2.1)

[We only wish to consider coarse grainings which restrict the configuration space path x(λ),
but it is useful to express the sum over histories in terms of phase space histories because
the measure for the path integral is then naturally defined.]

1See [31] for some consequences of allowing N to take positive and negative values.
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To specify the inner product ◦ we define an “initial” spacelike D-surface σ′ and a
“final” spacelike D-surface σ′′ to the future of the initial one, and apply the Klein-Gordon
inner product on those surfaces:

Φ(x′) ◦Ψ(x′) =

∫

σ′

dDΣ′νΦ∗(x′)i
←→∇ ′

νΨ(x′) (II.2.2a)

and

Φ(x′′) ◦Ψ(x′′) =

∫

σ′′

dDΣ′′µΦ∗(x′′)i
←→∇ ′′

µΨ(x′′). (II.2.2b)

(Here
←→∇ is the usual bidirectional derivative: Φ

←→∇µΨ = Φ∇µΨ−Ψ∇µΦ) Thus2

〈Φi|Cα|Ψj〉 =
∫

σ′′

dDΣ′′µ
∫

σ′

dDΣ′νΦ∗
i (x

′′)i
←→∇ ′′

µ〈x′′‖Cα‖x′〉i
←→∇ ′

νΨj(x
′). (II.2.3)

Integrating over all paths gives the unrestricted propagator

〈x′′‖Cu‖x′〉 = 2mi∆F (x
′′−x′), (II.2.4)

where

∆F (x
′′−x′) =

∫
dD+1p

(2π)D+1

eip·(x
′′−x′)

−(p2 +m2) + iε
(II.2.5)

is the Feynman propagator, which propagates positive energy solutions forward in time and
annihilates negative energy solutions:

〈x′′‖Cu‖x′〉 ◦ e−iωpt
′

eip·x
′

= 2me−iωpt
′′

eip·x
′′

(II.2.6a)

〈x′′‖Cu‖x′〉 ◦ eiωpt
′

eip·x
′

= 0 (II.2.6b)

assuming t′′ > t′ (where ωp =
√
p2 +m2). The restriction of the multiplier N to positive

values has given the advertized correspondence to field theory, as our propagator is the
familiar Feynman propagator. This has also led to the bias towards positive energy solutions
(II.2.6).

II.2.2 Spacetime alternatives

As an example of a simple spacetime coarse graining, we define a spacetime region
S, and a set of two exclusive and exhaustive alternatives as follows: cs is the class of paths
which at some point enter S, and cs is the class of paths which never enter it. (See Fig. II.1.)
If we define

〈x′′N‖Cs‖x′0〉 =
∫

x′′sx′

DD+1xDD+1p exp

[
i

∫ N

0

dτ

(
p · dx

dτ
− p2 +m2

2m

)]
, (II.2.7)

2We have, of course, treated the class operator 〈x′′‖Cα‖x′〉 as a “matrix” and not taken its complex
conjugate to apply the inner product ◦.
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S

σ"

σ'

x"

x'

Figure II.1: An example of a spacetime coarse graining. The path on the left never enters
the spacetime region S and is thus in the class cs. The path on the right spends part of
its trajectory in S and is thus in the class cs. (D − 1 of the D space dimensions have been
suppressed.)

so that

〈x′′‖Cs‖x′〉 =
∫ ∞

0

dN〈x′′N‖Cs‖x′0〉, (II.2.8)

comparing (II.2.7) to the path integral expression for a nonrelativistic propagator, one can
show (see [24] for more details) that 〈x′′N‖Cs‖x′0〉 obeys a five-dimensional Schrödinger-like
equation (

−i ∂
∂N

+
−∇2

x′′ +m2

2m
− iES(x′′)

)
〈x′′N‖Cs‖x′0〉 = 0 (II.2.9a)

with initial condition
〈x′′0‖Cs‖x′0〉 = δD+1(x′′−x′)e−ES(x

′), (II.2.9b)

where we explicitly allow for the possibility that the region S intersects the initial slice σ′ or
the final slice σ′′. Here

ES(x) =

{
0, x /∈ S
∞, x ∈ S (II.2.10)

is the excluding potential for the region S. Note that

e−ES(x) =

{
1, x /∈ S
0, x ∈ S. (II.2.11)

Equation (II.2.9) is equivalent to the homogeneous PDE
(
−i ∂
∂N

+
−∇2

x′′ +m2

2m

)
〈x′′N‖Cs‖x′0〉 = 0, x′′ /∈ S (II.2.12a)
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S(n)
n

Figure II.2: The region S(n) defined by the unit vector n. (D− 1 of the D space dimensions
have been suppressed.)

with boundary condition
〈x′′N‖Cs‖x′0〉 = 0, x′′ ∈ ∂S (II.2.12b)

and initial condition
〈x′′0‖Cs‖x′0〉 = δD+1(x′′−x′)e−ES(x

′). (II.2.12c)

II.3 Solution by method of images

For a sufficiently simple region, we can construct the class operator Cs by the
method of images. Let n be a constant spacelike unit vector (n · n = 1), and xn = n · x be
the component of x along n. Then define S(n) by xn ≤ 0 (Fig. II.2), so that e−ES(n)(x) =
Θ(xn). If we define3 the reflection of x through the plane xn = 0 by xc = x − 2xnn,
〈x′′N‖Cu‖x′0〉 − 〈x′′N‖Cu‖x′c0〉 satisfies (II.2.12a) (by the principle of superposition) and
(II.2.12b), and has initial value

〈x′′0‖Cu‖x′0〉 − 〈x′′0‖Cu‖x′c0〉 = δD+1(x′′−x′)− δD+1(x′′−x′c), (II.3.1)

which is equal to δD+1(x′′−x′) for x′, x′′ /∈ S(n). Thus

〈x′′N‖Cs(n)‖x′0〉 = Θ(x′n)Θ(x′′n) (〈x′′N‖Cu‖x′0〉 − 〈x′′N‖Cu‖x′c0〉) (II.3.2)

solves (II.2.12), and yields the class operator

〈x′′‖Cs(n)‖x′〉 = 2miΘ(x′n)Θ(x′′n) [∆F (x
′′−x′)−∆F (x

′′−x′c)] . (II.3.3)

II.4 Dependence on initial and final time slices

Since our construction (II.2.3) of the matrix elements {〈Φi|Cα|Ψj〉} from the class
operator 〈x′′‖Cα‖x′〉 makes explicit reference to a choice of nonintersecting spacelike surfaces

3To avoid confusion, keep in mind that xn is just a number, while xc is a (D + 1)-vector.
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σ′ and σ′′, those matrix elements and hence the decoherence functional could, in principle,
depend on the choice of surfaces, and we would like to determine what, if any, that dependence
is. Observe that for a given surface σ with normal vector u, the Klein-Gordon inner product
(II.2.2) on that surface depends only on the values on σ of the wave function Ψ and its
first normal derivative uµ∇µΨ. Thus the construction of the decoherence functional (I.3.12)
depends only on the values on σ′′ of Φi(x′′) and u′′

µ∇′′
µΦi(x

′′) and the values on σ′ of Ψj(x′)
and u′ν∇′

νΨj(x
′). To discuss the behavior of the decoherence functional under changes of

σ′ or σ′′, we need to define how the wave functions Φ and Ψ vary off of those surfaces, and
we do so by requiring them to satisfy the Klein-Gordon equation. If Ψ and Φ are viewed
as functions over all spacetime, this can be seen as the operator version of the mass shell
constraint (I.4.15).

Now we can consider how 〈Φi|Cs‖x′〉 = Φi(x
′′) ◦ 〈x′′‖Cs‖x′〉 varies under changes

of σ′′. As a consequence of (II.2.9a) the class operator 〈x′′‖Cs‖x′〉 will satisfy the following
(for any region S):

(−∇2
x′′ +m2

2m

)
〈x′′‖Cs‖x′〉 = 0, x′ 6= x′′ /∈ S (II.4.1a)

〈x′′‖Cs‖x′〉 = 0, x′′ ∈ S. (II.4.1b)

We assume here, as throughout this work, that the surfaces σ′ and σ′′ do not intersect one
another, so that x′ 6= x′′ holds as far as we are concerned. Thus 〈x′′‖Cs‖x′〉 satisfies the Klein-
Gordon equation on x′′ everywhere except on the boundary ∂S. Since the final wave functions
{Φi} are taken to be solutions to the Klein-Gordon equation, the usual demonstration of
invariance of the Klein-Gordon inner product tells us that we can deform the surface σ′′

without changing 〈Φi|Cs‖x′〉 so long as its intersection σ′′ ∩ ∂S with the boundary of S
stays fixed. Examining the behavior of the sum-over-histories construction (II.2.1) under the
substitutions υ = N−τ , y(υ) = x(N−υ) and k = −p, we see that the class operator is
symmetric under the interchange of ends of the path (〈x′′‖Cα‖x′〉 = 〈x′‖Cα‖x′′〉) so long as
the class cα does not distinguish one end of the path from the other. The class cs is such
a class.4 Thus 〈x′′‖Cs‖x′〉 must satisfy the analogous properties to (II.4.1) with respect to
the other argument x′. Thus changes of σ′ which leave σ′ ∩ ∂S unchanged will not change
〈x′′‖Cs|Ψj〉 = 〈x′′‖Cs‖x′〉 ◦ Ψj(x′) either. Since 〈x′′‖Cs‖x′〉 + 〈x′′‖Cs‖x′〉 = 〈x′′‖Cu‖x′〉 =
2mi∆F (x

′′−x′) by (I.3.14b), and the Feynman propagator satisfies the Klein-Gordon equation
on its (nonvanishing) argument, 〈x′′‖Cs‖x′〉 will satisfy the equation whenever 〈x′′‖Cs‖x′〉
does, and all elements of the decoherence functional will be unchanged under any change of
σ′ and σ′′ which leaves their intersection with ∂S unchanged. (Fig. II.3)

This argument has previously been used [24] to show that the decoherence functional
is independent of the choice of nonintersecting surfaces so long as σ′ lies completely to the
past and σ′′ completely to the future of S. The nature of the region S(n) defined in Sec. II.3
prevents us from choosing initial and final spacelike surfaces which do not intersect S(n).
What we can do without changing the decoherence functional is generate the D-surface σ
from the (D − 1)-surface σ ∩ ∂S(n) via curves everywhere tangent to n. (Fig. II.4) Then n

4An example of a class which does distinguish one end of the class from the other is one which refers to
the first time in its trajectory that a particle crosses a surface or enters a region.
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S

σ"

σ"old

new

σ'old

σ'new

Figure II.3: Varying the surfaces σ′ and σ′′ on which the inner product (II.2.2) is imposed does
not change the decoherence functional, as long as their intersections with ∂S are unchanged.
(D − 1 of the D space dimensions have been suppressed.)

n
n

nσ

S(n)

Figure II.4: Generating the surface σ from its intersection with ∂S(n) by projecting along
n. (D − 2 of the D space dimensions have been suppressed.) If D = 1, σ ∩ ∂S(n) is a point
and σ generated in this fashion will always be flat. With two or more space dimensions, σ
will only be flat if σ ∩ ∂S(n) is; if σ ∩ ∂S(n) is “wavy”, σ will be translationally invariant
along n, resembling a sheet of corrugated metal.
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S(n)
n

S(-n)

Figure II.5: The regions S(n) (“left”) and S(−n) (“right”) defined by the unit vector n,
along with their common boundary, the “wall” xn = 0. (D − 1 of the D space dimensions
have been suppressed.)

will lie in the surface at all points, and nµdDΣµ = 0. 5 This will later prove crucial.

II.5 Our chosen set of alternatives

We can take advantage of the fact that for a given normal vector n, the regions
S(n) (n · x ≤ 0) and S(−n) (−n · x ≤ 0) are on opposite sides of the same boundary xn = 0.
(Fig. II.5) Loosely calling S(n) the “left” side and S(−n) the “right” side of the “wall”
xn = 0, we can define a set of alternatives by the answers to the two questions “does the
particle ever enter S(n) (xn ≤ 0)?” and “does the particle ever enter S(−n) (xn ≥ 0)?” The
class cs(n)∩cs(−n), corresponding to both answers being “no”, is empty. The three nontrivial
alternatives are: cℓ = cs(n) ∩ cs(−n) = cs(−n), in which the particle is on the left side of the
wall throughout its entire trajectory; cr = cs(n) ∩ cs(−n) = cs(n), in which the particle is
always on the right side; and cb = cs(n) ∩ cs(−n), in which the particle spends some time on
each side of the wall, and crosses it in between. This set of three alternatives, illustrated in
Fig. II.6, is exhaustive and mutually exclusive, and is thus a suitable coarse graining. The
class operators for cℓ and cr were calculated in Sec. II.3, and are given by

〈x′′‖Cℓ‖x′〉 = 〈x′′‖Cs(−n)‖x′〉 = 2miΘ(−x′n)Θ(−x′′n) [∆F (x
′′−x′)−∆F (x

′′−x′c)] (II.5.1a)

〈x′′‖Cr‖x′〉 = 〈x′′‖Cs(n)‖x′〉 = 2miΘ(x′n)Θ(x′′n) [∆F (x
′′−x′)−∆F (x

′′−x′c)] , (II.5.1b)

where we have used the fact that x−n = −n · x = −xn [and also that xc is defined the same
way with respect to n and −n: xc = x − 2nxn = x + 2nx−n = x − 2(−n)x−n]. The class

5Note that in 1 + 1 dimensions, this allows us to choose our surface to be a surface of constant time in
the reference frame where n0 = 0.
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S(n) S(-n)

Figure II.6: The coarse graining described in Sec. II.5. The three paths shown are repre-
sentatives of, from left to right: the class cℓ of paths which lie completely to the left of the
wall; the class cb of paths which spend some time on each side of the wall; and the class cr of
paths which lie completely to the right of the wall. (D − 1 of the D space dimensions have
been suppressed.) Compare Fig. 3 of [1].

operator for cb can be calculated from the superposition law (I.3.14b):

〈x′′‖Cb‖x′〉 = 〈x′′‖Cu‖x′〉 − 〈x′′‖Cℓ‖x′〉 − 〈x′′‖Cr‖x′〉
= 2mi{[Θ(x′n)Θ(−x′′n) + Θ(−x′n)Θ(x′′n)]∆F (x

′′−x′)
+ [Θ(x′n)Θ(x′′n) + Θ(−x′n)Θ(−x′′n)]∆F (x

′′−x′c)}. (II.5.1c)

II.6 Properties for certain initial and final conditions

II.6.1 Pure initial state

If we specialize to a pure initial state Ψ(x′), it becomes useful to define the branch
wave function

Ψα(x
′′) =

1

2m
〈x′′‖Cα|Ψ〉 =

1

2m
〈x′′‖Cα‖x′〉 ◦Ψ(x′), (II.6.1)

so that the decoherence functional (I.3.12) has elements

D(α, α′) =
Ψα′ ◦ ρ′′ ◦Ψα
Ψ+ ◦ ρ′′ ◦Ψ+

. (II.6.2)

Here Ψ+ is the positive energy part of Ψ [see (II.2.6)]:

Ψ+(x′′) = i∆F (x
′′−x′) ◦Ψ(x′) =

1

2m
〈x′′‖Cu|Ψ〉, (II.6.3)

and is the branch wave function corresponding to the class cu of all paths. The superposition
property (I.3.14) for class operators and the definition (II.6.1) of the branch wave function
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imply an analogous superposition law for branch wave functions:

Ψα(x
′′) =

∑

α∈α
Ψα(x

′′) (II.6.4a)

∑

α

Ψα(x
′′) = Ψ+(x′′). (II.6.4b)

We postpone for the moment discussion of the final condition ρ′′.
The branch wave functions for the classes cℓ, cr and cb can be given in terms of the

branch wave functions Ψs(±n) by

Ψℓ(x
′′) = Ψs(−n)(x

′′) (II.6.5a)

Ψr(x
′′) = Ψs(n)(x

′′) (II.6.5b)

Ψb(x
′′) = Ψ+(x′′)−Ψℓ(x

′′)−Ψr(x
′′). (II.6.5c)

Using (II.3.3), we write Ψs(±n)(x
′′) as

Ψs(±n)(x
′′) = Θ(±x′′n)

∫

σ′

dDΣ′νΘ(±x′n) [i∆F (x
′′−x′)− i∆F (x

′′−x′c)] i
←→∇ ′

νΨ(x′). (II.6.6)

As described in Sec. II.4, we can, without loss of generality, choose σ′ to satisfy nνd
DΣ′ν =

0, which allows us to move the Θ(±x′n) to the other side of the
←→∇ ′

ν [since ∇νΘ(±x′n) =
±nνδ(x′n), which is orthogonal to dDΣ′ν ] and get

Ψs(±n)(x
′′) = Θ(±x′′n)

∫

σ′

dDΣ′ν [i∆F (x
′′−x′)− i∆F (x

′′−x′c)] i
←→∇ ′

νΘ(±x′n)Ψ(x′). (II.6.7)

If we change the integration variable from x′ to x′c in the second term of the integral (which
we can do because the construction of σ′ ensures that x′c ∈ σ′ if and only if x′ ∈ σ′), we
obtain

Ψs(±n)(x
′′) = Θ(±x′′n)

∫

σ′

dDΣ′ν i∆F (x
′′−x′)i←→∇ ′

ν [Ψ(x′)Θ(±x′n)−Ψ(x′c)Θ(∓x′n)] (II.6.8)

Without an additional restriction on Ψ(x′), it is quite difficult to proceed any further.

Antisymmetric initial state

If we choose our initial state to be an odd function of xn (which we write as Υ to
distinguish it from the generic initial state Ψ):

Υ(xc) = −Υ(x), (II.6.9)

we have Υ(x′)Θ(±x′n)−Υ(x′c)Θ(∓x′n) = Υ(x′), and (II.6.8) becomes

Υs(±n)(x
′′) = Θ(±x′′n)

∫

σ′

dDΣ′νi∆F (x
′′−x′)i←→∇ ′

νΥ(x′) = Θ(±x′′n)Υ+(x′′). (II.6.10)
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Thus the branch wave functions for this initial state are

Υℓ(x
′′) = Υs(−n)(x

′′) = Θ(−x′′n)Υ+(x′′) (II.6.11a)

Υr(x
′′) = Υs(n)(x

′′) = Θ(x′′n)Υ
+(x′′) (II.6.11b)

Υb(x
′′) = 0. (II.6.11c)

Note that we can construct a Klein-Gordon state satisfying the antisymmetry prop-
erty (II.6.9) throughout all spacetime by taking any Klein-Gordon state Ω(x) which is not
symmetric about xn = 0 and defining Υ(x) = 1

2 [Ω(x)− Ω(xc)], and note also that both the
positive and negative energy parts of Υ have the antisymmetry property as well.

Initial state with restricted support

Another technique for simplifying the branch wave functions, used on the nonrela-
tivistic particle by Yamada and Takagi [2] is to choose an initial state which vanishes either
in or out of the region S. Since we attach the initial state with the Klein-Gordon inner
product, we need to go a step further, and require that both the initial state Ψ(x′) and
its normal derivative u′ν∇′

νΨ(x′) vanish on the appropriate part of the initial surface. For
brevity’s sake, we define the “support” of a wave function to be anywhere where the wave
function or its normal derivative is nonvanishing. Thus we want to construct a wave function
whose support on the initial surface σ′ is confined to (say) the left side of the wall (xn < 0).
It is always possible to construct a solution to the Klein-Gordon equation Ψ(x) which has
an arbitrary value f(x′) and normal derivative g(x′) on a surface σ′, but it will in general be
necessary to construct it out of both positive and negative energy components.6

If we construct an initial state (which we call Ξ) whose support on the surface σ′

is confined to the left side of the wall:

Ξ(x′) = 0 = u′ · ∇′Ξ(x′) when x′ ∈ σ and x′n ≥ 0 (II.6.12)

(see Fig. II.7), then Θ(x′n)Ξ(x
′) and its normal derivative vanish and (II.6.7) gives

Ξr(x
′′) = Ξs(n)(x

′′) = 0. (II.6.13a)

Turning the tables and considering the effect the semi-infinite support property
(II.6.12) has on Ξℓ = Ξs(−n), we see that Θ(−x′n)Ξ(x′) has the same value and normal
derivative on σ′ as Ξ itself, and we will be able to drop the Θ(−x′n) from (II.6.7), and obtain

Ξℓ(x
′′) = Ξs(−n)(x

′′) = Θ(−x′′n)
[
Ξ+(x′′)− Ξ+(x′′c )

]
. (II.6.13b)

[We have used the easily proved result that ∆F (x
′′−x′c) = ∆F (x

′′
c−x′).]

The wavefunction Ξb can again be found by superposition, and is given by:

Ξb(x
′′) = Θ(x′′n)Ξ

+(x′′) + Θ(−x′′n)Ξ+(x′′c ). (II.6.13c)

6I am indebted to R. S. Tate for pointing this out to me.
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Ξ(xn)

S(-n)S(n)

xn

Figure II.7: Schematic plot of a wave function Ξ whose support on σ′ is confined to xn < 0.
This is a plot of Ξ as a function of xn for fixed x⊥ on the surface σ′. Note that u′ν∇′

νΞ(x
′)

must also vanish on the “right” half of the surface σ for Ξ to have semi-infinite support as
defined in Sec. II.6.1. [See (II.6.12).]

II.6.2 Future indifference

In order to evaluate the decoherence functional (II.6.2) we need to consider the
final condition ρ′′. In analogy with our observations that the universe has a preferred time
direction, we would like to abandon the time-symmetric construction of (I.3.12) and choose
a condition of future indifference, i.e., a completely unspecified final condition. In most time-
symmetric formulations of quantum mechanics, this condition is implemented by replacing
the final density matrix with the identity operator, so that Ψα′ ◦ ρ′′ ◦ Ψα → Ψα′ ◦ Ψα, but
this cannot be the prescription here, since it is not manifestly positive when α = α′, as our
initial construction was.

To see why this fails, construct completely unspecified density matrices for the
positive and negative energy sectors of the theory:

ρ±(x2, x1) =

∫
dDp

(2π)D2ωp

e∓iωp(t2−t1)eip·(x2−x1). (II.6.14)

They have the following property under the Klein-Gordon inner product:

ρ±(x2, x1) ◦Ψ(x1) = ±Ψ±(x2), (II.6.15)

where Ψ(x) is any solution to the Klein-Gordon equation, and Ψ+(x) and Ψ−(x) are its pos-
itive and negative energy components, respectively [Ψ(x) = Ψ+(x) + Ψ−(x)]. The “identity
operator” with respect to this inner product is thus ρ+ − ρ−. It is unsuitable for a final
condition ρ′′, since some of the weights {p′′i } it implies are negative, in violation of the rules
set out in Sec. I.3.3. Instead, we take our condition of future indifference to be

ρfi = ρ+ + ρ−, (II.6.16)

so that7

Ψα′ ◦ ρfi ◦Ψα = Ψ+
α′ ◦Ψ+

α −Ψ−
α′ ◦Ψ−

α . (II.6.17)

7Technically speaking, we should not talk about the positive and negative energy components of the
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This is equivalent to the result we would have gotten if we had used the positive definite inner
product for Klein-Gordon wave functions, and then chosen the identity as our final density
matrix. This inner product is nonlocal in the spacetime coördinate x, so, for example, wave
functions which do not overlap can still have a nonvanishing inner product.

Note that we can replace the normalization factor Ψ+ ◦ ρ′′ ◦ Ψ+ in (II.6.2) with
Ψ+ ◦ Ψ+ if we use the final condition (II.6.16). It will therefore prove useful to normalize
our initial wave function so that

Ψ+ ◦Ψ+ = 1. (II.6.18)

The decoherence functional is then

D(α, α′) = Ψα′ ◦ ρfi ◦Ψα. (II.6.19)

II.7 Results

II.7.1 Results for antisymmetric initial state

Using the antisymmetric initial state Υ from Sec. II.6.1, the branch wave functions
for the three classes are

Υℓ(x
′′) = Θ(−x′′n)Υ+(x′′) (II.6.11a)

Υr(x
′′) = Θ(x′′n)Υ

+(x′′) (II.6.11b)

Υb(x
′′) = 0. (II.6.11c)

The elements of the decoherence functional (II.6.19) are calculated in Appendix II.A, and
found (when the final surface σ′′ is taken to be one of constant time t′′) to be




D(ℓ, ℓ) = 1
2 +∆D D(ℓ, r) = −∆D D(ℓ, b) = 0

D(r, ℓ) = −∆D D(r, r) = 1
2 +∆D D(r, b) = 0

D(b, ℓ) = 0 D(b, r) = 0 D(b, b) = 0


 (II.7.1)

where8

∆D = 2

∫
dk1ndk2nd

D−1k⊥
(2π)2

ω1 + ω2

2
√
ω1ω2

Υ̃+(k2)
∗Υ̃+(k1)

e−i(ω1−ω2)t
′′

k1n − k2n
ln

(
ω1 − k1n
ω2 − k2n

)
.

(II.7.1a)
Aside from D(ℓ, r) = D(r, ℓ) = −∆D = Υℓ ◦ ρfi ◦Υr, all of the off-diagonal elements vanish
(this is true for any final condition, in fact). D(ℓ, r) = D(r, ℓ) generally does not vanish,

branch wave functions {Ψα}, since we showed in Sec. II.4 that the class operators (and hence the branch
wave functions) are guaranteed to satisfy the Klein Gordon equation only when x′′ /∈ ∂S, and the branch wave
functions are thus not in the space of solutions to the Klein-Gordon equation. However, a more careful analysis
(see Appendix II.A) shows that, defining Ψ± by (II.6.15), Φ◦Ψ = Φ+◦Ψ++Φ−◦Ψ− = (Φ++Φ−)◦(Ψ++Ψ−)
(where all inner products are taken on the same surface), even if Φ and Ψ are not solutions to the Klein-
Gordon equation. The division into positive and negative energy parts is thus well-defined for our purposes.

8We use here several pieces of notation defined in Appendix II.A, namely v⊥ = v − vnn and ω⊥ =√
k2
⊥

+m2 (so that ω =
√

k2n + ω2
⊥
), and also that Υ̃+ is the Fourier transform (II.A.7) of the positive

energy part of Υ. We are also working in a reference frame where n has no time component.
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despite the lack of overlap of the branch wave functions, because of the nonlocality of the
positive definite inner product induced by the final condition in section II.6.2. Note that
whenever the alternatives do decohere (∆D ≈ 0), the probabilities are given by p(ℓ) ≈ 1/2 ≈
p(r), p(b) = 0. [Symmetry arguments make it clear that we must have p(ℓ) = p(r).] Note
also that while the decoherence functional depends on the time t′′ of the final surface, it is
completely independent of the initial surface σ′.

To determine whether or not we have decoherence, we need to consider further
properties of the initial condition Υ (or equivalently its Fourier transform Υ̃).

Let Υ̃ be given by a Gaussian wavepacket peaked at k0, x0 and t0, minus its
reflection through kn = 0. That is to say

Υ̃(k) = Ceiωkt0
(
e−ik·x0e−(k−k0)

2/4(δk)2 − e−ikc·x0e−(kc−k0)
2/4(δk)2

)

= Ce−ik⊥·x0eiωkt0e−(k⊥−k0⊥)2/4(δk)2
∑

ξ=±1

ξe−iξknx0ne−(kn−ξk0n)2/4(δk)2 ,
(II.7.2)

where the normalization constant is given by

|C|2 =
1

2(δk
√
2π)D

[
1− e−k20n/2(δk)2e−x2

0n/2(δx)
2
] (II.7.2a)

with δxδk = 1/2. We then have

∆D = |C|2
∫
dk1ndk2nd

D−1k⊥
(2π)2

ω1 + ω2

2
√
ω1ω2

e−(k⊥−k0⊥)2/2(δk)2

× e−i(ω1−ω2)(t
′′−t0) ln

(
ω1 − k1n
ω2 − k2n

)

×
∑

ξ1=±1

∑

ξ2=±1

ξ1ξ2e
−(k1n−ξ1k0n)2/4(δk)2e−(k2n−ξ2k0n)2/4(δk)2 e

−iξ1k1nx0neiξ2k2nx0n

k1n − k2n

= 2 |C|2
∫
dk1ndk2nd

D−1k⊥
(2π)2

ω1 + ω2

2
√
ω1ω2

e−(k⊥−k0⊥)2/2(δk)2e−(k1n−k0n)2/4(δk)2

× e−(k2n−k0n)2/4(δk)2e−i(ω1−ω2)(t
′′−t0)e−i(k1n−k2n)x0n

∑

ξ=±1

2ξ

k1n − ξk2n
ln

(
ω1 − k1n
ω2 − ξk2n

)
,

(II.7.3)

where the final form has been arrived at by changing the variables in the integrals k1n →
ξ1k1n, k2n → ξ2k2n and then making the substitution ξ = ξ1ξ2.

In the limit that δk → 0, we can replace k1n and k2n with k0n and k⊥ with k0⊥
everywhere except in the Gaussian factors and perform the integrals. We can do this because

lim
k1n→k0

1

k1n − k0n
ln

(
ω1 − k1n
ω0 − k0n

)
= − 1

ω0
(II.7.4)



II.7. RESULTS 51

is finite, and we obtain

∆D =
2 |C|2
(2π)2

(δk
√
4π)2(δk

√
2π)D−1 2

[
− 1

ω0
+

1

k0n
ln

(
ω0 − k0n
ω0⊥

)]
+O([δk]2)

= −4 δk

(2π)3/2

[
1

ω0
− 1

k0n
ln

(
ω0 − k0n
ω0⊥

)]
+O([δk]2).

(II.7.5)

Thus we have approximate decoherence to lowest order in δk. Note that the first order
correction to the decoherence functional is independent of the time t′′ of the final surface.

For a generic antisymmetric initial condition Υ, (II.7.1a) has no reason to be small,
so the current set of alternatives will probably not decohere. However, consider a coarser
graining in which cℓ and cr are combined into a single class co, consisting of all paths which
stay on one side or the other of the wall, and never cross it. We can use the superposition
property (I.3.4d) to construct the decoherence functional from the finer-grained one (II.7.1).
D(o, o) = D(ℓ, ℓ) +D(ℓ, r) +D(r, ℓ) +D(r, r) = 1, etc.

The elements of the decoherence functional are given by

(
D(o, o) = 1 D(o, b) = 0
D(b, o) = 0 D(b, b) = 0

)
(II.7.6)

so we have exact decoherence, and probabilities of 1 for co and 0 for cb. This corresponds
to the definite prediction that for a pure initial state antisymmetric about xn = 0, the
particle path will not cross that surface. Since the antisymmetry property holds throughout
all spacetime, this result is independent of the choice of initial and final surfaces.

This last result can be seen from another point of view, allowing a slight generaliza-
tion. Using the superposition property for branch wave functions (II.6.4), we can construct

Υo(x
′′) = Υℓ(x

′′) + Υr(x
′′) = Υ+(x′′). (II.7.7)

Recalling that

Υb(x
′′) = 0, (II.6.11c)

we see that all branch wave functions but one vanish. Examination of (II.6.2) shows that
whenever this is the case, the only nonvanishing element of the decoherence functional will
be the diagonal one corresponding to the alternative with the nonvanishing branch wave
function, and we will have decoherence, and a definite prediction of that alternative. This will
hold for any final condition [except of course for pathological cases when the final condition
is inconsistent with the initial condition (Ψ ◦ ρ′′ ◦ Ψ = 0), in which case the denominator of
(II.6.2) vanishes, and the decoherence functional is ill-defined].

II.7.2 Results for initial state with restricted support

With the initial state Ξ from Sec. II.6.1, which vanishes, along with its normal
derivative, on the surface σ′ ∩ S(−n), we find that the branch wave functions for the three
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classes are

Ξℓ(x
′′) = Θ(−x′′n)[Ξ+(x′′)− Ξ+(x′′c )] (II.6.13b)

Ξr(x
′′) = 0 (II.6.13a)

Ξb(x
′′) = Θ(x′′n)Ξ

+(x′′) + Θ(−x′′n)Ξ+(x′′c ). (II.6.13c)

Now the wave functions Ξℓ and Ξb overlap, so we do not expect decoherence, even näıvely,
unless we coarse grain so that only one of the branch wave functions is nonvanishing. This
amounts to recombining cℓ and cb into cs(n), so that the decoherence functional is

(
D(s(n), s(n)) = 1 D(s(n), s(n)) = 0
D(s(n), s(n)) = 0 D(s(n), s(n)) = 0

)
(II.7.8)

which decoheres, with probabilities of 1 for cs(n) and 0 for cs(n). Here we have a definite
prediction that the particle will at some point in its trajectory be found in S(n). This result,
however, depends very much on the choice of the initial surface σ′.

II.8 Discussion

For our simple coarse graining (see Fig. II.6), we were able to calculate explicit
expressions for the class operators Cs(±n) and Cs(±n), and hence for Cℓ, Cr and Cb.

To calculate branch wave functions for a pure initial state, we chose the state to
satisfy special conditions.

• If the wave function Υ was antisymmetric under reflection through xn = 0, the branch
wave function Υb vanished, while the nonvanishing branches Υℓ and Υr had no overlap.
This result held no matter what the initial surface σ′.

• If the wave function Ξ and its first normal derivative vanished on that part of the initial
surface σ′ which was outside of S(n), the branch wave function Ξr vanished, but the
other two branches, Ξℓ and Ξb, overlapped. This held only for one specific choice of σ′

We could not simply take the inner product of branch wave functions to calculate the
decoherence functional, since that would have been tantamount to choosing a non-positive-
definite final density matrix. Thus even for the initial state Υ, the alternatives cℓ and cr did
not automatically decohere just because the branch wave functions did not overlap. If we
restricted the final surface to be flat, we could calculate explicit expressions for the elements
of the decoherence functional. For some choices of initial state, the off-diagonal elements were
small, but in general they could be appreciable. Whenever the alternatives did decohere, the
probability for each was 1/2, which we would have predicted on symmetry grounds.

If we coarser grained either example so that only one branch wave function was
nonvanishing, we of course found decoherence and a definite prediction (probability 1) of the
other alternative, viz.:

• For the initial condition Υ, if the alternatives were chosen to be cb and co = cℓ ∪ cr , we
found decoherence for any nonpathological final condition, with probabilities of 0 and
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S

σ"

σ'

t i

Figure II.8: Dividing up a path which avoids a compact region S. The path from σ′ to the
last crossing of the intermediate surface ti is in the class of paths from σ′ to ti which avoid
S. The path from the last crossing of ti to σ

′′ is in the class of paths from ti to σ
′′ which

do not cross back over ti, and can be defined without reference to S. (D − 1 of the D space
dimensions have been suppressed.)

1, respectively. This was a definite prediction that the particle did not cross xn = 0,
given an antisymmetric initial condition.

• For the initial condition Ξ, if the alternatives were chosen to be cs(n) = cr and cs(n) =
cℓ∪cb, we found decoherence for any nonpathological final condition, with probabilities
of 0 and 1, respectively. This was a definite prediction that the particle spent part of
its trajectory in S(n), given an initial condition which had no support outside of S(n).
This is hardly surprising, and it only holds if we attach the initial wave function on the
correct hypersurface.

Finally, let us observe that many of our complications were a result of the fact
the region which we considered intersected with our initial and final surfaces. If we had
considered a region S bounded in time, we could have chosen our initial surface to lie to
the past and our final surface to the future of it. As was discussed in Sec. II.4, this would
make the decoherence functional necessarily independent of the choice of surface. It would
also have eliminated the complications in the choice of the final condition, since the branch
wave functions would have been positive energy solutions to the Klein-Gordon equation. The
proof is straightforward: construct an intermediate surface of constant time ti to future of
S but the past of σ′′. (Section II.4 always allows us to deform the surface σ′′ so that such
a constant-time surface will “fit” in.) By a construction analogous to that of Halliwell and
Ortiz [32], the propagation from σ′ to σ′′ avoiding the region S can be broken up (at the last
crossing of ti) into propagation from σ′ to ti avoiding S followed by propagation from ti to
σ′′ which does not cross back over ti. (See Fig. II.8.) The class operator can thus be written
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〈x′′‖Cs‖x′〉 =
∫
dDxi∆1ti(x

′′, xi)〈xiti‖Cs‖x′〉 (II.8.1)

where ∆1ti is the Newton-Wigner propagator:

∆1ti(x, xi) =

∫
dDp

(2π)D
eip·(x−xi)e−iωp(t−ti). (II.8.2)

Since ∆1ti is constructed from positive-energy solutions of the Klein-Gordon operator, the
branch wave functions Ψs and Ψs will each be positive-energy solutions themselves. Thus
Ψα′ ◦ ρ− ◦ Ψα = 0, so Ψα′ ◦ ρfi ◦ Ψα = Ψα′ ◦ ρ+ ◦ Ψα = Ψα′ ◦ Ψα, and we really do simply
calculate the inner product of the branches.

However, it was the simplicity of the region S(n) which allowed us to solve the PDE
problem analytically in the first place. Solution of (II.2.12) for finite regions of spacetime
cannot be accomplished through straightforward method-of-images or separation-of-variables
methods. In the nonrelativistic case, this problem is circumvented for example in the case of
a region which extends from t1 to t2 by propagating from t′ to t1 with the free propagator,
from t1 to t2 with the restricted propagator calculated as though the region existed for all
time, and then from t2 to t′′ with the free propagator. Since our paths are not single-valued
in time, we cannot “turn off” the restricting region before and after we reach it, since we
have to include in the sum paths which double back into a previous regime.

II.9 Conclusions

Using the generalized quantum mechanics formalism described by Hartle for the
quantum mechanics of the relativistic worldline, we have examined one particularly simple
coarse graining. For a suitable choice of initial conditions, albeit a more restrictive one than
for the nonrelativistic theory, we were able to assign approximate probabilities to some sets
of alternatives.

II.A Appendix: Calculation of Υα′ ◦ ρfi ◦Υα

To calculate the elements of the decoherence functional for Sec. II.7.1, we first
expand our notational convention for the branches to include Υ−1 ≡ Υℓ and Υ+1 ≡ Υr so
that we can write Υλ(x) = Θ(λxn)Υ(x), where λ2 = 1. The nonvanishing elements of the
decoherence functional are now

D(λ1, λ2) = Υλ2 ◦ ρfi ◦Υλ1 , (II.A.1)

where the inner product is on the surface σ′′.
If Ψ is a solution to the Klein-Gordon equation, we know that (ρ+ − ρ−) ◦ Ψ =

Ψ+ + Ψ− = Ψ. This will not be true for Υλ because it is not a solution. However, for the
purposes of the Klein-Gordon inner product on the surface σ′′, we only need the value and
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normal derivative of each function on σ′′. We can thus replace Υλ by Yλ, a Klein-Gordon
wave function9 which matches Υλ and its normal derivative on σ′′. This gives us

Υλ2 ◦Υλ1 = Υλ2 ◦ Yλ1 = Υλ2 ◦ (ρ+ − ρ−) ◦ Yλ1 = Υλ2 ◦ (ρ+ − ρ−) ◦Υλ1 (II.A.2)

We thus have

D(λ1, λ2) = Υλ2 ◦ (ρ+ + ρ−) ◦Υλ1 = Υλ2 ◦Υλ1 + 2Υλ2 ◦ ρ− ◦Υλ1 . (II.A.3)

The first term is simple enough to calculate:

Υλ2 ◦Υλ1 =

∫

σ′′

dDΣ′′µΘ(λ2x
′′
n)Υ

+(x′′)∗i
←→∇ ′′

µΘ(λ1x
′′
n)Υ

+(x′′). (II.A.4)

again, since we can choose σ′′ to satisfy nµd
DΣ′′µ = 0, we can move the step functions

through the derivative to get

Υλ2 ◦Υλ1 =

∫

σ′′

dDΣ′′µΘ(λ2x
′′
n)Θ(λ1x

′′
n)Υ

+(x′′)∗i
←→∇ ′′

µΥ
+(x′′)

= δλ1λ2

∫

σ′′

dDΣ′′µΘ(λ1x
′′
n)Υ

+(x′′)∗i
←→∇ ′′

µΥ
+(x′′).

(II.A.5)

The symmetry of σ′′ and antisymmetry of Υ+ tell us that Υℓ ◦Υℓ = Υr ◦Υr, so

Υλ2 ◦Υλ1 = δλ1λ2

Υ+ ◦Υ+

2
=
δλ1λ2

2
. (II.A.6)

To calculate the correction term Υλ2 ◦ρ−◦Υλ1 , we first define the Fourier transform
of Υ+ by10

Υ+(x) =

∫
dDk

(2π)D/2
√
2ωk

eik·xe−iωktΥ̃+(k). (II.A.7)

The inner product of two positive energy states is expressed in terms of the Fourier transform
by

Φ+ ◦Ψ+ =

∫
dDkΦ+(k)∗Ψ+(k), (II.A.8)

so the normalization condition (II.6.18) is written as

∫
dDk

∣∣Υ+(k)
∣∣2 = 1 (II.A.9)

In a reference frame where n is has no time component, we can split the spatial
part v of a vector v into components along n: (vn = n · v = n · v) and perpendicular to n:
(v⊥ = v−vnn). In analogy to vc defined in Sec. II.3, we define vc = v−2vnn = −vnn+v⊥.

9It is straightforward to show that such a wave function exists, and is uniquely given by Yλ = (ρ+ − ρ−)◦
Υλ.

10Note that the requirement that Υ+ be a positice energy solution to the Klein-Gordon equation means
that the temporal frequency ωk of a mode Υ̃(k) is determined by its spatial frequency k.



56 CHAPTER II. S-T ALTERNATIVES FOR THE RELATIVISTIC PARTICLE

Υ̃+ is determined from Υ+ by

Υ̃+(k) =
√
2ωke

iωkt

∫
dDx

(2π)D/2
e−ik·xΥ+(x), (II.A.10)

so Υ̃ obeys an antisymmetry property similar to (II.6.9):

Υ̃+(kc) = −Υ̃+(k) (II.A.11)

To proceed any further, we would like an explicit form for the surface σ′′. The
simplest would be that σ′′ is a surface of constant time t′′. However, that condition would
not be Lorentz invariant, as it would pick out a reference frame in which the final surface
was one of constant time. We know from Sec. II.4 that we are only restricted in the choice
of σ′′ by the form of the (D− 1)-surface σ′′ ∩∂S(n). If we restrict our attention to choices of
σ′′ ∩ ∂S(n) which are flat (a suitably invariant condition), we can always work in a reference
frame in which σ′′ is a surface of constant time. Since we construct σ′′ so that n lies in it,
this allows us to assume that n has no time component.

Subject to the condition of σ′′ being flat11, then, we can work in a reference frame
where it is to be a surface of constant time, so that

Φ ◦Ψ =

∫
dDxΦ(x, t)∗i

←→
∂tΨ(x, t)

∣∣∣∣
t=t′′

. (II.A.12)

The definition (II.6.14) of ρ− means that

Υλ2 ◦ ρ− ◦Υλ1 =

∫
dDp

(2π)D2ωp

(
eip·xeiωpt ◦Υλ1

) (
eip·xeiωpt ◦Υλ2

)∗
. (II.A.13)

Now,

eip·xeiωpt ◦Υλ =

∫
dDk

(2π)D/2
√
2ωk

Υ̃+(k)(ωk − ωp)e
−i(ωk+ωp)t

′′

∫
dDxΘ(λxn)e

i(k−p)·x;

(II.A.14)
the integral over x⊥ gives (2π)D−1δD−1(k⊥ − p⊥), and the integral over xn gives

∫ ∞

−∞
dxnΘ(λxn)e

i(kn−pn)xn =

∫ λ∞

−λ∞
λdxnΘ(xn)e

iλ(kn−pn)xn =

∫ ∞

0

dxne
iλ(kn−pn)xn

=
i

λ(kn − pn) + iε
=

iλ

kn − pn
+ πδ(kn − pn).

(II.A.15)

Substituting into (II.A.14) gives

eip·xeiωpt ◦Υλ = iλ

∫
dkn√
2ωk

(2π)D/2−1Υ̃+(k)

(
ωk − ωp

kn − pn

)
e−i(ωk+ωp)t

′′

(II.A.16)

11Note that if D = 1, σ′′ ∩ ∂S(n) is a point, so this holds trivially.
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R-R

-iω⊥

iω⊥

iR

Figure II.9: The contour on which the integral in (II.A.17) is calculated to give (II.A.19).
The radius R of the quarter-circle arcs is to be taken to infinity.

with k⊥ = p⊥. We thus have

Υλ2 ◦ ρ− ◦Υλ1 = λ1λ2

∫
dk1ndk2nd

D−1p⊥
2
√
ω1ω2(2π)2

Υ̃+(k2)
∗Υ̃+(k1)e

−i(ω1−ω2)t
′′

×
∫ ∞

−∞

dpn
2ωp

(
ωp − ω1

pn − k1n

)(
ωp − ω2

pn − k2n

)
,

(II.A.17)

where k1⊥ = k2⊥ = p⊥ so that ω1 =
√
k21n + ω2

⊥ and ω2 =
√
k22n + ω2

⊥ where ω⊥ =√
p2
⊥ +m2. The integrand of the pn integral,

f(pn) =
1

2ωp

(
ωp − ω1

pn − k1n

)(
ωp − ω2

pn − k2n

)
(II.A.18)

is analytic (since the singularities at pn = k1n and pn = k2n are removable) except for
branch points when ωp = 0, namely at pn = iω⊥ and pn = −iω⊥. We can thus deform the
integration contour to the one shown in Fig. II.9. The contributions from the quarter-circle
arcs cancel, and the contributions from the branch cut give

∫ ∞

−∞
f(pn)dpn =

∫ ∞

ω⊥

dκ√
κ2 − ω2

⊥

ω1ω2 + ω2
⊥ − κ2

(iκ− k1n)(iκ− k2n)
. (II.A.19)

With the substitution κ = ω⊥ sec θ, this becomes

∫ π/2

0

cos θ(ω1ω2 + ω2
⊥ − ω2

⊥ sec2 θ)

(iω⊥ − k1n cos θ)(iω⊥ − k2n cos θ)
dθ, (II.A.20)
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which can be evaluated to give

∫ ∞

−∞
f(pn)dpn =

∫ π/2

0

sec θdθ +
ω1 + ω2

k1n − k2n
ln

(
ω1 − k1n
ω2 − k2n

)
. (II.A.21)

The first term is a constant, and is thus even in k1n. The rest of (II.A.17) is odd in k1n
because of (II.A.11) so the constant term gives no contribution to Υλ2 ◦ ρ− ◦Υλ1 , and

Υλ2 ◦ ρ− ◦Υλ1

= λ1λ2

∫
dk1ndk2nd

D−1k⊥
(2π)2

ω1 + ω2

2
√
ω1ω2

Υ̃+(k2)
∗Υ̃+(k1)

e−i(ω1−ω2)t
′′

k1n − k2n
ln

(
ω1 − k1n
ω2 − k2n

)
.

(II.A.22)

This gives us (II.7.1).



Chapter III

Non-Abelian Gauge Theories

III.1 Introduction

As discussed in Chapter I, General relativity (GR) possesses the symmetry of dif-
feomorphism invariance. In the 3 + 1 formulation, this divides into time reparametrization
invariance and the non-Abelian gauge group of spatial diffeomorphisms [33]. A technique for
formulating quantum gravity, such as a generalized quantum mechanics defined by a sum
over histories, will have to address the issues raised by these invariances, such as how (or
whether) to enforce the constraints which the invariances imply. It is thus useful to examine
proposed quantum formulations of GR by considering simpler theories exhibiting a subset of
these invariances or similar ones. As described in Sec. I.4.6, the theory of a single relativistic
particle exhibits reparametrization invariance similar to that of GR, while the spatial gauge
transformations of GR are modelled by those of gauge theory. Previous work has applied
the generalized quantum mechanics program to Abelian gauge theory [24]. In this chapter,
I formulate a generalized quantum mechanics of a non-Abelian gauge theory, and examine
the predictions for some sets of alternatives. That is to say, I construct exhaustive sets of
mutually exclusive classes which partition the possible histories of the system, and for each
such set of classes (or alternatives), I construct a decoherence functional. From this decoher-
ence functional I determine whether probabilities can be defined for the set of alternatives,
and if so what those probabilities are.

The role of this work with regard to the vast body of knowledge on Yang-Mills or
non-Abelian gauge theories (see [34] for a review) is twofold: First, this is the first application
of a “decoherence functional” or “consistent histories” method to their quantization.1 As
such, the focus is not primarily upon using such a theory for the practical consideration
of the strong or weak interaction, but as a toy model which exhibits some features of GR.
However, even as a quantization of a non-Abelian gauge theory itself, both the generalized

1Recent work [35] considers decoherence effects in the quantum cosmology of massive gauge fields, How-
ever, that work differs from the present enterprise in that the gauge fields are there seen as a model of matter
coupled to gravity, while I consider massless gauge fields as a toy model for vacuum gravity itself. Even more
significant is that while they study decoherence effects, it is in the context of a WKB quantization scheme,
rather than a generalized quantum mechanics or consistent histories approach.
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quantum mechanics formalism and this implementation thereof deal with different aspects
of the theory than are usually considered. The alternatives for which generalized quantum
mechanics predicts probabilities are not limited to projections onto eigenstates of operators
at a single moment of time, but include alternatives defined by field averages over spacetime

regions, which are inaccessible in a theory based on states and wave function reduction.
This broader class of alternatives is especially of interest in connection with GR, where it
is undesirable to single out a particular time variable for a conventional quantization. In
addition, the considerations herein are predominantly nonperturbative, as contrasted with
the usual perturbative scattering problems addressed in most practical treatments of Yang-
Mills theory. On the other hand, the rich subject of topological aspects of non-Abelian
gauge theories is not considered, and any potential global properties are in fact ignored by
our assumptions about the behavior of fields at spatial infinity.

A second accomplishment of this work is that technical aspects of the path inte-
grals involved in quantizing a non-Abelian gauge theory are more carefully considered than
in the standard literature. Delicate issues involved in the time slicing of an explicit (“skele-
tonized”) construction of the Lorentzian path integral (sections III.3 and III.4.3 are dealt with
which are described only formally or implicitly in standard treatments such as [25]. Also,
section III.6 exhibits a formal description of this quantization scheme which is manifestly
Lorentz invariant.

The plan of this chapter is as follows: The review of non-Abelian gauge theory
(NAGT) in Section III.2 establishes the perspective and notational conventions for the rest
of the chapter, and describes the heuristic recipe for a generalized quantum mechanics of a
NAGT.

Section III.3 describes the explicit implementation of that application, both as a
formal path integral and in a spacetime lattice approximation2 to the path integral. Technol-
ogy is developed therein for handling the lattice expressions (in particular the time slicing)
explicitly, which should be of use in other treatments of path integrals as well. In the latter
half of the section, we verify explicitly that the implementation is gauge invariant. We also
show there that our sum-over-histories expression agrees, in its description of the propagator,
with the results of a reduced phase space canonical operator theory in which the constraints
(Gauss’s law) are enforced before quantization. In our generalized quantum mechanics for-
mulation, the constraints are not enforced identically–as they are in a reduced phase space
implementation–but are quantities whose values must be predicted by the theory. Thus the
prediction of probabilities for the values of the constraints occupies most of our attention in
the remainder of the chapter.

Section III.4 considers one subset of all possible alternatives which defines a “phase
space” realization (as defined in section III.4.1) of the physical gauge fields. The predictions
of such a theory are found to be consistent with the vanishing of the constraints for nearly
all such sets of alternatives, and thus to agree with those of a reduced phase space canonical
theory. In section III.5 we consider another subset of the allowed alternatives in which the
gauge electric field is realized in terms of the potentials rather than their conjugate momenta.
Since the momenta are then not restricted by the alternatives, we perform the integrals over

2This is not in the sense of lattice gauge theory with its Euclidean lattice, Wilson loops, etc., but simply
a means to provide what Hatfield [36] calls a constructive definition of the path integral.
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them and reduce our theory to a “configuration space” one. Now, defining the constraints by
their configuration space realizations, we find the two most significant results of the chapter.
In section III.5.3 we see that for some quantities which vanish when the constraints are
satisfied we recover the result of [24] for electromagnetism, namely, either the quantities
vanish with probability one or quantum mechanical interference prevents us from assigning
probabilities to possible outcomes. We also verify that there are coarse grainings which fall
into the first category. However, the result does not necessarily hold for all quantities which
vanish in the presence of the constraints, and in section III.5.4 we exhibit such a quantity
in the Abelian theory of electromagnetism for which we predict a nonzero probability of an
alternative inconsistent with the constraints. Since this set of alternatives involves averages
of fields over time, it is not accessible in less general quantum Yang-Mills theories. From a
spacetime point of view, it is sensible that the constraints do not have a special status in
this theory, being just one component of the equations of motion.

Finally, section III.6 verifies that the configuration space theory is Lorentz-invariant
by casting the formal path integral in a form where that invariance is manifest, even in the
attachment of the initial and final states.

III.2 Formulation

III.2.1 Non-Abelian gauge theories

Fields

In this section we set out the conventions used herein to describe a non-Abelian
gauge theory (NAGT) in flat spacetime with the metric diag(−1, 1, 1, 1).

The gauge group is described by Hermitian generators {Ta} with real, totally anti-
symmetric structure constants {f cab}: [Ta, Tb] = if cabTc.

A gauge transformation is described by a matrix U = eigΛa(x)Ta . The connection is
a four-vector Aa(x) with components {Aaµ(x)}, which transforms under infinitesimal gauge
transformations according to

δAaµ = −∇µ δΛa − gf cabAcµδΛb. (III.2.1)

If we define a covariant derivative

Dµ = ∇µ + igAaµTa, (III.2.2)

it transforms according to

Dµ → UDµU
−1. (III.2.3)

This means that if ψ is an isovector, i.e., a vector in the same space as the matrices {Ta}
which transforms under gauge transformations according to ψ → Uψ, the covariant gradient
of ψ will transform the same way:

Dµψ(x)→ UDµψ(x). (III.2.4)
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The field strength tensor is

GaµνTa =
[Dµ, Dν ]

ig
. (III.2.5)

In a particular Lorentz frame, we divide the connection Aa into scalar and vector
potentials ϕa and Aa:

ϕa = A0
a (III.2.6a)

Aa = Aiaei (III.2.6b)

and the field strength tensor into gauge electric and magnetic fields Ea and Ba:

Eia = G0i
a (III.2.7a)

Bia =
1

2
ǫijkGjka (III.2.7b)

where ǫijk is the Levi-Civita symbol. The gauge electric and magnetic fields can then be
expressed in terms of the scalar and vector potentials as

Ea = −Ȧa −∇ϕa − gf cabAcϕb (III.2.8a)

Ba = ∇×Aa +
1

2
gf cabAc ×Ab. (III.2.8b)

The gauge electric and magnetic fields can be shown to transform under gauge
transformations as follows:

EaTa → UEaTaU
−1 (III.2.9a)

BaTa → UBaTaU
−1, (III.2.9b)

which becomes, for an infinitesimal transformation,

δEa = −gf cabδΛbEc (III.2.10a)

δBa = −gf cabδΛbBc. (III.2.10b)

This is the transformation property of an isovector in the adjoint representation [37], in which
the generators are represented by (T c)ab = −if cab, so we will often drop the index from E or
B and consider it to be an isovector in the adjoint representation. The connection Aa has
an inhomogeneous piece in its transformation law (III.2.1), so it is not a true isovector, but
we will represent it as one notationally. Thus the gauge electric field can be written as3

E = −Ȧ−Dϕ, (III.2.11)

where we have realized D in the adjoint representation as

Dab = δab∇+ gf cabAc. (III.2.12)

3Neither Ȧ = ∂tA nor Dϕ alone is an isovector, but their sum −E is.
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Classical equations of motion

The action for a NAGT in the absence of matter is

S =

∫
d4xL = −

∫
d4x

1

4
Gµνa Gaµν =

∫
d4x

1

2
(E2 −B2). (III.2.13)

The conjugate momenta in a particular reference frame are found by differentiating the
Lagrangian density L with respect to Ȧµ = ∂tA

µ:

π0 =
DL
Dϕ̇ = 0 (III.2.14a)

π =
DL
DȦ

= Ȧ+Dϕ = −E. (III.2.14b)

The Hamiltonian density is given by

H[A,π] = Ȧ · π − L =
1

2
π

2 +
1

2
B2 − π ·Dϕ = H[A,π]− π ·Dϕ (III.2.15)

and Hamilton’s equations of motion are

Ȧ = π −Dϕ (III.2.16a)

Dtπ = D×B (III.2.16b)

D · π = 0. (III.2.16c)

Equation (III.2.16c) involves no time derivatives, so it is the constraint of this NAGT, which
we call K = D · π.

III.2.2 Generalized quantum mechanics applied to a NAGT

To formulate a NAGT in generalized quantum mechanics, we follow a procedure
similar to the one described in [24] for electromagnetism (E&M).

To ensure that the theory is sufficiently general to allow coarse graining by values
of the constraint, we work in the sum-over-histories formulation described in Sec. I.3.3, in
which the initial state is described by a set of wave functionals {Ψj[A′]} with corresponding
non-negative weights {p′j} and the final state by a set of wave functionals {Φi[A′′]} and
weights {p′′i }, and the decoherence functional is given by

D(α, α′) =

∑
i,j

p′′i 〈Φi|Cα|Ψj〉〈Φi|Cα′ |Ψj〉∗p′j
∑
i,j

p′′i |〈Φi|Cu|Ψj〉|2 p′j
. (I.3.12)

The quantity 〈Φi|Cα|Ψj〉 corresponding to a matrix element of the class operator for the
class cα, is constructed by a sum over the histories in the class cα, weighted by the initial
and final wave functionals Ψj and Φi. Schematically (see (I.3.13)):

〈Φi|Cα|Ψj〉 =
∑

history∈α
Φ∗
i [endpt

′′]eiS[history]Ψj [endpt
′]. (III.2.17)
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The wave functionals4 are taken to be functionals of scalar and vector potential
configurations on an initial or final surface of constant time, as appropriate. They are
assumed to obey the operator form of the constraints π0 = 0 and D · π = 0:

D
Dϕ′Ψ[A′; t′) = 0 (III.2.18a)

D · DDA′Ψ[A′; t′) = 0 (III.2.18b)

and likewise for Φ[A′′; t′′). (Since the wave functionals are independent of the scalar potential
ϕ, we will henceforth write the first argument as the three-vector A′ rather than the four-
vector A′.) Continuing the analogy between GR and a NAGT begun in Sec. I.4.6, (III.2.18b)
is analogous to the momentum constraint in GR, while (III.2.18a) corresponds to the lack of
dependence of the wave functional for quantum GR on the shift vector {N i}.

Having described schematically the construction of the decoherence functional, we
now specify the other two elements which describe the generalized quantum mechanics. The
fine grained histories summed over are complete field configurations A(x) [and also π(x) if
we are considering a phase space formulation] in the region between the initial and final time
slices. The allowable coarse grainings are limited to gauge invariant partitions of the fields.

III.3 Class operators in the path integral formulation

III.3.1 Overview

This section describes in detail how to implement the sum over histories heuris-
tically described in (III.2.17). In section III.3.2 we express this as a formal path integral.
Section III.3.3 contains an explicit realization of this integral on a discrete spacetime lat-
tice, where the lattice spacing is to be taken to be infinitesimally small.5 The following
two sections demonstrate that the particular details chosen in section III.3.3 were suitable
by showing that the path integral has desired properties. In section III.3.4, the sum-over-
histories expression for the class operator Cu corresponding to the class cu of all paths is

shown to equal, up to a constant multiplicative factor, the propagator eiĤredT in a reduced
phase space canonical theory. In section III.3.5 the path integral is shown to be unchanged
under the discrete equivalent of a gauge transformation, in the limit that the lattice spacing
goes to zero.

4Recall that the conventions defined in Sec. I.A indicate that Ψ[A′, t′) is a functional of field configurations
{A′(x)} and a function of time t′.

5It should be stated once again that we are not doing lattice gauge theory in anything like the usual sense.
The action is expressed directly in terms of fields defined at each lattice point and not in terms of the “links”
defining a “plaquette”. In addition, our spacetime lattice is Lorentzian rather than Euclidean.
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III.3.2 Formal expression

We express the sum over histories (III.2.17) via a path integral which is formally
written as6

〈Φ|Cα|Ψ〉 =
∫

α

D4AD3πΦ∗[A′′; t′′) δ[G]∆G[A,π]e
iScan[A,π]Ψ[A′; t′), (III.3.1)

where the gauge condition is G = 0 and ∆G is the corresponding Fadeev-Popov gauge-fixing
determinant. It was originally defined in [25] in terms of the Poisson bracket:

∆G = |det{G,K}| . (III.3.2a)

Other useful (and equivalent) definitions are (see e.g., [36])

∆G =

∣∣∣∣det
[DGΛ

DΛ

]∣∣∣∣ (III.3.2b)

and
1

∆G
=

∫
DΛ δ[GΛ −G], (III.3.2c)

where Λ is the parameter defining a gauge transformation which takes G into GΛ.
Finally, the canonical action is

Scan =

∫
d4x
(
Ȧ · π −H[A,π]

)
=

∫
d4x

(
Ȧ · π − 1

2
π

2 − 1

2
B2 + π ·Dϕ

)
. (III.3.3)

If we assume7 that ϕ vanishes at spatial infinity, we can integrate by parts8 to
obtain

Scan =

∫
d4x

(
Ȧ · π − 1

2
π

2 − 1

2
B2 − ϕD · π

)
. (III.3.4)

The expression (III.3.1) involves the full set of phase space variables, but we will
also use it as the starting point for the configuration space formulation. If our coarse graining
makes no reference to the conjugate momentum π, we can work in a gauge which does not
restrict π and integrate it out to obtain

〈Φ|Cα|Ψ〉 =
∫

α

D4AΦ∗[A′′; t′′)δ[G]∆G[A]e
iS[A]Ψ[A′; t′), (III.3.5)

where S is the (configuration space) action (III.2.13) and for the purposes of this formal
expression, a constant factor has been absorbed into D4A.

6For those wondering what has become of the generic inner product ◦ from (I.3.13a), the inner product
necessary to produce states with finite norm is one which includes a gauge-fixing mechanism, as in (III.3.9).
In the expression (III.3.1), the gauge-fixing factors δ[G′]∆′

G
and δ[G′′]∆′′

G
have been absorbed into the factor

δ[G]∆G pertaining to the entire path.
7Throughout this chapter we will neglect any global issues such as the Gribov ambiguity [38] and assume

that fields can be taken to vanish at spatial infinity.
8It is worth pointing out once explicitly that the covariant gradient D behaves like the ordinary gradient

under integration by parts. Examining αDβ = αa∇βa + fc
ab
αaβbAc, we see that the first term integrates

by parts as usual, and the second term also picks up a minus sign under the interchange of α and β due to
the antisymmetry of fc

ab
. Thus αDβ = ∇(αβ) − βDα.
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III.3.3 Lattice realization

To give a concrete meaning to the formal path integral in (III.3.1), we imagine
it to be defined on an arbitrarily small lattice; the spatial volume is divided into lattice
elements of volume δ3x and the time interval from t′ to t′′ is divided into slices of separation
δt = t′′−t

J+1 ≡ T
J+1 . The lattice expression for the class operator is then

〈Φ|Cα|Ψ〉 =
∫
D4AJ+1Φ∗[AJ+1; t′′

)
×

(((
0∏

M=J

∫
D4AMD3πM exp

{
iδt

∫
d3x
(
ȦM · πM −H

[
A
M
,πM

]
− ϕMD

M · πM
)})))

×
(
J+2∏

M=0

δ
[
GM

]
∆GM

)
Ψ
[
A0; t′

)
eα [A,π] , (III.3.6)

where the “barred” quantities indicate temporal averages:

A
M

=
AM+1 +AM

2
, 0 ≤M ≤ J (III.3.6a)

D
M

ab = δab∇+ gf cabA
M

c (III.3.6b)

and the lattice expression for the “velocity” is

ȦM =
AM+1 −AM

δt
, 0 ≤M ≤ J. (III.3.6c)

The expression (III.3.6) reflects the fact that since the “velocity” ȦM is naturally associated
with a point halfway between the coordinate lattice slices labeled M and M +1 by (III.3.6c),
it is sensible to associate the conjugate momenta π

M with those points as well, in light of the
term ȦM ·πM . This means that to maintain manifest time reversal symmetry we should not

associate π
M with AM or AM+1, but instead with A

M
. The gauge-fixing expressions GM

and ∆GM are also assumed to be expressed in terms of the averaged fields
{
A
M
}
whenever

their complexity prevents an unambiguous definition in terms of the
{
AM

}
alone.9

The factor of eα is a functional of the paths which is unity for any path in the class
cα and vanishes for any path not in cα.

The remaining functional integrals
{
D4AM

}
and

{
D3πM

}
are over functions of the

spatial coördinate x. We leave consideration of the spatial dependence somewhat formal,
because all of the complications involved in describing the gradients on the lattice basically
appear, and more seriously, in the temporal direction. We will thus be speaking as though

9The reason why there are J +3 gauge conditions
{
GM

}
is most easily seen in the temporal gauge ϕ ≡ 0.

On a lattice this corresponds to the J + 2 conditions
{
ϕM = 0, 0 ≤ M ≤ J + 1

}
. However, there is residual

gauge freedom in the temporal gauge, since a gauge transformation by a parameter Λ(x) [see (III.2.1)] which
is independent of the time t will preserve the temporal gauge condition ϕ ≡ 0. To completely fix the gauge,
then, we would need to specify one other quantity over all space at a particular time. This is the last of the
J + 3 gauge conditions.
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the spacetime function A(x) is broken up into a series of functions of a continuous spatial
variable x:

{
AM (x)

}
. However, we can ultimately consider the following lattice resolutions

for the functional integrals and delta functions:

DAMµ =
∏

a,x

NAdA
Mµ
a (x) (III.3.7a)

DπMi =
∏

a,x

Nπdπ
Mi
a (x) (III.3.7b)

δ
[
AMµ

]
=
∏

a,x

δ
(((
AMµ
a (x)

)))/
NA (III.3.7c)

δ
[
πMi

]
=
∏

a,x

δ
(((
πMi
a (x)

)))/
Nπ, (III.3.7d)

where NA and Nπ are arbitrary normalization constants which obey

NANπ =
δ3x

2π
. (III.3.8)

{This definition is chosen to give the desirable properties (III.3.27) for potential and momen-
tum eigenstates in the corresponding operator theory. See also equation (6.228) of [39].}

Since (III.3.8) only defines a relation between NA and Nπ, there is still an arbitrary
factor in the definitions of the measures (III.3.7). It is reassuring to verify that the class
operator matrix elements 〈Φ|Cα|Ψ〉 defined by (III.3.6) are independent of that arbitrary
factor so that for instance if we double NA (and thus halve Nπ), they are unchanged. To
do this correctly, we must also keep in mind that the wave functionals Ψ[A′] and Φ[A′′] also
depend on the value of NA as follows. Let the wave functionals be normalized according to10

∫
D3A′δ[G[A′]]∆G[A

′] |Ψ [A′]|2 = 1. (III.3.9)

Since there is a factor of N 3
A (where NA =

∏
a,xNA and Nπ =

∏
a,xNπ) associated with

the measure D3A′ and a factor of N−1
A associated with the gauge fixing delta function δ[G′],

there must be a factor of N−2
A associated with the square of the wave functional so that

the factors all cancel out. That is, if we double NA, we must halve Ψ[A′] to maintain the
normalization (III.3.9). Considering the expression (III.3.6), if we multiply together all the
normalization factors (NA for each DAMµ, Nπ for each DπMi, N−1

A for each δ[GM ], and
N−1
A for each wave functional) we have

N 4
AN−1

A (N 4
AN 3

π )
J+1(N−1

A )J+3N−1
A = N 3J+3

A N 3J+3
π =

∏

a,x

(
δ3x

2π

)3J+3

(III.3.10)

and the arbitrariness of the normalization NA does indeed cancel out of (III.3.6).

10The presence of the δ[G′]∆′
G

is necessary to produce a finite inner product Ψ ◦ Ψ; see footnote 6 on
page 65.
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III.3.4 Relation to reduced phase space theory

To illustrate why the details of (III.3.6) were chosen, we show in this section that
it gives the same expression, up to a normalization constant, for the propagator Cu as would
be obtained from a canonical theory working with only the “physical degrees of freedom”.
[Comparisons of (III.3.6) to the reduced phase space results for particular coarse grainings
will be considered in later sections.] This derivation is essentially the one given in [25], taken
in reverse order and with more attention paid to the details of the lattice.

First, we observe that there are J +2 coördinate variables
{
AM (x)

}
but only J +1

averaged variables
{
A
M
(x)
}
. We can define A

J+1
to be a linear combination of the

{
AM

}

independent of the J+1 other
{
A
M
}
, normalized so that the change of variables from

{
AM

}

to
{
A
M
}
has unit determinant and

J+1∏

M=0

dAMµ
a (x) =

J+1∏

M=0

dA
Mµ

a (x). (III.3.11)

{One such choice is A
J+1

= 2J
[
AJ+1 + (−1)J+1A0

]
.} Since neither the velocity term Ȧ · π

nor the initial and final wave functionals depends on the scalar potential ϕ, it only enters
(III.3.6) through the “genuine” averages

{
ϕM , 0 ≤M ≤ J

}
, and thus the class operator is

independent of ϕJ+1. It is then natural to choose ϕJ+1(x) = 0 as one of our J+3 time slices
worth of gauge conditions. The corresponding Fadeev-Popov determinant is

∆ϕJ+1 = det[Dt]|ϕ=0 = det[∂t], (III.3.12)

which is a constant. Overall constant (i.e., the same for all α) factors in the class operator
〈Φ|Cα|Ψ〉 will cancel out in the expression (I.3.12) for the decoherence functional and will
not affect the physics.

For this demonstration, it is simplest to choose as the bulk of the gauge conditions
the axial gauge, in which the component of A along some fixed unit vector en vanishes:

en ·A(x) ≡ An(x) = 0. (III.3.13)

The Fadeev-Popov determinant of this gauge condition is

∆An = det[−Dn]|An=0 = det[−∂n], (III.3.14)

another constant. The remaining components of the vector potential are

A⊥ = A−Anen. (III.3.15)
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Thus the class operator becomes

〈Φ|Cα|Ψ〉 =
∫
D2AJ+1

⊥ Φ∗[AJ+1
⊥ ; t′′

)
det[∂t] det[−∂n]

(((
0∏

M=J

∫
D2AM⊥ DϕMD3πM

× exp

{
iδt

∫
d3x
(
ȦM

⊥ · πM⊥ −H
[
A
M

⊥ ,π
M
]
− ϕMD

M · πM
)}

det[−∂n]
)))

×Ψ
[
A0

⊥; t
′) eα[A,π]. (III.3.16)

To specialize to the propagator Cu, which is defined by a sum over all paths, we
set eα = 1. We can perform each of the ϕ integrals to obtain

∫
DϕM exp

(
−iδt

∫
d3xϕMD

M · πM
)

=
∏

a,x

∫
NAdϕ

M
a (x) exp

[
−iδt δ3xϕMa (x)

(
D
M · πM

)
a
(x)
]

=
∏

a,x

NA
2π

δ3xδt
δ

((((
D
M · πM

)
a
(x)

)))
= δ

[
D
M · πM

]
δT−1, (III.3.17)

where we have defined the infinite constant

δT =
∏

a,x

δt. (III.3.18)

In a reduced phase space theory, the gauge component (here An) of the coördinate is
taken to vanish, and the corresponding component of the conjugate momentum is restricted
to the value which causes the constraint to be satisfied. [Since the Lagrange multipliers
(here the scalar potential ϕ) multiply identically enforced constraints, they do not appear
in the Lagrangian.] In the axial gauge, this means that πn has the value which ensures
K = D · π = 0, or

Dnπn = ∂nπn = −D⊥ · π⊥. (III.3.19)

We define a functional which accomplishes that:

πn [A
′
⊥,π

′
⊥;x) =

∫ xn

dx′n(−D′
⊥ · π′

⊥)(x⊥ + enx
′
n) = −

(
∂−1
n D′

⊥ · π′
⊥
)
(x). (III.3.20)

Returning to the sum-over-histories expression, we observe that the delta function
from (III.3.17) enforcing the constraint can be rewritten

δ
[
D
M · πM

]
= δ
[[[
πMn − πn

[
A
M

⊥ ,π
M
⊥

]]]] ∣∣∣∣det
[ DπMn
DKM

]∣∣∣∣ . (III.3.21)

Recalling (III.3.2a) we identify the determinant in the expression above as the reciprocal of
the Fadeev-Popov determinant, since

∆An =
∣∣det[{An,K}]

∣∣ = det

[DK
Dπn

]
= det[Dn]. (III.3.22)
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Thus we can combine the Fadeev-Popov determinant with the ϕ integral producing the delta
function (III.3.21) to obtain

δ
[
A
M

n

]
∆
A

M
n

∫
DϕM exp

(
−iδt

∫
d3xϕMD

M·πM
)
= δ
[
A
M

n

]
δ
[[[
πMn − πn

[
A
M

⊥ ,π
M
⊥

]]]]
δT−1,

(III.3.23)
which means we can rewrite the propagator as

〈Φ|Cu|Ψ〉 =
∫
D2AJ+1

⊥ Φ∗[AJ+1
⊥ ; t′′

)
det[∂t] det[−∂n]δT−1

(((
0∏

M=J

∫
D2AM⊥ D2πM⊥

× exp

{
iδt

∫
d3x
(
ȦM

⊥ · πM⊥ −Hred

[
A
M

⊥ ,π
M
⊥

])})))
Ψ
[
A0

⊥; t
′) , (III.3.24)

where Hred is the reduced Hamiltonian density

Hred[A
′
⊥,π

′
⊥] = H

[[[
A′

⊥,π
′
⊥ + enπn[A

′
⊥,π

′
⊥]
]]]
. (III.3.25)

To convert (III.3.24) into a canonical operator form of the propagator, we consider
eigenstates of the “physical” coördinate and momentum operators:

Â⊥|A′
⊥〉 = A′

⊥|A′
⊥〉, π̂⊥|π′

⊥〉 = π
′
⊥|π′

⊥〉, (III.3.26)

normalized so that

〈A′′
⊥|A′

⊥〉 = δ[A′′
⊥ −A′

⊥] (III.3.27a)

〈A′
⊥|π′

⊥〉 = exp

(
i

∫
d3xA′

⊥ · π′
⊥

)
, (III.3.27b)

which implies, via (III.3.7)-III.3.8), that

〈π′′
⊥|π′

⊥〉 = δ[π′′
⊥ − π

′
⊥]. (III.3.27c)

A state vector corresponding to each wave functional is then defined by

|Ψ〉 =
∫
D2A′

⊥|A′
⊥〉Ψ[A′

⊥]. (III.3.28)

The operator form of the reduced Hamiltonian density has an ambiguity because
of the operator ordering of the term 1

2 (πn[A
′
⊥,π

′
⊥])

2
. A natural11 choice is Weyl ordering

11Different choices of operator ordering will typically lead to different lattice realizations than the one
in (III.3.6), although no systematic description of the correspondence is known to the author. Two simple

examples of alternate operator ordering are one in which all the Â’s are placed to the right of all the π̂’s and
one in which the π̂’s are to the right of the Â’s. The former will lead to a lattice expression in which π

M

and Ȧ
M are associated with AM , while the latter will associate π

M and Ȧ
M with AM+1. Weyl ordering

is preferable to either of these two because the midpoint rule to which it leads does not pick out the future
or the past as a preferred direction in time. The midpoint rule was also originally advocated by Feynman
{equation (20) in [4]} as the natural skeletonization of a path.
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[40], which has the property that

〈A′′
⊥|Ŵ (F [A⊥,π⊥]) |A′

⊥〉 =
∫
D2π′

⊥F

[
A′

⊥ +A′′
⊥

2
,π′

⊥

]
〈A′′

⊥|π′
⊥〉〈π′

⊥|A′
⊥〉

=

∫
D2π′

⊥F

[
A′

⊥ +A′′
⊥

2
,π′

⊥

]
exp

[
i

∫
d3x(A′′

⊥ −A′
⊥) · π′

⊥

]
. (III.3.29)

Thus, defining Ĥred = Ŵ(Hred), we can rewrite

∫
D2πM⊥ exp

{
iδt

∫
d3x
(
ȦM

⊥ · πM⊥ −Hred

[
A
M

⊥ ,π
M
⊥

])}

=

∫
D2πM⊥

{
1− iδt

∫
d3xHred

[
AM

⊥ +AM+1
⊥

2
,πM⊥

]
+O

(((
(δt)2

)))
}

× exp

[
i

∫
d3x
(
AM+1

⊥ −AM
⊥
)
· πM⊥

]

=
〈
AM+1

⊥
∣∣
[
1− iδt

∫
d3xĤred +O

(((
(δt)2

)))] ∣∣AM
⊥
〉
,

(III.3.30)

so that, dropping terms of order (δt)2,

〈Φ|Cu|Ψ〉 =
∫
D2AJ+1

⊥
〈
Φ(t′′)

∣∣AJ+1
⊥

〉
det[∂t] det[−∂n]δT−1

×
[

0∏

M=J

∫
D2AM⊥

〈
AM+1

⊥
∣∣ exp

(
−iδt

∫
d3xĤred

) ∣∣AM
⊥
〉
]
〈
A0

⊥
∣∣Ψ(t′)

〉
. (III.3.31)

Using the fact that ∫
D2AM⊥ |AM

⊥ 〉〈AM
⊥ | = 1, (III.3.32)

we see that this differs from the operator expression

〈Φ|e−iĤredT |Ψ〉 (III.3.33)

only by the factor of det[∂t] det[−∂n]δT−1, which is a constant. From (I.3.12), we see that
multiplying the class operator by a constant factor has no effect on the decoherence func-
tional.

III.3.5 Gauge independence

We will now show that the theory described by (III.3.6) is independent of the
choice of gauge G. We do this explicitly and in detail because the standard demonstration
[25] makes use of a canonical transformation, which should be ill-defined at the endpoints
of the integration due to the fact that the path integral (III.3.6) has one more configuration

space integration than phase space integration. Put otherwise, if A
M

and π
M are linked
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by a canonical transformation, there is no π
J+1 to which the extra degree of freedom A

J+1

corresponds.
First, we must describe how to implement an infinitesimal gauge transformation

δAaµ = −∇µδΛa − gf cabAcµδΛb (III.3.34a)

δπa = −gf cabπcδΛb (III.3.34b)

on a lattice. We replace the continuous function δΛ(x) with functions
{
δΛM (x)

}
defined on

lattice slices 0 through J +1. The transformation for the vector potential can then be taken
as

δAM
a = −∇δΛMa − gf cabAM

c δΛ
M
b , (III.3.35)

but there is no simple translation of the scalar potential transformation law because of the
time derivative. More practical than the transformation of AM given in (III.3.35) will be

its implications for transformations of the time derivative ȦM and midpoint average A
M
.

Using the fact that

AM+1BM+1 −AMBM
δt

=

(
AM+1 −AM

)

δt

(
BM+1 +BM

)

2

+

(
AM+1 +AM

)

2

(
BM+1 −BM

)

δt
= ȦMB

M
+A

M
ḂM , (III.3.36)

we see that (III.3.35) implies

δȦM
a = −∇δΛ̇Ma − gf cab

(
ȦM
c δΛ

M

b +A
M

c δΛ̇
M
b

)
, (III.3.37)

which is exactly what one might write down from the corresponding continuum expression

δȦa = −∇δΛ̇a − gf cab
(
ȦcδΛb +AcδΛ̇b

)
. (III.3.38)

The case is not quite so simple with the averages. Since

1

2

(
AM+1BM+1 +AMBM

)
=

1

4

(
AM+1 +AM

) (
BM+1 +BM

)

+
1

4

(
AM+1 −AM

) (
BM+1 −BM

)
= A

M
B
M

+
(δt)2

4
ȦM ḂM , (III.3.39)

we have

δA
M

a = −∇δΛ
M

a − gf cab
(
A
M

c δΛ
M

b +
(δt)2

4
ȦM
c δΛ̇

M
b

)
, (III.3.40)

which differs from the näıve analog of (III.3.35) by a term proportional to (δt)2. However,
we can neglect this term by the following familiar argument [41]: as the lattice spacing δt
goes to zero, the factor of exp[−iδt

∫
d3x(π2/2−π ·Ȧ)] will oscillate rapidly and suppress the

path integral if Ȧ is more singular than (δt)−1/2. Likewise, if we concern ourselves only with
gauge transformations which take histories which are sufficiently nonsingular to contribute
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to the path integral into other such histories, (III.3.37) tells us that the δΛ̇ should also blow
up no faster than (δt)−1/2 as δt→ 0. Counting the factors of δt in the upper bounds, we see
that the extra term in (III.3.40) should be at worst proportional to δt and thus be negligible
for sufficiently small lattice spacing. Thus we can use the simpler formula

δA
M

a = −∇δΛ
M

a − gf cabA
M

c δΛ
M

b . (III.3.40′)

The transformation laws for the conjugate momentum and scalar potential can be
defined by analogy to (III.3.40′). As observed in Sec. III.3.4 the scalar potential only enters
the class operator via its averaged values (assuming that ϕJ+1 = 0 is always taken as a
gauge choice), and so we only need to know how to transform ϕ and not ϕ. Since ϕ and π

are defined midway between lattice points, we prescribe transformation laws which are the
obvious lattice realizations of (III.3.34):

δϕMa = δΛ̇Ma − gf cabϕMc δΛ
M

b (III.3.41a)

δπMa = −gf cabπMc δΛ
M

b . (III.3.41b)

Now we show that under such a gauge transformation, the expression (III.3.6)
for the class operator is unchanged. First, we examine the measure for the path integral.
The demonstrations for D3AM , DϕM and D3πM are all essentially the same, so we show it
explicitly only for D3AM . Under the gauge transformation AM → ÃM = AM + δAM , we
have

∏

a

dÃMi
a (x) =

(∏

a

dAMi
a (x)

)
det

{
∂ÃMi

b (x)

∂AMi
c (x)

}
. (III.3.42)

The Jacobian matrix is

∂ÃMi
b (x)

∂AMi
c (x)

= δbc +
∂ δAMi

b (x)

∂AMi
c (x)

= δbc − gf cbdδΛMd (x). (III.3.43)

Using the standard matrix result that to lowest order in δa, det(1 + δa) = 1 + Tr δa, we see
that the Jacobian for the transformation is

det

{
∂ÃMi

b (x)

∂AMi
c (x)

}
= 1− f bbdδΛMd (x) = 1 (III.3.44)

where we have used the fact that the structure constants are totally antisymmetric. This
tells us that

D3ÃM = D3AM , (III.3.45a)

and the demonstrations that
Dϕ̃M = DϕM (III.3.45b)

and
D3π̃M = D3πM (III.3.45c)

proceed similarly.
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Next we consider the canonical action density [i.e., Ȧ · π minus the Hamiltonian
density; cf. (III.3.3)]. The demonstration is simplest if we undo the integration by parts to
write it in the form

ȦM ·πM+π
M ·DM

ϕM− 1

2

(
π
M
)2− 1

2

(
BM

)2
= −EM ·πM− 1

2

(
π
M
)2− 1

2

(
BM

)2
, (III.3.46)

where we have defined the lattice realizations of the electric and magnetic fields by analogy
to (III.2.11) and (III.2.8b):

EM = −ȦM −D
M
ϕM (III.3.47a)

and

BM
a = ∇×A

M

a +
1

2
gf cabA

M

c ×A
M

b . (III.3.47b)

The conjugate momentum π is defined by (III.3.41b) to transform as an isovector. The
transformations of E and B are

δEMa = −δȦM
a −

(
DδϕM

)
a
− gf cabδA

M

c ϕ
M
b (III.3.48a)

δBM
a = ∇× δAM

a + gf cabδA
M

c ×A
M

b , (III.3.48b)

which can be shown, with a little algebra, to give the expected isovector transformations:

δEMa = −gf cabEMc δΛ
M

b (III.3.49a)

δBM
a = −gf cabBM

c δΛ
M

b . (III.3.49b)

So, since π
M , EM and BM all transform as isovectors,

(
π
M
)2
,
(
BM

)2
and EM · πM are

gauge invariant quantities, and

˙̃
AM · π̃M + π̃

M · D̃M ϕ̃
M − 1

2

(
π̃
M
)2
− 1

2

(
B̃M

)2

= ȦM · πM + π
M ·DM

ϕM − 1

2

(
π
M
)2 − 1

2

(
BM

)2
. (III.3.50)

The gauge-fixing delta function becomes δ
[
G̃M

]
. Using (III.3.2c) to write the

Fadeev-Popov determinant as

1

∆G
=

∫
DΛ′δ[GΛ′ −G], (III.3.51)

where GΛ′

indicates the result of a gauge transformation on G by the dummy variable Λ′(x),
we see that the effect of a gauge transformation by Λ(x) is

1

∆̃G

=
1

∆Λ
G

=

∫
DΛ′δ[GΛ′·Λ −GΛ]. (III.3.52)
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Changing the variable of integration to Λ′′ = Λ′ ·Λ (the gauge transformation accomplished
by successive application of Λ′ and Λ), we have (using formal invariance of the group measure;
see section 7.5 of [39] for more details)

1

∆̃G

=

∫
DΛ′′δ[GΛ′′ − G̃] = 1

∆G̃

. (III.3.53)

Coarse graining only by gauge-invariant alternatives means that a path {Ã, π̃} is
in the class cα if and only if the corresponding path {A,π} is, so

eα[Ã, π̃] = eα[A,π]. (III.3.54)

Finally, we consider the behavior of the wave functionals Φ∗ and Ψ.

Ψ[Ã′] = Ψ[A′ + δA′] = Ψ[A′] +

∫
d3x δA′(x) · DΨDA′(x)

= Ψ[A′]−
∫
d3x (D′δΛ′)(x) · DΨDA′(x)

.

(III.3.55)

Upon integrating by parts, this becomes

Ψ[Ã′] = Ψ[A′] +

∫
d3x δΛ′ D′ · DΨDA′ = Ψ[A′], (III.3.56)

where we have used the operator constraint (III.2.18b) on the wave functional Ψ in the last
step.

Now, we relabel the variables A and π in (III.3.6) by Ã and π̃ and use (III.3.45),
(III.3.50), (III.3.53), (III.3.54) and (III.3.56) to convert the expression to

〈Φ|Cα|Ψ〉 =
∫
D3ÃJ+1Φ∗

[
ÃJ+1; t′′

)

×
(((

0∏

M=J

∫
D3ÃMDϕ̃MD3π̃M exp

{
iδt

∫
d3x
(
˙̃
AM · π̃M −H

[
ÃM, π̃M

]
− ϕ̃MD̃M · π̃M

)})))

×
(
J+1∏

M=0

δ
[
G̃M

]
∆̃GM

)
Ψ
[
Ã0; t′

)
eα
[
Ã, π̃

]

=

∫
D3AJ+1Φ∗[AJ+1; t′′

)

×
(((

0∏

M=J

∫
D3AMDϕMD3πM exp

{
iδt

∫
d3x
(
ȦM · πM −H

[
A
M
,πM

]
− ϕMD

M · πM
)})))

×
(
J+1∏

M=0

δ
[
G̃M

]
∆G̃M

)
Ψ
[
A0; t′

)
eα[A,π], (III.3.57)

which shows that the expressions for the class operators are the same whether the gauge is
G = 0 or G̃ = 0.
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III.4 Phase space results

III.4.1 Allowed alternatives

In the previous section, we described a sum-over-histories construction of the class
operators (and hence the decoherence functional) for a NAGT. For the class operators to
have the desirable properties detailed therein, the alternatives considered need only be gauge-
invariant coarse grainings of the connection A and the conjugate momentum π. However,
in practice we will not be interested in arbitrary gauge-invariant quantities, but only the
physical quantities of the theory, namely the gauge electric and magnetic fields and the
covariant derivative. In a phase space formulation, those are identified with the isovectors
−π, B andDµ, respectively. Thus we define physical phase space coarse grainings to be those
in which the gauge electric field is identified with −π and the gauge magnetic field with B.
(The physical phase space theory is then a subset of the phase space theory described in
section III.3.)

We can partition the histories by the values of arbitrary isoscalars (gauge invariant
quantities) constructed from the physically allowed isovectors. Since the length of an isovector
is an isoscalar, coarse graining by the length of isovectors is allowed. It is more convenient to
think of this sort of coarse graining as specifying in which of a set of regions in isospace an
isovector lies, where all the regions are rotationally invariant. From now on, when we talk
about coarse graining by isovectors, this is what we mean.

III.4.2 Constraints

So a general “physical” coarse graining can involve functionals of π, B, D, and
Dt. If we consider the subset of coarse grainings which involves the first three but not the
covariant time derivative Dt, we see that it involves only the vector potential A and the
conjugate momentum π, and not the scalar potential ϕ. If we work in a gauge which also
leaves ϕ unrestricted, we can perform the path integral over ϕ to obtain

∫
Dϕ exp

(
i

∫
d4xϕD · π

)
= δ[D · π/2π], (III.4.1)

and (III.3.1) becomes

〈Φ|Cα|Ψ〉 =
∫

α

D3AD3πΦ∗[A′′; t′′) det[2π]δ[K]δ[G]∆G[A,π]e
iScan[A,π]Ψ[A′; t′). (III.4.2)

In particular, if we coarse grain by values of the constraint K = D · π, the delta
function will cause the class operator to vanish for any class which does not include D·π = 0,
i.e., the constraint satisfied. If exactly one class includes that condition, then, it will have the
only non-vanishing class operator, and the only non-vanishing element of the decoherence
functional will be the diagonal element corresponding to that alternative. This will then
allow the assignment of probabilities, namely, a probability of 1 for the alternative in which
the constraint is satisfied and 0 for all others.
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Now we make this formal demonstration more precise. Given our choice of lattice
expressions, it should be clear that the relevant quantities are the following functions defined
on each slice: {

KM (x) =
(
D
M · πM

)
(x)
}
. (III.4.3)

If we work in a gauge which sets ϕJ+1 to zero and does not otherwise restrict ϕ, we can
perform the ϕ integrals as in (III.3.17) and obtain from (III.3.6) [recalling (III.3.12)]

〈Φ|Cα|Ψ〉 =
∫
D3AJ+1Φ∗[AJ+1; t′′

)
det[∂t]

×
(((

0∏

M=J

∫
D3AMD3πM exp

{
iδt

∫
d3x
(
ȦM · πM −H

[
A
M
,πM

])}
δ
[
KM

]
δT−1

)))

×
(
J+1∏

M=0

δ
[
GM

]
∆GM

)
Ψ
[
A0; t′

)
eα [A,π] . (III.4.4)

The δ
[
KM

]
causes the class operator to vanish for any coarse graining not consistent with

all the
{
KM

}
vanishing everywhere. Thus if we coarse grain by an average of the constraint

over some spacetime region, which will correspond to some average over the
{
KM

}
, the only

non-zero element of the decoherence functional will be the diagonal one corresponding to
that average vanishing.

III.4.3 Comparison to reduced phase space theory

In a reduced phase space canonical theory, as described in section III.3.4, the al-
ternatives are defined by projections onto eigenstates of physical operators. Working in the
axial gauge, the operator corresponding to the gauge electric field is [cf. (III.3.19)]

−
(
π̂⊥ − en∂

−1
n D̂⊥ · π̂⊥

)
(III.4.5a)

and that corresponding to the gauge magnetic field is

B̂a = ∇× Âa
⊥ +

1

2
gf cabÂ

c
⊥ × Âb

⊥. (III.4.5b)

The operator for the covariant gradient is D̂ab = δab∇ + gf cabÂ
c
⊥, but it is less clear how

to convert Dab
t = δab∂t − gf cabϕc into an operator built out of Â⊥ and π̂⊥. First of all, we

need to consider the time derivatives of Â⊥ and π̂⊥. In an operator theory, one identifies
the time derivatives at one moment of time via the Heisenberg equations of motion:

∂tÂ⊥ = i
[
Ĥred, Â⊥

]
= π̂⊥ + Ŵ

(
D⊥∂

−2
n D⊥ · π⊥

)
(III.4.6a)

∂tπ̂
a
⊥ = i

[
Ĥred, π̂

a
⊥

]
= −I⊥ ·

(
D̂⊥ × B̂

)a
− gf cabŴ

((( (
∂−2
n D⊥ · π⊥

)c
π
b
⊥
)))
, (III.4.6b)
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where
I⊥ = I− en ⊗ en (III.4.7)

is the tensor which projects onto the “perpendicular” directions. If we identify

ϕ̂ = −∂−2
n D̂⊥ · π̂⊥, (III.4.8)

and remember that the final operator expressions should always be Weyl-ordered, equations
(III.4.6) give the operator versions of −E⊥ = π⊥ [two of the components of (III.2.16a)]
and the Maxwell’s equation Dtπ⊥ = −(D×B)⊥ [two of the components of (III.2.16b)],
respectively. We also have

π̂n = ∂nϕ̂, (III.4.9)

which is the third component of (III.2.16a). So the operator realization of Dab
t is

δab∂t + gf cab∂
−2
n

(
D̂⊥ · π̂⊥

)
c
, (III.4.10)

where the effects of ∂t on other operators are given by (III.4.6). Of course, in a sum-over-
histories formulation, attempts to describe instantaneous values of time derivatives do not
yield sensible results due to the non-differentiability of the paths. Instead, we coarse grain by
time derivatives averaged over time, which correspond to coarse grainings by the difference
between values of a quantity at two finitely separated instants of time.

As described in section I.3.3, probabilities in the usual operator quantum mechanics
are described by expectation values of projection operators, while in an operator generalized
quantum mechanics [5], an alternative cα corresponds to a class operator Cα which is defined
as in (I.3.8) by a chain of such projections:

Cα = e−iĤred(t
′′−tn)Pnαn

(
1∏

i=n−1

e−iĤred(ti+1−ti)P iαi

)
e−iĤred(t1−t′). (III.4.11)

If we generalize further, and allow a class operator to be not just a single chain of projections,
but a sum of such chains, we can describe more general alternatives, such as coarse grainings
by time averages. The operator expression corresponding to a coarse-grained class operator
would be defined by assigning to each class cα a sum of chains of projections:

Cα =
∑

{αi}∈α
e−iĤred(t

′′−tn)Pnαn

(
1∏

i=n−1

e−iĤred(ti+1−ti)P iαi

)
e−iĤred(t1−t′). (III.4.11′)

This will be equivalent to the corresponding sum-over-histories expression if we can replace
the projections with restricted integrations on lattice slices. First, consider a projection onto
a range of the coördinate A⊥:

P i∆i
=

∫
D2Aι⊥ |Aι

⊥〉 e∆i [A
ι
⊥] 〈Aι

⊥| , (III.4.12)

where

e∆i [A
ι
⊥] =

{
0, Aι

⊥ /∈ ∆i

1, Aι
⊥ ∈ ∆i

(III.4.13)
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is the indicator function for the region ∆i in the space of field configurations {Aι
⊥(x)}. To

examine the effect that this projection has on the class operator, assume that we have taken
our lattice spacing small enough that δt < ti+1 − ti, ti − ti−1 so that if tI is the latest time
slice before ti (i.e., tI+1 ≥ ti ≥ tI), no other projections lie in the interval (tI , tI+1). Then
the effect of the projection is to modify the right-hand side of (III.3.30) to be, to first order
in δt,

〈
AI+1

⊥
∣∣
[
1− i(tI+1 − ti)Ĥred

]
P i∆i

[
1− i(ti − tI)Ĥred

] ∣∣AI
⊥
〉

=
〈
AI+1

⊥
∣∣
(
1− iδtĤred

) ∣∣AI
⊥
〉( tI+1 − ti

δt
e∆i

[
AI+1

⊥
]
+
ti − tI
δt

e∆i

[
AI⊥
])
. (III.4.14)

In the sum-over-histories formulation, we would choose an Aι
⊥ most closely corresponding

to A⊥(ti) and one factor in the indicator function eα would be e∆i[A
ι
⊥]. Given the spirit of

our lattice resolution, that is clearly A
I

⊥. There is a discrepancy between the expressions

e∆i

[
A
I

⊥

]
(III.4.15a)

and

tI+1 − ti
δt

e∆i

[
AI+1

⊥
]
+
ti − tI
δt

e∆i

[
AI

⊥
]
, (III.4.15b)

even when ti = tI +
δt
2 . However, it can be seen as an artifact of the lattice; we argued in

section III.3.5 that as δt→ 0, the difference between AI
⊥, A

I+1
⊥ , and A

I

⊥ vanishes like (δt)1/2,
so we expect both expressions to give the same results in that limit. {It is interesting to note
that (III.4.15a) and (III.4.15b) are reminiscent of equations (20) and (19), respectively, of
Feynman’s original paper [4] on path integrals.}

Here we should consider a moment just what “projections onto ranges of A⊥”
means, physically. After all, A is a gauge-dependent quantity, so it cannot be the expression
which determines the coarse graining in (III.3.6) independent of the gauge choice G. The
two quantities of interest constructed from A are D and B. Since B, as defined by (III.2.8b),
depends only on the vector potential A at a single time, a field configuration B(x) can be
determined from a field configuration A(x) alone. In fact, the gauge freedom means there
are many configurations of A which lead to the same B configuration, so there is a one-to-
one correspondence between field configurations B(x) and gauge-fixed field configurations
A⊥(x).

If we project by values of π,

P i∆i
=

∫
D2πι⊥ |πι⊥〉 e∆i [π

ι
⊥] 〈πι⊥| , (III.4.16)
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we find that to first order in δt

〈
AI+1

⊥
∣∣ e−iĤred(tI+1−ti)P i∆i

e−iĤred(ti−tI )
∣∣AI

⊥
〉

=

∫
D2πκ⊥D2Aι⊥D2πι⊥

〈
AI+1

⊥
∣∣
π
κ
⊥
〉
〈πκ⊥ |Aι

⊥〉 〈Aι
⊥|πι⊥〉

〈
π
ι
⊥
∣∣AI

⊥
〉

×
{
tI+1 − ti

δt

(
1− iδtHred

[
AI+1

⊥ +Aι
⊥

2
,πκ⊥

])
e∆i [π

ι
⊥]

+
ti − tI
δt

(
1− iδtHred

[
Aι

⊥ +AI
⊥

2
,πι⊥

])
e∆i [π

κ
⊥]

}
. (III.4.17)

If we argue that in the limit δt→ 0 we can replace Aι
⊥ with AI

⊥ in the first term and AI+1
⊥

in the second term, we recover the sum-over-histories expression

∫
D2πι⊥

〈
AI+1

⊥
∣∣
π
ι
⊥
〉 〈

π
ι
⊥
∣∣AI

⊥
〉
(
1− iδtHred

[
AI+1

⊥ +AI
⊥

2
,πι⊥

])
e∆i [π

ι
⊥] . (III.4.18)

Now we consider physically what a projection onto values of π⊥ means. The con-
jugate momentum π is gauge-covariant, and in the physical phase space theory directly
accessible, so as long as the regions {∆i} are rotationally invariant in isospace, these are
allowed sets of alternatives. However, dependence of the reduced Hamiltonian (III.3.25) on
π⊥ not just directly but through the fixed form (III.3.20) of πn means that we are actually
restricting not π⊥ independently, but π⊥ subject to the constraint D · π = 0. This is no
cause for alarm, though, since as long as the coarse graining makes no reference to ϕ(ti),
the result (III.4.2) [or (III.4.4)] ensures that this is also the case in the sum-over-histories
formulation.

It seems reasonable to assume that, modulo operator ordering delicacies, a similar
correspondence will hold for any combination of D, B and π, and the the sum-over-histories

formulation gives the same results as the corresponding reduced phase space canonical theory

{referred to in [24] and elsewhere as “Arnowitt-Deser-Misner (ADM) quantization”} for

physical phase space coarse grainings not involving Dt.

III.5 Configuration space results

III.5.1 Allowed alternatives; overview

In the sum-over-histories formulation, it is possible to consider a set of physical
alternatives in which the conjugate momenta are not specified. The gauge electric field,
which was previously described by −π, is now described solely in terms of the potentials
as E = −Ȧ − Dϕ. While these two definitions of the gauge electric field are classically
equivalent, quantum mechanical descriptions based on them will in general be inequivalent.
The physical configuration space theory is that in which the gauge electric field is represented
by E and the gauge magnetic field by B. It has the advantage over the physical phase space
realization that, as described in section III.6, it is formally manifestly Lorentz-invariant.
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However, for that very reason, it will turn out to be not completely consistent with the
enforcement of the Gauss’s law constraint.

In the subset of gauge-invariant alternatives which do not restrict the momenta (of
which the physical configuration space alternatives are in turn a subset), the integrals over the
momenta in the path integral (III.3.6) for the class operator can be explicitly performed. We
do this in section III.5.2, which gives us a constructive definition of the configuration space
path integral (III.3.5). For the purposes of the physical configuration space realization of the
NAGT, we could have started with the formal expression (III.3.5), but approaching it via
the phase space route has enabled us to calculate naturally the measure for the configuration
space path integral.

After constructing the configuration space path integral, we spend the next two
subsections of section III.5 on coarse grainings by the configuration space constraints. In
section III.5.3 we construct a class of quantities which have the same properties as those
found for the constraints of E&M in [24]: the only decohering coarse grainings are those which
predict that the constraint is satisfied with 100% probability. In section III.5.4, however, we
exhibit a quantity in the Abelian theory of E&M which vanishes in the presence of the Gauss’s
law constraint, yet violates this property; there are decohering coarse grainings which predict
nonvanishing values of the quantity with nonzero probability.

III.5.2 Reducing the phase space formulation to the configuration

space formulation

Since the coarse grainings make no reference to the canonical momenta π, we can
work in a gauge where π is unrestricted and perform the Gaussian integrals over the momenta
in (III.3.6) [using the form of the canonical action density in (III.3.46)]:

∫
D3πM exp

{
−iδt

∫
d3x

[
1

2

(
π
M
)2 − π

M ·
(
ȦM +D

M
ϕM
)]}

=
∏

a,x

N3
π

∫
d3πMa (x) exp

(((
− iδtδ3x

{
1

2

[
π
M
a (x)

]2 − π
M
a (x) ·

[
ȦM
a (x) +

(
D
M
ϕM
)
(x)
]})))

=
∏

a,x

(
δ3x

2πNA

√
2π

iδtδ3x

)3

exp

{
iδtδ3x

2

[
ȦM
a (x) +

(
D
M
ϕM
)
a
(x)
]2}

= exp

[
iδt

∫
d3x

1

2

(
EM

)2]∏

a,x

(
δ3x

2πiδtN2
A

)3/2

(III.5.1)
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and rewrite the class operator as

〈Φ|Cα|Ψ〉 = N
∫
D4AJ+1Φ∗[AJ+1; t′′

)

×
(((

0∏

M=J

∫
D4AM exp

{
iδt

∫
d3x

1

2

[(
EM

)2 −
(
BM

)2]}
)))

×
(
J+2∏

M=0

δ
[
GM

]
∆GM

)
Ψ
[
A0; t′

)
eα[A],

(III.5.2)

where EM and BM are as given in (III.3.47) and we have defined the normalization constant

N =

[∏

a,x

(
δ3x

2πiδtN2
A

)3/2
]J+1

. (III.5.2a)

Looking at (III.5.2), we see that it is a lattice realization of the formal expression
(III.3.5), with the measure for the configuration space path integral explicitly calculated.

III.5.3 Coarse graining by values of the constraints

Factoring the class operators

In configuration space, the constraint becomes

Q = −D ·E = D · Ȧ+D2ϕ = 0 (III.5.3)

and the electric field part of the Lagrangian is
∫
d3x

1

2
E2 =

∫
d3x

1

2

[
Ȧ2 + 2Ȧ ·Dϕ+ (Dϕ)2

]
. (III.5.4)

This is most fruitfully simplified by a new gauge, which we dub the “dotted Coulomb gauge”
(DCG),12 in which

D · Ȧ = 0. (III.5.5)

This differs from the Coulomb gauge in which D ·A = 0 because the time derivative does not
commute with the covariant gradient D. In this gauge, the constraint becomes Q = D2ϕ = 0
and, after integrating by parts, the electric field part of the Lagrangian becomes

∫
d3x

1

2

[
Ȧ2 + (Dϕ)2

]
. (III.5.6)

The lattice realization of the gauge condition is

GM = D
M · ȦM = 0 (III.5.7)

12It is possible to show that we can always reach this gauge, via an argument analogous to that used in
[42] to show that one can always reach the Coulomb gauge in a NAGT.
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for M = 0 to J , which, taken along with GJ+2 = ϕJ+1 = 0, leaves one hypersurface worth of
gauge conditions GJ+1 to be specified. We assume that this is defined on some hypersurface
away from the region examined by our coarse graining, and ignore it. (It is conventional to
assume that it has been used to ensure that the scalar potential vanishes at spatial infinity.)
The Fadeev-Popov determinant for the DCG can be calculated from (III.3.2b) to give

∆G = det[−D2∂t] = det[−D2] det[∂t] (III.5.8)

and the class operator is now

〈Φ|Cα|Ψ〉 = N
∫
D3AJ+1 det[∂t]Φ

∗[AJ+1; t′′
)
Ψ
[
A0; t′

)

×
(((

0∏

M=J

∫
D3AM exp

{
iδt

∫
d3x

1

2

[(
ȦM

)2
−
(
BM

)2]}
δ
[
D
M · ȦM

]
det

[
−
(
D
M
)2
∂t

])))

×
{

0∏

M=J

∫
DϕM exp

[
iδt

∫
d3x

1

2

(
D
M
ϕM
)2]
}
δ
[
GJ+1

]
∆GJ+1eα[A, ϕ]. (III.5.9)

The expression (III.5.9) is beginning to factor into two pieces: a piece depending
on the initial and final wave functionals which involves only the vector potential, and a piece
describing the coarse graining which involves only the scalar potential. The two factors
which still involve both potentials are the (Dϕ)2 term in the exponential and the indicator
functional eα[A, ϕ]. We would like to solve the first problem by changing variables from ϕ
to Dϕ in the path integral, but the latter is a vector while the former is only a scalar. To
construct a scalar corresponding to Dϕ, we need to develop some notation.

First, for the remainder of this section, it will be useful to consider all unadorned
variables to be scalars rather than four-vectors. For example, k = |k| =

√
k · k. Now, we

define a nonlocal scalar operator ∇ = (∇2)1/2 via a Fourier transform:

∇f(x) =
∫
d3x′d3k

(2π)3
eik·(x−x′)ikf(x′) (III.5.10)

so that ∇2 = ∇2 is the Laplacian. (We could have defined the square root to have the
opposite sign, but it would not substantially change what follows.) Building on the properties
of this operator, we define an analogous square root for the covariant Laplacian

D2 = ∇2 + ig(Aa ·∇+∇ ·Aa)Ta − g2(Aa ·Ab)TaTb (III.5.11)

via an expansion (the convergence of which we do not address) as follows:

D = (D2)1/2 =
[
∇2 + (D2 −∇2)

]1/2
= (∇2)1/2

[
1 +∇−2(D2 −∇2)

]1/2

= ∇
∞∑

n=0

bn
[
∇−2(D2 −∇2)

]n
,

(III.5.12)
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where {bn} are the Taylor expansion coefficients of (1 + x)1/2 and ∇−2 is another non-local
operator

∇−2f(x) =

∫
d3x′d3k

(2π)3
eik·(x−x′)

(
− 1

k2

)
f(x′) (III.5.13)

defined so that ∇2∇−2 = ∇−2∇2 = 1.
Now we want to massage the scalar potential part of the action so that it involves

Dϕ rather than Dϕ. Integrating by parts, we see that

1

2

∫
d3x(Dϕ)2 = −1

2

∫
d3xϕD ·Dϕ = −1

2

∫
d3xϕD2ϕ (III.5.14)

and now we need to move one of the D operators back to the left. It is straightforward to
show (by expanding α and β in Fourier transforms) that

∫
d3xα(x)∇β(x) =

∫
d3x(∇α)(x)β(x) (III.5.15)

(which is the opposite sign from the integration by parts involving ∇) and

∫
d3xα(x)∇−2β(x) =

∫
d3x(∇−2α)(x)β(x). (III.5.16)

Using those two results, along with

∫
d3xα(x)(D2 −∇2)β(x) =

∫
d3x
[
(D2 −∇2)α(x)

]
β(x) (III.5.17)

(which follows from the integration by parts procedures for ∇ and D) one can show that

−1

2

∫
d3xϕD2ϕ = −1

2

∫
d3x(Dϕ)2. (III.5.18)

If we define13

EM = iD
M
ϕM , (III.5.19)

the class operator becomes

〈Φ|Cα|Ψ〉 = N
∫
D3AJ+1 det[∂t]Φ

∗[AJ+1; t′′
)
Ψ
[
A0; t′

)

×
(((

0∏

M=J

∫
D3AM exp

{
iδt

∫
d3x

1

2

[(
ȦM

)2
−
(
BM

)2]}
δ
[
D
M · ȦM

]
det
[
iD

M
∂t

])))

×
{

0∏

M=J

∫
DEM exp

[
iδt

∫
d3x

1

2

(
EM
)2]
}
δ
[
GJ+1

]
∆GJ+1eα[A, E ]. (III.5.20)

13The factor of i is necessary to make E(x) a real quantity. In E&M, this change of variables is just
changing to E = −iEL where EL is the (scalar) longitudinal part of the electric field.
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Now the only obstacle to factorization of the class operator is the indicator func-
tional eα. If we coarse grain by some temporal and spatial average 〈Q〉 of the constraint

Q = D2ϕ = −iDE , (III.5.21)

the indicator functional for a class in which this average lies in the range ∆ (which, since Q
is an isovector, is a region in isospace which is mapped onto itself by gauge transformations)
is (letting n =

∑
a 1 be the dimension of the adjoint representation of the gauge group, and

keeping in mind that f is a complex isovector quantity)

e∆[〈Q〉] =
∫

∆

d2nf δ(f − 〈−iDE〉), (III.5.22)

which depends on A via the operator D. If, however, we coarse grain by values of iD−1Q,
which classically should vanish whenever Q does, we are coarse graining by E , e∆ is inde-
pendent of A, and we can perform the following manipulation:

〈Φ|C∆|Ψ〉 = NC∆
∫
D3AJ+1 det[∂t]Φ

∗[AJ+1; t′′
)
Ψ
[
A0; t′

)

×
(((

0∏

M=J

∫
D3AM exp

{
iδt

∫
d3x

1

2

[(
ȦM

)2
−
(
BM

)2]}
δ
[
D
M · ȦM

]
det
[
iD

M
∂t

])))

× δ
[
GJ+1

]
∆GJ+1 , (III.5.23)

where

C∆ =

{
0∏

M=J

∫
DEM exp

[
iδt

∫
d3x

1

2

(
EM
)2]
}
e∆[E ]. (III.5.24)

This means that

D(∆,∆′) =
C∗∆C∆′

|Cu|2
(III.5.25)

and we can apply an argument from section VI.4 of [24]: when the decoherence functional
factors in this way, the only way the off-diagonal elements can vanish is if only one of the
{C∆} is non-zero. In that case, one diagonal element of the decoherence functional is unity
and all the others vanish, which corresponds to a definite prediction of that alternative (100%
probability). Thus we have the result: coarse grainings of iD−1(−D ·E) in configuration

space fall into two categories: either they yield a definite prediction of a single alternative,

or they fail to decohere. In the former case, we expect that the predicted alternative will be
the one consistent with constraint Q = 0, but this argument itself does not settle the issue.
However, the conjecture seems very likely given that the integrand in the expression (III.5.24)
for C∆ is stationary about E = 0, which would seem to make the alternative including E = 0
the one most likely to have a non-vanishing C∆.
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A decohering example

We now present explicit calculation of C∆ for one choice of the average 〈E〉 which
verifies both that coarse grainings of the first class exist and that the alternative predicted is
(in this case) indeed the one consistent with the constraint. The demonstration is analogous
to that used in section VI.4 of [24] for E&M, and the specialization of the present result
(III.A.16) to the Abelian case is in fact a more accurate version of equation (VI.4.12) therein.

We coarse grain by an average 〈E〉 over modes so that the indicator functional is

e∆[E ] =
∫

∆

d2nfδ(f − 〈E〉). (III.5.26)

The average 〈E〉 is defined to be over a time interval ∆t and a group of modes in spatial
frequency space ∆3k. We refer to this group of modes as Ω, which we also use for the mode
volume (Ω = ∆t∆3k), so that the average is

〈E〉 = 1

Ω

∫

Ω

dt d3k Ek(t) =
1

Ω

∑

M∈Ω

δt

∫

Ω

d3k EMk , (III.5.27)

where Ek is the Fourier transform

EMk =

∫
d3x

(2π)3/2
e−ik·xEM (x). (III.5.28)

For this coarse graining, the calculation in appendix III.A gives

C∆ = K′
∫

∆

d2nfeiΩ|f |2 , (III.A.16)

where K′ is a constant. The integrand is an “imaginary Gaussian” of width 1/
√
2Ω; For

|f |2 & 1/2Ω, the integrand will oscillate rapidly and the contributions to the integral will
cancel out. This means that if we average over a large enough group of modes Ω that the
region ∣∣∣∣∣∣

1

Ω

∫

Ω

dt d3k Ek(t)

∣∣∣∣∣∣

2

.
1

2Ω
(III.5.29)

is contained in a single bin ∆, that will correspond to the only non-negligible C∆, and we will
have a definite prediction that the configuration space constraint is satisfied to that accuracy.

This result is less comforting than the Abelian one, since our alternatives were
defined not by the usual configuration space constraint Q = −D ·E but a nonlocal function
of it. In E&M, no one would object to analogously coarse graining by the longitudinal
component of the electric field rather than its divergence, but in that case the relationship
between them does not involve the other components of A so a similar factorization can be
performed on −∇ ·E as on EL. However, in a NAGT, coarse graining by Q = −iDE tangles
up E and A. Even in E&M, we run into this problem if we coarse grain by quantities which
involve both EL and AT . We examine one such coarse graining in the next section.
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III.5.4 Coarse graining E&M by quantities proportional to the con-

straint

We showed in the previous section that coarse grainings by values of E in a NAGT
(or EL in E&M) could only decohere in cases where they led to a definite prediction. The
demonstration does not work for coarse grainings by −iDE (or f [EL,B] in E&M). We will
now exhibit such a coarse graining in E&M which decoheres, but predicts non-zero probabil-
ities for more than one alternative, thus verifying that the property described in the previous
section does not always hold.

The situation for this coarse graining is reminiscent of the physical decoherence dis-
cussed in Chapter IV, in which “system” of interest is coupled to an “environment” which is
not measured, but carries away phase information which causes sets of alternatives describ-
ing the “system” to decohere, but with the following differences. The “system” variables A
are coupled to the “environment” variables E not by the action, but by the coarse graining
itself, and here it is the initial state rather than the coarse graining which is independent
of the “environment” E . But as we shall see, this is still a mechanism which can produce
decoherence of a sort different than that seen in the previous section, and lead to more
than one alternative having non-zero probability. For our purposes, it will be most useful to
consider coarse grainings by functionals of EL and B in the Abelian gauge theory of electro-
magnetism. (Although we will briefly mention, at the end of the section, a similar result in
another theory to illustrate the generality of the mechanism described here.)

In the Abelian theory, the dotted Coulomb gauge (III.5.5) is equivalent to the
Coulomb gauge AL = 0 and (III.5.9) becomes

〈Φ|Cα|Ψ〉 = N
∫
D2AJ+1

T det[∂t]Φ
∗[AJ+1

T ; t′′
)
Ψ
[
A0
T ; t

′)

×
(((

0∏

M=J

∫
D2AMT exp

{
iδt

∫
d3x

1

2

[(
ȦM
T

)2
−
(
∇× ȦM

T

)2]}
det[−∇]

)))

×
{

0∏

M=J

∫
DϕM exp

[
iδt

∫
d3x

1

2

(
∇ϕM

)2]
}
eα[AT , ϕ].

(III.5.30)

For the purposes of E&M, we need not concern ourselves with the details of the lattice ap-
proximation, because the reduced Hamiltonian is free from the operator ordering ambiguities
discussed in section III.3.4.14 This means that any choice of operator ordering convention
gives the same reduced Hamiltonian, and in light of the discussion in footnote 11, page 70
this means that different lattice realizations of the path integral will be equivalent. We are

14For example, in the axial gauge (III.3.13), the functional defined in (III.3.19) becomes πn[A⊥,π⊥] =
−∂−1

n ∇⊥ · π⊥, which is independent of A⊥ so that 1
2
(πn[A⊥,π⊥])2 can be unambiguously converted into

an operator expression.
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thus justified in working with the formal equivalent of (III.5.30):

〈Φ|Cα|Ψ〉 = ∆G

∫

α

D2AT DϕΦ∗[AJ+1
T ; t′′

)

× exp

{
i

∫
d4x

1

2

[(
ȦT

)2
−
(
∇× ȦT

)2
+ (∇ϕ)2

]}
Ψ
[
A0
T ; t

′) . (III.5.31)

Since we can observe that the “physical degrees of freedom” upon which the wave
functionals depend are just the transverse components of A, it is useful to factor out the
wave functionals and write

〈Φ|Cα|Ψ〉 =
∫
D2A′′

T D2A′
T Φ∗[A′′

T ; t
′′)Cα[A

′′
T ; t

′′|A′
T ; t

′)Ψ [A′
T ; t

′) , (III.5.32)

where

Cα[A
′′
T ; t

′′|A′
T ; t

′) = ∆G

∫

A′′
TαA

′
T

D2AT Dϕei
∫ t′′

t′
dtL. (III.5.33)

If we write the initial and final conditions as

ρ′′t′′ [A
′′
T2,A

′′
T1] =

∑

i

Φ∗
i [A

′′
T2; t

′′) p′′i Φi [A
′′
T1; t

′′) (III.5.34a)

ρ′t′ [A
′
T2,A

′
T1] =

∑

j

Ψ∗
j [A

′
T2; t

′) p′jΨj [A
′
T1; t

′) , (III.5.34b)

we have, from (III.5.32) and (I.3.12),

D(α, α′) ∝
∫
D2A′′

T2D2A′′
T1D2A′

T2D2A′
T1

× ρ′′t′′ [A′′
T2,A

′′
T1]Cα[A

′′
T1; t

′′|A′
T1; t

′)ρ′t′ [A
′
T1,A

′
T2]C

∗
α′ [A′′

T2; t
′′|A′

T2; t
′), (III.5.35)

where we have established the useful convention that ∝ indicates a proportionality constant
which is the same for all classes and thus can be absorbed into the normalization. The
quantity we choose to define our alternatives is

g[Bι]
∣∣〈EL〉

∣∣2, (III.5.36)

where g[Bι] is a functional (which we take to be positive semidefinite for reasons to become
clear later) of the magnetic field configuration Bι on some time slice ti, and 〈·〉 indicates
an average over some mode volume (i.e., an average over wavenumber and time15). The
indicator function for this quantity to lie in some interval ∆ is

e∆ =

∫

∆

dfδ
(
f − g[Bι]

∣∣〈EL〉
∣∣2
)
=

∫

∆

df

∫
db da δ(f − ba)δ(b− g[Bι])δ

(
a−

∣∣〈EL〉
∣∣2
)
,

(III.5.37)

15Since it involves a time average, this sort of alternative is not accessible in a standard operator-and-state
formulation of quantum mechanics.
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which allows us to write

C∆[A
′′
T ; t

′′|A′
T ; t

′) =

∫

∆

df

∫
db daδ(f − ba)A(a)B [A′′

T ,A
′
T , b)

=

∫

∆

df

∫
db

|b|A
(
f

b

)
B [A′′

T ,A
′
T , b) ,

(III.5.38)

where

A(a) =
∫
Dϕ exp

[
i

∫ t′′

t′
dt

∫
d3x

1

2
(∇ϕ)

2

]
δ
(
a− |〈∇ϕ〉|2

)
det[−∇] (III.5.38a)

and

B [A′′
T ,A

′
T ; b) =

∫

A′′
TA′

T

D2AT exp

{
i

∫ t′′

t′
dt

∫
d3x

1

2

[(
ȦT

)2
− (∇×AT )

2

]}
δ(b− g[∇×Aι

T ]).

(III.5.38b)
Writing the average over a group of modes as

〈∇ϕ〉 = 1

Ω

∫

Ω

dt d3k[ikϕk(t)], (III.5.39)

a calculation analogous to the one in appendix III.A tells us that

A(a) ∝
∫
DΥexp

(
iΩ
∑

σ∈Ω

|Υσ|2
)
δ
(
a− |Υ0|2

)

∝
∫
dΥR

0 dΥ
I
0 exp

(
iΩ |Υ0|2

)
δ
(
a− |Υ0|2

)
∝ eiΩaΘ(a),

(III.5.40)

where Θ(a) is the Heaviside step function. Meanwhile, we can write B as16

B [A′′
T ,A

′
T ; b) =

∫
D2AιT G [A′′

T ; t
′′|Aι

T ; ti) δ(b − g[∇×Aι
T ])G [Aι

T ; ti|A′
T ; t

′) , (III.5.41)

where

G [A′′
T ; t

′′|A′
T ; t

′) =

∫

A′′
TA′

T

D2AT exp

{
i

∫ t′′

t′
dt

∫
d3x

1

2

[(
ȦT

)2
− (∇×AT )

2

]}
(III.5.42)

16The attentive reader may notice that we are implicitly expressing our coarse graining in terms of Aι

as though it corresponded to A on a single lattice slice
(
A

I
)
rather than an average

(
A

I
)
, as we were

instructed to do in section III.3.3. This is not a problem, because, as discussed earlier, the operator ordering
ambiguities that led us to make the distinction between the two are not present in E&M.
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is the propagator for the AT sector of the theory. By Fourier transforming the spatial
dependence of AT , G can be seen to be the propagator for a harmonic oscillator whose
natural frequency depends on the wave number k of the mode. Equation (III.5.41) allows us
to write the dependence implied by (III.5.35) and (III.5.38) of D(∆2,∆1) on the initial and
final conditions as

∫
D2A′′

T2D2A′′
T1D2A′

T2D2A′
T1ρ

′′
t′′ [A

′′
T2,A

′′
T1]B [A′′

T1,A
′
T1; b1) ρ

′
t′ [A

′
T1,A

′
T2]B∗[A′′

T2,A
′
T2; b2)

=

∫
D2AιT2D2AιT1ρ

′′
ti [A

ι
T2,A

ι
T1]δ(b1 − g[∇×Aι

T1])ρ
′
ti [A

ι
T1,A

ι
T2]δ(b2 − g[∇×Aι

T2]),

(III.5.43)

where we have used the propagator G to transform ρ′t′ to ρ
′
ti and ρ

′′
t′′ to ρ

′′
ti . If the final state

is one of future indifference:

ρ′′[A′′
T2,A

′′
T1] ∝ δ[A′′

T2 −A′′
T1] (III.5.44)

(which is preserved by the propagator), (III.5.43) becomes proportional to

∫
D2AιT δ(b1 − g[∇×Aι

T ])ρ
′
ti [A

ι
T ,A

ι
T ]δ(b2 − g[∇×Aι

T ]) = δ(b2 − b1) p(b1), (III.5.45)

where

p(b) =

∫
D2AιT δ(b − g[∇×Aι

T ])ρ
′
ti [A

ι
T ,A

ι
T ]. (III.5.46)

Combining (III.5.35) and (III.5.38) with the expression for A in (III.5.40) and this
result concerning B, we have

D(∆,∆′) ∝
∫

∆

df

∫

∆′

df ′
∫
db

b2
p(b)eiΩ(f−f ′)/bΘ

(
f

b

)
Θ

(
f ′

b

)
. (III.5.47)

With the condition that g[Bι] is everywhere non-negative, we see from (III.5.46) that p(b)
vanishes for negative b and the step functions above become Θ(f)Θ(f ′). If we define the
regions {∆} to cover the positive real axis, we can drop the step functions to give

D(∆,∆′) ∝
∫

∆

df

∫

∆′

df ′G(f − f ′), (III.5.48)

where

G(y) =

∫ ∞

0

db

b2
p(b)eiΩy/b. (III.5.48a)

Note that since G(f − f ′) depends only on the difference between f and f ′, no value of f
is preferred over any other. In particular, if the bins {∆} are all the same size, D(∆,∆′)
depends only on the relative separation of ∆ and ∆′, not their absolute location. This means
that if there is decoherence, (III.5.48) predicts that the measured quantity is equally likely
to have any value.
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It is possible to choose the p(b) (which is determined by the initial conditions) to
produce at least weak decoherence. For example, let p(b) be a Gaussian in 1/b:

p(b) = AλΘ(b)Θ(λ−1 − b)e−1/2σ2b2 , (III.5.49)

where Aλ is a cutoff-dependent normalization given by

A−1
λ =

∫ λ−1

0

db e−1/2σ2b2 <
σ
√
2π

λ2
(III.5.49a)

to ensure
∫∞
0 p(b) = 1.

If λ is small enough, the leading terms in the decoherence functional will not depend
on it. If the real parts of the off-diagonal elements of the decoherence functional are much less
than the diagonal elements, the coarse graining will exhibit approximate weak decoherence
[cf. (I.3.5)] The calculation in appendix III.C shows for bins of equal size ∆ that, to lowest

order in e−(Ωσ∆)2/2,

ReD(J +∆J, J)

D(J, J)
.

exp[−(Ωσ∆)2(|∆J | − 1)2/2]

Ωσ∆
√
2π

. (III.5.50)

So D(J, J ± 1) is suppressed by a factor of (Ωσ∆)−1 relative to D(J, J), while all
the other elements of the decoherence functional are exponentially suppressed. In general,
we expect this sort of result if ReG(y) falls off on a scale which is small compared to ∆
[which should in general be determinable from a steepest descents evaluation of (III.5.48a).]
Schematically (Fig. III.1), if ReG(y) becomes negligible for |y| & δ, with δ ≤ ∆, the integral
for ReD(J, J+∆J) for |∆J | ≥ 2 will include none of the region for which G(y) is significant.
The area of the region in the integral for ReD(J, J ± 1) for which G(y) is significant is δ2/2,
while that for D(J, J) is 2∆δ − δ2, so ReD(J, J ± 1) is suppressed by a factor of δ/∆.

This means that if Ωσ∆≫ 1, this coarse graining by g[Bι]
∣∣〈EL〉

∣∣2 decoheres weakly

for the initial condition (III.5.49) and the final condition of future indifference, and there

is an equal probability for the value to fall into any of the evenly spaced bins. A curious
corollary is that if we coarse grain by combining bins 0 through J0 − 1 into one alternative
c<, corresponding to g[Bι] |〈EL〉|2 < J0∆, and all the bins J0 and up into another alternative

c>, corresponding to g[Bι]
∣∣〈EL〉

∣∣2 > J0∆, we find that since p< is a sum of J0 equal terms
and p> is an infinite sum of the same terms, p< = 0 and p> = 1 for any finite J0, a definite
prediction that g[Bι] |〈EL〉|2 > J0∆. This sort of phenomenon is common in the use of path
integral methods (for another example, see [43]) and is related to the non-differentiability of
Brownian paths.

Finally, let us comment on the significance of this result. If we coarse grained
by values of the corresponding phase space quantity, g[Bι] |〈πL〉|2, (III.4.2) would ensure
that we found a definite prediction that it vanished. Thus the phase space and configuration
space theories make different predictions. There are well-documented examples in generalized
quantum mechanics where analogous phase space and configuration space coarse grainings
lead to different decoherence functionals (for example, in Sections V.4.2 and VI.4 of [24]),
but in those cases, there was a coarse graining by momentum which decohered while coarse
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f
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δ ∆ 2∆ 3∆
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∆
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Figure III.1: The regions of integration of a general G(f − f ′) to produce the decoherence
functional D(J, J ′) via (III.5.48). If G(y) is negligible for |y| & δ, integrals of G(y) over
regions two or more spots off the diagonal (|J − J ′| ≥ 2) will be negligible. Squares on the
diagonal (J = J ′) have a region of area 2∆δ − δ2 over which G(y) is appreciable. Squares
one spot off the diagonal (|J − J ′| = 1) include some non-negligible values of G(y), but only
in a triangular region of area δ2/2. Thus D(J, J ± 1) should be suppressed by a factor of
δ/∆ relative to D(J, J). Compare Fig. 1 of [12].
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graining by the equivalent quantity in terms of velocity did not. When the coarse graining
by velocity decohered, it agreed with the coarse graining by momentum. The present result
is the first case known to the author of corresponding phase space and configuration space
coarse grainings, both of which decohere, but which give conflicting probabilities.

This result is not limited to constrained theories. Another system in which similar
phenomena can occur is the non-relativistic quantum mechanics of a free particle with two
degrees of freedom and an independent harmonic oscillator. In that case, one coarse grains by
the product of some function of the position of the harmonic oscillator at one instant of time
with the square of a time average of the velocity of the free particle. If the initial state is a
zero-momentum eigenstate of the free particle tensored with a suitable state of the harmonic
oscillator, one finds equal probability of any alternative, even though the corresponding phase
space coarse graining yields a definite prediction that the quantity vanishes.

These disagreements between configuration space and phase space predictions are
another example of classically equivalent theories which yield different predictions upon quan-
tization. Here, the classical equivalence which does not hold is that between momentum and
velocity. Possible motivations for choosing between these quantization schemes in the case
of gauge theories are discussed in the conclusion (section III.7).

III.6 A few words about Lorentz invariance

Since our implementation of the sum over histories for the generalized quantum
mechanics of a NAGT has relied rather heavily on a division into time and space, it is worth
mentioning how little the formal theory really does to single out a preferred Lorentz frame.
The phase space theory is of course not Lorentz-invariant, as the conjugate momenta are
defined with respect to a particular time. Since −π and B are treated differently, it is not
possible to combine them into a field strength tensor which Lorentz transforms appropriately.
This is the source of the apparent asymmetry between different components of the equations
of motion

DµG
µν = 0; (III.6.1)

the constraints hold identically, while the others do not.

However, the formal configuration space theory (and not just the “physical” con-
figuration space coarse grainings defined in section III.5.1) can be cast into a form which is
manifestly Lorentz-invariant. In the formal configuration space expression

〈Φ|Cα|Ψ〉 =
∫

α

D4AΦ∗[A′′; t′′)δ[G]∆G[A] exp

(
−i
∫ t′′

t′
dt

∫
d3x

1

4
GaµνG

µν
a

)
Ψ[A′; t′),

(III.6.2)
E and B are treated on equal footing from a spacetime point of view as part of the tensor
Gµν . Lorentz invariance is broken in two ways, both concerning the initial and final wave
functionals Ψ and Φ. First, they are attached on surfaces of constant coördinate time rather
than arbitrary spacelike surfaces; second, the operator constraints (III.2.18) on Ψ and Φ treat
ϕ = A0 and A = Aiei unequally. In this section, we demonstrate that these two problems
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are related to one another, and show how the conditions satisfied by the wave functionals
can be related to the surfaces on which they are evaluated.

We can generalize (III.6.2) to arbitrary (spacelike) initial and final surfaces in the
straightforward manner:

〈Φ|Cα|Ψ〉 =
∫

α

D4AΦ∗
[
A(σ′′);σ′′

)
δ[G]∆G[A]e

i
∫

σ′′

σ′ d
4xL(x)Ψ

[
A(σ′);σ′

)
, (III.6.3)

where A(σ) is the restriction of the function A(x) (here the four-vector potential, but the
definition will apply to any function defined over spacetime) onto the three-surface σ, and
the integral for the action is over the region bounded by σ′ and σ′′. Using the sum over all
histories to define a propagator

G
[
A(σ′′);σ′′

∣∣∣ A(σ′);σ′
)
=

∫

A(σ′′)A(σ′)

D4Aδ[G]∆G[A]e
i
∫

σ′′

σ′ d
4xL(x), (III.6.4)

we can go from a wave functional Ψ defined on one spacelike surface to one defined on
another:

Ψ
[
A(σ′′);σ′′

)
=

∫
D4A(σ′)G

[
A(σ′′)σ′′

∣∣∣ A(σ′)σ′
)
Ψ
[
A(σ′);σ′

)
. (III.6.5)

The class operators defined from (III.6.3) for different choices of initial and final surfaces are
the same so long as all the spacetime points {x} at which the coarse grainings restrict the
fields A(x) still lie in between the initial and final surfaces.

The conditions satisfied by the wave functional are a consequence of the gauge
invariance of the path integral for the propagator, as discussed in [44].17 Defining coördi-
nates {ξi} on the 3-surface σ and specifying its embedding in the flat Minkowski space as
{xµ{ξi}}, the metric induced on the surface will be

ds2 = ηµν
∂xµ

∂ξi
dξi

∂xν

∂ξj
dξj = hijdξ

idξj , (III.6.6)

hij = ηµν
∂xµ

∂ξi
∂xν

∂ξj
. (III.6.6a)

The condition that σ be spacelike means that the three-metric {hij} is positive definite, so
that the volume element on σ is

d3Σ = d3ξ
√
h, (III.6.7)

where h = det{hij}. Now the restriction of A(x) onto σ is defined by A(σ)(ξ) = A(x(ξ)),
and is a function of the three coördinates {ξi} alone. This is the first argument of the

17It should be stressed that we are here considering the conditions imposed by gauge invariance on the
variation of Ψ with respect to the gauge fields. As discussed in [45, 46], there are also conditions imposed
on Ψ (viewed as a function of A(σ) and σ) by Lorentz invariance. They involve changes in the surface σ.
Roughly speaking, variations of σ lying in σ itself correspond to relabelling of the points in the surface,
and the function Ψ(σ) must change to reflect this. The conditions on variations of σ normal to σ is the
Schrödinger equation associated with the the propagation rule (III.6.5).
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wave functional Ψ[A(σ);σ). Equation (III.6.5) shows that the dependence of Ψ on its first
argument is the same as the dependence of the propagator G on its first argument. Since
the path integral in (III.6.4) is invariant under gauge transformations on A, the propagator
must be invariant under the effects of those gauge transformations on A(σ′) and A(σ′′). Since
the gauge transformation

δAaµ = −∇µ δΛa − gf cabAcµδΛb (III.2.1)

is nonlocal, the change in A(σ) cannot be described by using only the restriction δΛ(σ)(ξ) =
δΛ(x(ξ)) of the gauge transformation parameter δΛ onto the surface σ. To identify the
troublesome component of the gradient which introduces values of δΛ off of σ, it is useful to
define a projection tensor

Σνµ =
∂ξi

∂xµ
∂xν

∂ξi
, (III.6.8)

where ∂ξi/∂xµ is the gradient of ξ with respect to x lying in σ so that

∂ξi

∂xµ
∂xµ

∂ξj
= δij . (III.6.9)

This also follows from the chain rule

∂

∂ξi
=
∂xµ

∂ξi
∂

∂xµ
. (III.6.10)

Defining a complementary projection tensor Υνµ = δνµ − Σνµ, we wish to project out the
components of {Aµ} with Σ and Υ. Since TrΣ = 3 and TrΥ = 1, it is convenient to define
projected objects with the number of components equal to the rank of the corresponding
projection. Thus, projections along Σ are more concisely defined by simply projecting with
∂xν/∂ξi. Defining18

ℵi(ξ) =
∂xν

∂ξi
A(σ)
ν (ξ) (III.6.11)

and using (III.6.10), the component of (III.2.1) lying in σ is

δℵai = −∂δΛ
(σ)
a

∂ξi
− gf cabℵciδΛ(σ)

b , (III.6.12)

which is expressed entirely in terms of functions of ξ.
To look at the projection of a four-vector by the rank-one Υ, it is convenient to

convert it into a scalar by dotting it into some arbitrary timelike vector v. Hence the
component of A out of the surface σ is

φ(ξ) = −vµΥνµ(ξ)Aν(x(ξ)) = −uν(ξ)Aν(x(ξ)). (III.6.13)

18We call this ℵi rather than A
(σ)
i to emphasize that the components ℵ1,ℵ2,ℵ3 are defined with respect to

the coördinates ξ1, ξ2, ξ3 lying in the surface σ and are not in general the spatial components A
(σ)
1 , A

(σ)
2 , A

(σ)
3

defined with respect to the Cartesian spatial coördinates x1, x2, x3.



96 CHAPTER III. NON-ABELIAN GAUGE THEORIES

Since Υ has rank one, all possible vectors uν = vµΥνµ determined from different v’s will be
parallel to one another. Since

uν
∂ξi

∂xν
= 0, (III.6.14)

u must be parallel to the normal to the surface σ. (We could choose it to be the normal
itself, but the normalization factor will turn out to be irrelevant in what follows.) Taking
the dot product of (III.2.1) with u, and defining

∂

∂u
= uν

∂

∂xν
, (III.6.15)

we have

δφa =

(
∂δΛa
∂u

)(σ)

− gf cabφcδΛ(σ)
b , (III.6.16)

which cannot be determined from φ and δΛ(σ) alone.

Now, since the variation of G
[
A(σ)σ

∣∣ A(σ′)σ′
)
under a gauge transformation must

vanish, this must also be true for Ψ. That variation is given in terms of the functional
derivatives by

δΨ[A(σ)] =

∫
d3ξ
√
h
DΨ
DAµ

δAµ =

∫
d3ξ
√
h

(
DΨ
DA(σ)

µ

ΣνµδA
(σ)
ν +

DΨ
DA(σ)

µ

ΥνµδA
(σ)
ν

)
. (III.6.17)

In general, Σ and Υ will depend on the coördinate ξ, but they will still commute with the
gauge transformation δ and the functional differentiation D. Put otherwise, the same amount

of information is included in ({ℵi}, φ) as in {A(σ)
µ } ≡

(
A(σ), ϕ(σ)

)
, so that Ψ may be viewed

as a functional of ℵ and φ, in which case (III.6.17) becomes

δΨ[ℵ, φ] =
∫
d3ξ
√
h

(DΨ
Dℵi

δℵi +
DΨ
Dφ δφ

)

=

∫
d3ξ
√
h

[
δΛ(σ)

a gf cab

(
ℵci
DΨ
Dℵbi

+ φc
DΨ
Dφb

)
− ∂δΛ

(σ)
a

∂ξi
DΨ
Dℵai

+

(
∂δΛa
∂u

)(σ) DΨ
Dφa

]
. (III.6.18)

Integrating the second term by parts and discarding the term at spatial infinity gives

δΨ[ℵ, φ] =
∫
d3ξ
√
h

{
δΛ(σ)

a

[
gf cabℵci

DΨ
Dℵbi

+ gf cabφ
c DΨ
Dφb +

1√
h

∂

∂ξi

(√
h
DΨ
Dℵai

)]

+

(
∂δΛa
∂u

)(σ) DΨ
Dφa

}
.

(III.6.19)

For this to vanish for arbitrary δΛ(x), the coefficients of δΛ(σ)(ξ) and (∂uδΛ)
(σ)(ξ) must
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vanish separately. This leads to the generalization of (III.2.18):

D
DφaΨ[ℵ, φ;σ) = 0 (III.6.20a)

(
δab

1√
h

∂

∂ξi

√
h+ gf cabℵci

) D
Dℵbi

Ψ[ℵ, φ;σ) = 0. (III.6.20b)

Recognizing the form of the geometric “covariant divergence” on a curved manifold, we see
that the general conditions are

D
DφΨ[ℵ, φ;σ) = 0 (III.6.21a)

Di
D
Dℵi

Ψ[ℵ, φ;σ) = 0, (III.6.21b)

where Di is the “covariant” gradient in both the gauge and geometric senses of the word:

(Diζ
j)a =

∂ζja
∂ξi

+ Γjikζ
k
a + gf cabℵciζjb , (III.6.22)

Γjik =
hjℓ

2

(
∂hℓi
∂ξk

+
∂hkℓ
∂ξi

− ∂hik
∂ξℓ

)
. (III.6.22a)

For the case of σ a surface of constant time, (III.6.21) reduces to (III.2.18).
So, if the initial and final “times” are generalized to arbitrary spacelike surfaces, the

conditions (III.6.21) obeyed by the initial and final wave functionals do not truly break Lorentz

invariance, since they depend only on the surfaces on which the states are attached, and not

on any absolute time direction. Thus the entire theory can be formulated in a manifestly

Lorentz invariant way, at least formally. With arbitrary initial and final surfaces, any lattice
realization of the path integrals in (III.6.3) will in general involve a non-Cartesian lattice.
There are doubtless difficulties in defining such integrals, but they are beyond the scope of
the present work.

III.7 Conclusions

In this chapter, I have developed and examined the sum-over-histories formulation
of generalized quantum mechanics for a non-Abelian gauge theory in the absence of matter,
which in addition to its inherent interest can be viewed as a toy model for Einstein’s general
relativity. The path integrals have been explicitly defined via an infinitesimal lattice, and
shown to be gauge invariant.

The most general form of the theory allows any set of gauge invariant phase space
alternatives to be assigned a decoherence functional. Restricting the alternatives to the phase
space implementations of the gauge electric and magnetic fields and the covariant derivative
gives the “physical phase space formulation”. If instead only gauge invariant configuration
space alternatives are considered, we obtain a different subset of possible coarse grainings.
This theory is formally Lorentz-invariant as well. A further restriction to coarse grainings
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involving the configuration space implementations of gauge electric and magnetic fields and
covariant derivative gives the “physical configuration space formulation”.

We have shown that the physical phase space formulation agrees with a reduced
phase space canonical operator (or, as it is known in other works including [24], “ADM”)
formulation, so long as the coarse grainings did not involve time derivatives. In particular,
the non-Abelian Gauss’s law constraint D · π = 0 is always satisfied.

The physical configuration space formulation behaves slightly differently. One for-
mally defined quantity which roughly corresponds to the longitudinal electric field EL from
E&M was shown to behave in the same way as EL did in the Abelian theory. I.e., coarse
grainings by this quantity which decohere predict that it vanishes. However, if one coarse
grains by more complicated quantities related to the configuration space constraint −D ·E,
that may not be so. In E&M, we have explicitly shown that for suitable initial conditions,

coarse grainings by one such quantity {g[B(ti)]
∣∣〈EL〉

∣∣2} decohere and predict non-zero prob-
abilities for the quantity not to vanish.

Despite the disagreement between the physical configuration space implementation
and reduced phase space operator quantization, the sum-over-histories formulation is still
attractive, since it can be expressed in a manifestly Lorentz-invariant form. On the other
hand, the operator theory gives special consideration to the time direction by singling out
the constraint, which is just the time component of the equations of motion DµG

µν = 0, to
be identically satisfied.

Since the disagreement between the sum-over-histories theory and a natural exten-
sion of the operator theory comes about when the coarse graining involves quantities averaged
over a spacetime region, as opposed to the usual quantum mechanical expressions involving
alternatives defined at a single moment of time, perhaps the sum-over-histories and reduced
phase space methods should be seen as different generalizations of the previously tested for-
mulations (in which the quantity considered here is not accessible). The Lorentz invariance
of the sum-over-histories method then makes it the preferred generalization in light of the
potential application to quantum gravity, as it takes one more step towards eliminating the
special role of time in the theory.

There is also some question as to whether one could construct a physical apparatus
to measure the involved quantity by which we coarse grained in section III.5.4; on a practical
level, the fields are not directly measurable, but only accessible through their interactions
with charged particles. It is conceivable that the differences between the sum-over-histories
and operator formalisms are undetectable in their application to QED and QCD. However,
it is reasonable to expect that the issues raised by the discrepancy between them will be
relevant to a quantization of GR. Is enforcement of the constraints more fundamental than
manifest diffeomorphism (here Lorentz) invariance, or should we only expect the constraints
to be satisfied when the class of alternatives considered singles out the corresponding time
direction in its choice of surfaces?
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III.A Appendix: Calculation of class operator for sec-

tion III.5.3

In this appendix we calculate

C∆ =

{
0∏

M=J

∫
DEM exp

[
iδt

∫
d3x

1

2

(
EM
)2]
}
e∆[E ], (III.5.24)

where

e∆[E ] =
∫

∆

d2nfδ(f − 〈E〉) (III.5.26)

describes the coarse graining by values of the mode average

〈E〉 = 1

Ω

∫

Ω

dt d3k Ek(t) =
1

Ω

∑

M∈Ω

δt

∫

Ω

d3k EMk . (III.5.27)

While E(x) is a real quantity, the Fourier transform

EMk =

∫
d3x

(2π)3/2
e−ik·xEM (x) (III.5.28)

is complex but constrained to obey E∗k = E−k. Integrating over the independent degrees of
freedom in Fourier space necessitates the development of more notation. Letting a superscript
of R or I indicate the real or imaginary part, respectively, of a complex number, and using
the Jacobian determinant calculated in appendix III.B for the discrete Fourier transform, the
path integral measure is (using the infinite numerical constant Ξ defined in appendix III.B)

DEM =
∏

a,x

NAdEMa (x) =
∏

a,x

NAdEMR
a (x)dEMI

a (x)δ
(((
EMI
a (x)

)))

=
∏

a

(∏

k

NA
δ3k

δ3x
dEMR
a,k dEMI

a,k

)
Ξ
∏1/2

k

δ3x

δ3k
δ
(
EMR
a,k − EMR

a,−k

)
δ
(
EMI
a,k + EMI

a,−k

)
,

(III.A.1)

where the
∏1/2 means we are only taking the product over half the modes (leaving out the

redundant ones, whose spatial frequency is minus the spatial frequency of a mode already

counted), so that
∏

x f
R(x) and

∏1/2
k fR

k f
I
k each have the same number of factors. The factor
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in
∏1/2

for the zero mode19 is understood to be

(
δ3x

δ3k

)1/2

δ(EMI
a,0 ). (III.A.1a)

We can use the delta functions to perform the integrals over half of the Fourier components
so that

DEM =
∏

a

Ξ
∏1/2

k

N2
A

δ3k

δ3x
dEMR
a,k dEMI

a,k = Ξn
∏1/2

k

(
N2
A

δ3k

δ3x

)n
dnEMR

k dnEMI
k (III.A.2)

with the factor for the zero mode understood to be
(
N2
A

δ3k

δ3x

)n/2
dnEMR

0 . (III.A.2a)

The relevant part of the Lagrangian is

1

2

∫
d3x
[
EM (x)

]2
=

1

2

∫
d3x
∣∣EM (x)

∣∣2 =
1

2

∫
d3k
∣∣EMk

∣∣2 =
∑1/2

k

δ3k
∣∣EMk

∣∣2 ; (III.A.3)

defining ω = δtδ3k, we have

C∆ =

(((
0∏

M=J

Ξn
∏1/2

k

(
N2
A

δ3k

δ3x

)n ∫
dnEMR

k dnEMI
k exp

{
iω
[(
EMR
k

)2
+
(
EMI
k

)2]}
)))
e∆[E ].

(III.A.4)
If we use λ as a mode label, combining M and k,

e∆[E ] =
∫

∆

dnfRdnf Iδn
(
fR − ω

Ω

∑

λ∈Ω

ERλ
)
δn
(
f I − ω

Ω

∑

λ∈Ω

E Iλ
)

=

∫

∆

d2nfδ2n
(
f − ω

Ω

∑

λ∈Ω

Eλ
)

(III.A.5)
and

C∆ =

(((
Ξn(J+1)

∏

λ

(
N2
A

δ3x

δ3k

)n ∫
dnERλ dnE Iλ exp

{
iω
[(
ERλ
)2

+
(
E Iλ
)2]}

)))
e∆[E ]. (III.A.6)

We can factor the product in (III.A.6) into a product over modes in Ω and one over modes
not in Ω. The latter is a constant which is the same for all alternatives {c∆}:

K =

(((
Ξn(J+1)

∏

λ/∈Ω

(
N2
A

δ3x

δ3k

)n ∫
dnERλ dnE Iλ exp

{
iω
[(
ERλ
)2

+
(
E Iλ
)2]}

)))
, (III.A.7)

19There will typically also be modes on the boundary of spatial frequency space which are identified with
the corresponding modes on the opposite boundary, and so that for these k’s Ek = E−k as with the zero
mode k = 0. For example, in the discrete Fourier transform on a one-dimensional lattice [47] with an even
number N of points, the modes of frequency 1/2N and −1/2N (the Nyquist critical frequency and its image)
are identified, so the situation is analogous to that of the zero mode. The identification, when combined with
the condition E∗

k
= E−k, requires that the Fourier components on the boundary be real. The boundary is not

a region of interest to us in spatial frequency space, and we assume that the prescription for those factors is
similar to the one for the zero mode.
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which leaves

C∆ =K
((( ∏

λ∈Ω

(
N2
A

δ3x

δ3k

)n ∫
dnERλ dnE Iλ exp

{
iω
[(
ERλ
)2

+
(
E Iλ
)2]}

)))

×
∫

∆

d2nf δ2n
(
f − ω

Ω

∑

λ∈Ω

Eλ
)
.

(III.A.8)

If we define N =
∑

λ∈Ω 1 to be the number of modes in Ω, and write all the modes of E in
Ω as a 2N -component column vector:

E =

(
ERλ
E Iλ

)
, (III.A.9)

we have

C∆ = K
[∏

λ∈Ω

(
N2
A

δ3x

δ3k

)n ∫
dnERλ dnE Iλ

]
eiωE

2

∫

∆

d2nf δ2n
(
f − ω

Ω

∑

λ∈Ω

Eλ
)
. (III.A.10)

We define a column vector Υ to be the discrete Fourier transform of E :

Υ =

(
ΥR
wy

ΥI
wy

)
=

(
1
2

1
2

1
2i − 1

2i

)(
ω
Ωe

iy·k+iwt 0
0 ω

Ωe
−iy·k−iwt

)(
1 i
1 −i

)(
ERtk
E Itk

)
=ME .

(III.A.11)
[This is a rigorous version of the traditional treatment of the complex Υ and Υ∗ as indepen-
dent variables; the middle matrix of the product of three is the one which would be used to

convert the column vector
(

Etk

E∗
tk

)
to
(

Υwy

Υ∗
wy

)
.] The zero components of Υ are

Υ00 =
ω

Ω

∑

λ∈Ω

Eλ = 〈E〉. (III.A.12)

Since M is a real matrix which is the product of three matrices, each of which is
proportional to a unitary matrix, it must be proportional to an orthogonal (i.e., real and
unitary) matrixM. The calculation in appendix III.B yields

detM = N−N = (detM)(N−1/2)2N , (III.A.13)

so we have M =M/
√
N . Thus

Υ2 = ETRMTRME =
ETRMTRME

N
=
E2
N
, (III.A.14)
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so ωE2 = NωΥ2 = ΩΥ2 and

C∆ =K
[∏

wy

(
N2
A

δ3x

δ3k

)n ∫
NdnΥR

wyd
nΥI

wy

]
eiΩΥ2

∫

∆

d2nf δ2n(f −Υ00)

=K
(((∏

wy

(
N2
A

δ3x

δ3k

)n ∫
NdnΥR

wyd
nΥI

wy exp
{
iΩ
[(
ΥR
wy

)2
+
(
ΥI
wy

)2]}
)))

×
∫

∆

d2nf δ2n(f −Υ00).

(III.A.15)

Factoring all the {Υwy} except the zero mode into the constant, and using the delta
function to do the Υ00 integrals, we have

C∆ = K′
∫

∆

d2nf eiΩ|f |2 . (III.A.16)

III.B Appendix: Calculation of Jacobian determinants

for discrete Fourier transforms

Given a complex function f(x) of aD dimensional variable x = {xα|α = 1, 2, . . .D},
if we define f only on a spatial lattice with Nα lattice points in the α direction (and thus∏D
α=1Nα ≡ N total lattice points), we have a vector

f =

(
fR
x

f I
x

)
(III.B.1)

with 2N real components. If we take the Fourier transform (see [47] for a general treatment
of the discrete Fourier transform)

Fk =
∑

x

e∓ik·xfx, (III.B.2)

there is a corresponding matrix transformation20 on R2N :

(
FR
k

F I
k

)(
1
2

1
2

1
2i − 1

2i

)(
exp(∓i∑α kαxα) 0

0 exp(±i∑α kαxα)

)(
1 i
1 −i

)(
fR
x

f I
x

)
(III.B.3)

or
F =Mf. (III.B.3′)

The Jacobian of this transformation is given by detM . Since the first and third of the three
matrices of which M is a product are inverses of each other and the second is block diagonal,

20As with (III.A.11), this treatment is the more careful analog of treating fx and f∗
x as independent

variables.
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we have

det
2N×2N

M = det
N×N

e∓ik·x det
N×N

e±ik·x = det
N×N

(∑

k

e∓ix·ke±ik·y
)

= det
N×N

(Nδxy) = NN .

(III.B.4)
To apply this to the transformations in section III.5.3, we need to take into account

the normalization constants. In the discrete case, (III.5.28) becomes

EMa,k =
∑

x

δ3x

(2π)3/2
e−ik·xEMa (x) (III.B.5)

and the Jacobian is

NN

(
δ3x

(2π)3/2

)2N

. (III.B.6)

Now, the relationship between δ3x, the number of spatial lattice sites N , and the lattice
spacing δ3k in spatial frequency can be deduced by geometric arguments, but the simplest
method is to note that

EMa (x) =
∑

k

δ3k

(2π)3/2
eix·kEMa,k (III.B.7)

and hence

(
EMR
a (x)
EMI
a (x)

)
=

(
1
2

1
2

1
2i − 1

2i

)( δ3k
(2π)3/2

eix·k 0

0 δ3k
(2π)3/2

e−ix·k

)

×
(

δ3x
(2π)3/2

e−ik·y 0

0 δ3x
(2π)3/2

eik·y

)(
1 i
1 −i

)(
EMR
a (y)
EMI
a (y)

)
(III.B.8)

Taking the determinant, we find

1 =

(
δ3k

(2π)3/2

)2N

NN

(
δ3x

(2π)3/2

)2N

NN (III.B.9)

or

N =
(2π)3

δ3kδ3x
. (III.B.10)

Substituting into (III.B.6), we see that the Jacobian is

(
(2π)3

δ3kδ3x

)N (
δ3x

(2π)3/2

)2N

=

(
δ3x

δ3k

)N
(III.B.11)

so that

∏

x

dEMR
a (x)dEMI

a (x) =

(
δ3k

δ3x

)N∏

k

dEMR
a,k dEMI

a,k =
∏

k

(
δ3k

δ3x

)
dEMR
a,k dEMI

a,k , (III.B.12)
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which is the correct factor for (III.A.1).

Equation (III.A.1) also involves the Jacobian for the transformation of the delta
functions ∏

x

δ
(((
EMI
a (x)

)))
(III.B.13)

into
∏1/2

k

δ
(
EMR
a,k − EMR

a,−k

)
δ
(
EMI
a,k + EMI

a,−k

)
. (III.B.14)

To determine that, define F±
k = Fk ± F−k and observe that

∏

x

dfR
x df

I
x = NN

∏

k

dFR
k dF

I
k = NN

∏1/2

k

dFR
k dF

R
−kdF

I
kdF

I
−k

= NN
∏1/2

k

dFR+
k dFR−

k

2

dF I+
k dF I−

k

2
,

(III.B.15)

so
∏

x

δ(fR
x )δ(f

I
x) = N−N

∏1/2

k

2δ(FR+
k )δ(FR−

k )2δ(F I+
k )δ(F I−

k ). (III.B.16)

We assume by symmetry that when we factor the Jacobian splits evenly:

∏

x

δ(fR
x ) = N−N/2

∏1/2

k

2δ(FR+
k )δ(F I−

k ) (III.B.17a)

∏

x

δ(f I
x) = N−N/2

∏1/2

k

2δ(FR−
k )δ(F I+

k ); (III.B.17b)

this means that

∏

x

δ
(((
EMI
a (x)

)))
= Ξ

∏1/2

k

(
δ3x

δ3k

)
δ
(
EMR
a,k − EMR

a,−k

)
δ
(
EMI
a,k + EMI

a,−k

)
. (III.B.18)

Ξ is not quite equal to 2N/2 because the analysis above does not go through for the zero mode
and some modes on the boundary (see footnote 19, page 100) which are identified with their
images. In those cases, the analysis produces the same Jacobian, only without the factor of
2. At any rate, Ξ is a constant, and its precise value is unimportant.

The determinant of the transformation (III.A.11) is even more straightforward.
There the number of modes is just N = Ω

ω , and the determinant is thus

(ω
Ω

)2N
NN = N−N . (III.B.19)
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III.C Appendix: Calculation of the decoherence func-

tional for section III.5.4 in the presence of a Gaus-

sian initial state

Here we calculate the decoherence functional (III.5.48) for an initial state where
p(b) [cf. (III.5.46)] is a Gaussian in B = 1

b :

p(B−1) = AλΘ(B − λ)e−B2/2σ2

. (III.C.1)

Then (III.5.48a) becomes

G(y) ∝
∫ ∞

λ

dB eiΩyBe−B
2/2σ2

= Λ1(y) + e−(Ωσy)2/2

∫ ∞

0

dBe−(B−iΩσ2y)2/2σ2

, (III.C.2)

where

Λ1(y) = −
∫ λ

0

dB e−B
2/2σ2

eiΩyB (III.C.3)

satisfies
|Λ1(y)| < λ. (III.C.4)

The second term in (III.C.2) can be massaged by deformation of contour to give

G(y) ∝
√

2

π

Λ1(y)

σ
+GR(y) + iGI(y), (III.C.5)

where
GR(y) = e−(Ωσy)2/2 (III.C.5a)

and

GI(y) =

√
2

π
Ωσ

∫ y

0

dz e(Ωσ)
2(z2−y2)/2. (III.C.5b)

If we choose the bins to be of a uniform size ∆:

∆J ≡ [J∆, (J + 1)∆), 0 ≤ J ∈ Z, (III.C.6)

we have

ReD(J, J ′) ∝
∫ (J+1)∆

J∆

df

∫ (J′+1)∆

J′∆

df ′e−(Ωσ)2(f−f ′)2/2 +

√
2

π

Λ2(J − J ′,∆)∆2

σ
, (III.C.7)

where

Λ2(J − J ′,∆) = ∆−2

∫ (J+1)∆

J∆

df

∫ (J′+1)∆

J′∆

df ′ ReΛ1(f − f ′) (III.C.8)

again satisfies
|Λ2(J − J ′,∆)| < λ. (III.C.9)
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f

f '
2∆ 3∆

∆

2∆

3∆

±[(f-f ')-(J-J ')∆]<0

±[(f-f ')-(J-J ')∆]>0
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Figure III.2: The regions of integration for D±(|∆J |). Because of the exponential dropoff in
ReG(f−f ′) as one moves towards larger |f − f ′|, D+(|∆J |) is reduced fromD+(0) by a factor

of e−(Ωσ∆)2(∆J)2/2, and D−(|∆J |) is reduced from D−(1) by a factor of e−(Ωσ∆)2(∆J−1)2/2.

Making a suitable change of variables and factoring out ∆2, we obtain

ReD(J, J ′) ∝ D+(|J − J ′|) +D−(|J − J ′|) +
√

2

π

Λ2(J − J ′,∆)

σ
, (III.C.10)

where D± is the contribution to the double integral from ±[f − f ′− (J −J ′)∆](J −J ′) > 0:

D±(∆J) =

∫ 1

0

dη (1 − η) exp[−(Ωσ∆)2(∆J ± η)2/2] (III.C.10a)

(Fig. III.2). Now,

D+(∆J) ≤ e−(Ωσ∆)2(∆J)2/2

∫ 1

0

dη (1 − η)e−(ηΩσ∆)2/2 = e−(Ωσ∆)2(∆J)2/2D+(0). (III.C.11)
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From the definition (III.C.10a) it is evident that D−(0) = D+(0). For ∆J ≥ 1,

D−(∆J) =

∫ 1

0

dη η exp{−(Ωσ∆)2[(∆J−1)+η]2/2} ≤ e−(Ωσ∆)2(∆J−1)2/2D−(1). (III.C.12)

Combining these results, we see21

ReD(J +∆J, J)

D(J, J)

≤ e−(Ωσ∆)2|∆J|2/2D+(0) + e−(Ωσ∆)2(|∆J|−1)2/2D−(1) +
√
2/πΛ2(∆J,∆)/σ

2D+(0) +
√
2/πΛ2(∆J,∆)/σ

. (III.C.13)

So we have reduced the question of whether we have weak decoherence [|ReD(J +∆J)| ≪
D(J, J) for ∆J 6= 0] to a calculation of D+(0) and D−(1). It is straightforward to show

D−(1) =
1− e−(Ωσ∆)2/2

(Ωσ∆)2
(III.C.14)

and

D+(0) =

√
π/2

Ωσ∆
erf

(
Ωσ∆√

2

)
−D−(1), (III.C.15)

where erf z is the error function erf z = 2√
π

∫ z
0 e

−t2dt, which satisfies erf(∞) = 1 and erf z ≥
1− e−z2 . Thus

D+(0) ≥
√
π

2

1− e−(Ωσ∆)2/2

Ωσ∆
− 1− e−(Ωσ∆)2/2

(Ωσ∆)2
=
(
1− e−(Ωσ∆)2/2

) Ωσ∆
√
π/2− 1

(Ωσ∆)2
.

(III.C.16)

This means that if the cutoff λ . σe−(Ωσ∆)2/2, (III.C.13) becomes, to lowest order in

e−(Ωσ∆)2/2,

ReD(J +∆J, J)

D(J, J)
.

exp[−(Ωσ∆)2(|∆J | − 1)2/2]D−(1)

2D+(0)
+O

(
λ

σ

)

.
exp[−(Ωσ∆)2(|∆J | − 1)2/2]

Ωσ∆
√
2π

+O
(
λ

σ

)
.

(III.C.17)

For large Ωσ∆, the λ-dependent term will not be relevant to the issue of decoherence.

21Recall that D(J, J) is real and positive by (I.3.4-I.3.4b).
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Chapter IV

Modelling the Decoherence of

Spacetime

IV.1 Introduction

In this chapter, I examine a phenomenon known as the decoherence of spacetime, by
which coarse grainings by long-wavelength features of the gravitational field may be made to
decohere by tracing over the short-wavelength modes of the field. This differs from previous
work[26, 27] which used an additional field to obtain decoherence of the gravitational field in
cosmological models, in that the decoherence examined here is be induced in the gravitational
field itself with no external matter field.

This work takes a perturbative approach to the actual quantization of the gravita-
tional field, as described in Sec. IV.3. The field in the sum over histories is expressed as a
background field which solves the Einstein equations, plus a small perturbation. The expan-
sion of the gravitational action in powers of the perturbation gives a second order wave term,
followed by a third order interaction term containing two derivatives. This chapter performs
calculations on the toy model described in Sec. IV.3.3, where the tensor gravitational field is
replaced by a scalar field with a similar action.

Section IV.4 demonstrates the effects of splitting the scalar field into long-wavelength
and short-wavelength parts. The second-order wave propagation terms do not couple the
long-wavelength modes (LWMs) to the short-wavelength modes (SWMs), but the third or-
der interaction terms do, and can be classified by the number of SWM factors: zero, one,
two or three. Temporarily removing the terms with one and three SWM factors leaves an
action whose terms are all quadratic in the SWMs, or independent of them. Thus the trace
over the SWMs can be performed explicitly, and this is done in Sec. IV.5. As described in
Sec. IV.5.4, the perturbative corrections to the decoherence functional can cause elements
which are finite in the non-interacting theory to vanish if the SWMs are in a thermal state
whose temperature is sufficiently high. Then certain terms in the perturbation series can
become large in the high-temperature limit, producing seemingly non-perturbative effects.

In Sec. IV.6 I demonstrate that rëınserting the terms with one and three SWM
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factors into the action has no substantial effect on the result of Sec. IV.5. The terms linear
in the SWMs can be removed by completion of the square to recover the original result. The
terms cubic in the SWMs are examined in a perturbation series, and each term is seen to be
perturbatively finite, even in the high-temperature limit. So, according to the perturbative
analysis, the effect of the cubic terms is to multiply the decoherence functional by a factor
of order unity.

Section IV.7 applies the properties of the decoherence functional found in Sec. IV.5
to a class of practical coarse grainings, and describes some circumstances under which deco-
herence can be expected.

IV.2 Environment-induced decoherence and the influ-

ence phase

Decoherence in most physical systems is caused by a division into the “system” of
interest, and an “environment” about which no information is gathered. In the language of
generalized quantum mechanics, this means that the coarse graining is described by alterna-
tives which refer only to the system variables. (See [12] for further details and a bibliography
of prior work)

To describe this mathematically, we work with the decoherence functional (I.3.15)
specialized to a suitably normalized initial state ρ and a condition of future indifference to
give

D[ϕ1, ϕ2] = ρ[ϕ′
1, ϕ

′
2]δ[ϕ

′′
2 − ϕ′′

1 ]e
i(S[ϕ1]−S[ϕ2]) (IV.2.1)

If we make a division of ϕ into system variables Φ and environment variables φ, split up the
action into a φ-independent piece SΦ[Φ] = S|φ=0 and a piece SE describing the environment
and its interaction with the system:

S[ϕ] = SΦ[Φ] + SE [φ,Φ] (IV.2.2)

and assume that the initial state is the product of uncorrelated states for the system and the
environment:

ρ[ϕ] = ρΦ[Φ
′
1,Φ

′
2]ρφ[φ

′
1, φ

′
2] (IV.2.3)

then the decoherence functional for a coarse-graining which makes no reference to the envi-
ronment variables (but is still fine-grained in the system variables) can be written

D[Φ1,Φ2] =

∫
Dφ1Dφ2D[ϕ1, ϕ2] = ρΦ[Φ

′
1,Φ

′
2]δ[Φ

′′
2 − Φ′′

1 ]e
i(SΦ[Φ1]−SΦ[Φ2]+W [Φ1,Φ2])

(IV.2.4a)
where

eiW [Φ1,Φ2] =

∫
Dφ1Dφ2ρφ[φ′1, φ′2]δ[φ′′2 − φ′′1 ]ei(SE [φ1,Φ1]−SE [φ2,Φ2]). (IV.2.4b)

W [Φ1,Φ2] is called the Feynman-Vernon influence phase[48]; if the influence functional eiW

becomes small for Φ1 6= Φ2, the “off-diagonal” parts of D[Φ1,Φ2] will be suppressed, causing
alternatives defined in terms of Φ to decohere [12].
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IV.3 Perturbative GR and the scalar toy model

The goal of this chapter is to perform the division described in Sec. IV.2 on vacuum
gravity. The idea behind this is that for coarse grainings which deal only with averages over
sufficiently large regions of spacetime, gravity should behave classically, and thus such coarse
grainings should decohere.

Following, once again, the argument of [24] stated in Sec. I.4.5, I will confine at-
tention to a generalized quantum mechanics of general relativity. Problems still remain in
the explicit realization of the formal decoherence functional defined by (I.4.11), however.
Probably the most well-grounded way to provide explicit expressions would be to skeletonize
the metric geometries using the Regge calculus [49]. For the purposes of this dissertation,
however, I will take the simpler approach of expanding the metric about some fixed back-
ground, and taking the metric perturbation to be a tensor field defined on the background
spacetime.

IV.3.1 The abstract index notation

It will be useful to adopt a notation popularized by Wald [14] in which latin indices
a, b, c, . . . are so-called “abstract” spacetime indices which mark the positions of covariant or
contravariant indices when a tensor (and only a tensor, so we do not write the Christoffel
symbols as Γcab) is described in a particular coördinate system. For example, the tensor gab
has the components {gµν}. In this notation, the abstract indices are not to be thought of as
taking particular values, but are part of the notation, like ~a or a for a three-vector.

IV.3.2 Perturbative GR

Given an arbitrary metric gab(1) (not necessarily a solution to the Einstein equa-
tion), we can use a solution gab to the vacuum Einstein equation Rab = 0 to define a family
of metrics

gab(λ) = gab + λγab, (IV.3.1)

where γab = gab(1) − gab. We can expand quantities constructed from gab(λ) [such as the
Ricci tensor Rab(λ)], which are functions of gab and γab, in powers of λ. An expansion of
the Einstein equation to first order in λ (see Sec. 7.5 of [14]) gives a wave equation for γab.
This corresponds to expanding the gravitational action SG = (16πG)−1

∫ √
|g(λ)| d4xR(λ)

to second order. To model the self-interaction of gravity, it is necessary to expand the action
to third order in γab. This is done in Appendix IV.A, and the result is

S =
1

16πG

∫ √
|g| d4x

{
λ2
[
−1

4
(∇cγab)(∇cγab) +

1

2
γabRacbdγ

cd

]

λ3γab
[
1

2
(∇cγda)(∇cγbd) +

1

4
(∇aγdc )(∇bγcd) +

1

2
(∇cγda)(∇dγcb)−Racbdγceγde

]

+O(λ4)
}
. (IV.A.41)
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The terms on the first line describe a free wave equation for a tensor field, while those on
the second line provide a self-interaction.

IV.3.3 The scalar toy model

In the spirit of Chapters II and III, I will consider a toy model which focuses on
some of the features of the action (IV.A.41) and glosses over others. For one thing, I will
assume that the background is (flat) Minkowski spacetime. In a cosmological scenario, this
should be a reasonable assumption if the length scales on the problem do not approach the
Hubble scale cH−1

0 . A more serious simplification is to discard the tensor information in
(IV.A.41) and consider a scalar field ϕ with action

S = −1

2

∫
dD+1x(1 − ℓϕ)(∂µϕ)(∂µϕ). (IV.3.2)

This is the most general action analogous to (IV.A.41) which can be constructed from a
scalar field on a flat background. In 3 + 1 dimensions, D = 3, the coupling constant ℓ
has units of length, and is of the order of ℓp/4

√
π. The combination ℓϕ is dimensionless

and represents the metric perturbation γab, so it should be small relative to unity for the
perturbation theory approach to be valid.

IV.4 Dividing the modes

We want to make a division of the field ϕ appearing in the action

S[ϕ] =

∫ T/2

−T/2
dtL(t) (IV.4.1a)

L(t) =
1

2

∫
dDx(1 − ℓϕ)[ϕ̇2 − (∇ϕ)2] (IV.4.1b)

into long-wavelength modes (LWMs), labelled by Φ, to act as the “system” and short-
wavelength modes (SWMs), labelled by φ, to act as the “environment”. For reasons of
mathematical convenience, I will first make this division only in the spatial directions. First
I reëxpress the lagrangian in terms of the Fourier transform

ϕk(t) =

∫
dDx

(2π)D/2
e−ik·xϕ(x, t); ϕ(x, t) =

∫
dDx

(2π)D/2
eix·kϕk(t) (IV.4.2)

to get

L(t) =
1

2

∫
dDk(|ϕ̇k|2 − k2 |ϕk|2)

− ℓ

2

∫
dDk1d

Dk2d
Dk3

(2π)D/2
δD(k1 + k2 + k3)(ϕk1 ϕ̇k2 ϕ̇k3 + k2 · k3ϕk1ϕk2ϕk3) (IV.4.3)
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For calculational purposes, it is useful to treat the Fourier modes as being defined
on a lattice in momentum space with lattice spacing δk, which will later be taken to zero. We
choose a momentum scale kc at which to divide the modes into LWMs {ΦN} with momenta
qN = Nδk satisfying |qN| < kc and SWMs {φM} with momenta kM = Mδk satisfying
|kM| > kc. The mode labels M and N are both vectors lying in ZD. If we let δDk = (δk)D

and define the long-wavelength sector L = {N | |qN| < kc} and the short-wavelength sector
S = {M | |kM| > kc}, we can approximate the Fourier transform as

ϕk(t) =
∑

N∈L

ΦN(t)δkqN

(δDk)1/2
+
∑

M∈S

φM(t)δkkM

(δDk)1/2

=
∑

N∈L
(δDk)1/2ΦN(t)δD(k− qN) +

∑

M∈S
(δDk)1/2φM(t)δD(k− kM).

(IV.4.4)

The normalization is chosen so that the part of the action quadratic in ϕ becomes

1

2

∫
dDx[ϕ̇2 − (∇ϕ)2] =

1

2

∑

N∈L

(∣∣∣Φ̇N

∣∣∣
2

− q2
N |ΦN|2

)
+

1

2

∑

M∈S

(∣∣∣φ̇M
∣∣∣
2

− k2
M |φM|2

)
.

(IV.4.5)
Taking into account the fact that ϕ(x) is real, which means ϕ−k = ϕ∗

k, or Φ−N = Φ∗
N and

φ−M = φ∗M, we can write any expression using only half of the complex modes, which define
the other half by complex conjugation. We define L/2 and S/2 as arbitrarily chosen halves
of L and S so that {ΦN|N ∈ L/2} and {φM|M ∈ S/2} between them define ϕk. This makes
the noninteracting (ℓ = 0) action

1

2

∫
dDx[ϕ̇2 − (∇ϕ)2] =

∑

N∈L/2

(∣∣∣Φ̇N

∣∣∣
2

− q2
N |ΦN|2

)
+

∑

M∈S/2

(∣∣∣φ̇M
∣∣∣
2

− k2
M |φM|2

)
.

(IV.4.6)
which is the action of a set of uncoupled harmonic oscillators. The interaction terms can be
classified by the number of factors of the “environment” field φ to give1

L[ϕ] = L(φ,Φ) = LΦ(Φ) + L0(φ) + λLφ(φ,Φ) + λLφφ(φ,Φ) + λLφφφ(φ), (IV.4.7)

1I have written the lagrangians as functions, e.g., LΦ(Φ) rather than functionals, since their arguments
are now collections of modes like {ΦN} rather functions of position x, like ϕ(x).
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where λ = ℓ(δDk)1/2

(2π)D/2 is the coupling constant, and

LΦ(Φ) =
∑

N∈L/2

(∣∣∣Φ̇N

∣∣∣
2

− q2
N |ΦN|2

)

− λ

2

∑

N1,N2,N3∈L
δN1+N2+N3,0(ΦN1Φ̇N2Φ̇N3 + qN2 · qN3ΦN1ΦN2ΦN3)

(IV.4.8a)

L0(φ) =
∑

M∈S/2

(∣∣∣φ̇M
∣∣∣
2

− k2
M |φM|2

)
(IV.4.8b)

Lφ(φ,Φ) =−
1

2

∑

M∈S
N1,N2∈L

δM+N1+N2,0[φMΦ̇N1Φ̇N2 + 2φ̇MΦ̇N1ΦN2

+ (2kM + qN1) · qN2φMΦN1ΦN2 ]

(IV.4.8c)

Lφφ(φ,Φ) =−
1

2

∑

M1,M2∈S
N∈L

δM1+M2+N,0[ΦNφ̇M1 φ̇M2 + 2Φ̇Nφ̇M1φM2

+ (2qN + kM1) · kM2ΦNφM1φM2 ]

(IV.4.8d)

Lφφφ(φ) =−
1

2

∑

M1,M2,M3∈S
δM1+M2+M3,0(φM1 φ̇M2 φ̇M3 + kM2 · kM3φM1φM2φM3).

(IV.4.8e)

Under this division of the field ϕ, we can perform the division of the decoherence functional
described by (IV.2.4), with

SE(φ,Φ) = S0[φ] + λSφ[φ,Φ] + λSφφ[φ,Φ] + λSφφφ[φ], (IV.4.9)

IV.5 The quadratic terms

Since the parts of the action defined in (IV.4.8b) and (IV.4.8d) are quadratic in φ,
it would be possible to do the path integrals in (IV.2.4b) explicitly if the action SE included
only those terms. Thus we turn our attention for the time being to the modified influence
functional

eiW0+φφ[Φ1,Φ2] =

∫
Dφ1Dφ2ρφ(φ′1, φ′2)δ(φ′′2 − φ′′1 )ei(S0+φφ[φ1,Φ1]−S0+φφ[φ2,Φ2]). (IV.5.1)
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IV.5.1 A vector expression

The lagrangian L0+φφ can be written, using φ∗M = φ−M, in the suggestive form

L0+φφ(φ,Φ) =L0(φ) + λLφφ(φ,Φ)

=
1

2

∑

M1,M2∈S

{
φ̇∗M1

(δM1M2 − λΦM1−M2)φ̇M2 −
d

dt
(λφ∗M1

Φ̇M1−M2φM2)

− φ∗M1

[
δM1M2k

2
M1
− λ(k2M1M2

ΦM1−M2 + Φ̈M1−M2)
]
φM2





(IV.5.2)

where

k2M1M2
= −qM1−M2 ·k−M1−k−M1 ·kM2−kM2 ·qM1−M2 = k2

M1
+k2

M1
−kM1 ·kM2 (IV.5.3)

and we have extended the definition of Φ slightly to include ΦN = 0 when N /∈ L. We would
like to write (IV.5.2) as a matrix expression in terms of a vector which describes the short-
wavelength modes {φM}. However, the reality conditions φR−M = φRM and φI−M = −φIM,
which make the measure for the integral over independent modes

Dφ ∝
∏

M∈S/2
DφRMDφIM, (IV.5.4)

necessitate some caution. There are several possibilities to consider:

• a complex vector φex with components {φM|M ∈ S}. (It is useful to define the space
of such vectors as CS .) This has the advantage that the lagrangian (IV.5.2) is easily
written in that form,

L0+φφ =
1

2

[
φ̇†exmexφ̇ex − φ†ex̟exφex +

d

dt
(φ†exṁexφex)

]
(IV.5.5)

where mex and ̟ex are hermitian matrices acting on CS with the form

(mex)M1M2 = δM1M2 − λΦM1−M2 (IV.5.6a)

(̟ex)M1M2 = δM1M2k
2
M1
− λ(k2M1M2

ΦM1−M2 + Φ̈M1−M2). (IV.5.6b)

Unfortunately, the components of φex represent twice as many degrees of freedom as
are integrated over in (IV.5.4). This means that a path integral over all the components
would have to include the factor

∏

M∈S/2
δ (φ−M − φ∗M) . (IV.5.7)

This leads one to consider
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• a complex vector φ+ with components {φM|M ∈ S/2}. (We similarly define this space
as CS/2.) This would completely specify the unique modes of φ, but (IV.5.2) is not
conveniently expressed in terms of φ+. To see this, consider the velocity term

1

2

∑

M1,M2∈S
φ̇∗M1

(δM1M2 − λΦM1−M2)φ̇M2

=
1

2

∑

M1,M2∈S/2

[
φ̇∗M1

(δM1M2 − λΦM1−M2)φ̇M2 + φ̇M1(δM1M2 − λΦM2−M1)φ̇
∗
M2

− φ̇∗M1
λΦM1+M2 φ̇

∗
M2
− φ̇M1λΦ

∗
M1+M2

φ̇M2

]
(IV.5.8)

Although the first two terms can be written as
∑

M1,M2∈S/2
φ̇∗M1

(δM1M2 − λΦM1−M2)φ̇M2 = φ†+m+φ+, (IV.5.9)

the last two give

Re


 ∑

M1,M2∈S/2
φ̇M1(δM1M2 − λΦ∗

M1+M2
)φ̇M2 ,


 (IV.5.10)

which cannot be written in terms of the complex vector φ+ and its adjoint φ†+ without
using the transpose φtr+ or the complex conjugate φ∗+. If D = 1, this is not a problem,
since M1,M2 ∈ S/2 implies M1 + M2 /∈ L and hence ΦM1+M2 = 0. However, it is
possible in D > 1 to have M1 +M2 ∈ L even when M1,M2 ∈ S/2, as illustrated in
Fig. IV.1. This leaves

• a real vector φ with components {φRM, φIM|M ∈ S/2} (which lies in the space we define
as RS/2 ⊗ RS/2 = RS/2⊕S/2). This method is basically fool-proof. Given a complex
vector vex ∈ CS and a hermitian matrix Mex [which also obeys (Mex)−M1,−M2 =
(Mex)

∗
M1,M2

], we have

v†exMexvex = (vRex − ivIex)
tr
(MR

ex + iM I
ex)(v

R
ex + ivIex) =

(
vRex
vIex

)tr(
MR

ex −M I
ex

M I
ex MR

ex

)(
vRex
vIex;

)

(IV.5.11)
If we define complex vectors v± = {(vex)±M|M ∈ S/2} in, and matrices2 M± =
{(Mex)M1,±M2 |M1,M2 ∈ S/2} acting on, CS/2, we can write the quantities involving

CS in terms of them as vex =
( v+
v−

)
and Mex =

(
M+ M−

M†
− M∗

+

)
or

MR
ex =

(
MR

+ MR
−

MR
−

tr
MR

+

)
=

(
MR

+ MR
−

MR
− MR

+

)
(IV.5.12a)

M I
ex =

(
M I

+ M I
−

−M I
−
tr −M I

+

)
=

(
M I

+ M I
−

−M I
− −M I

+

)
. (IV.5.12b)

2It is easy to work out that while M+ is hermitian by the hermiticity of Mex, M− is symmetric because
(Mex)M1,−M2

= (Mex)∗−M1,M2
= (Mex)M2,−M1

.
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/2M1

M2

M1+ M2

Figure IV.1: The addition of momenta M1,M2 ∈ S/2 can produce M1 + M2 ∈ L. The
long-wavelength (low-momentum) region L is shaded vertically. The short-wavelength (high-
momentum) region S is shaded diagonally in one direction or the other. The right half of
S, shaded diagonally up and to the right, is S/2. In D > 1, we see that it is possible to
add two “large” momenta on the right side of the origin (M1,M2 ∈ S/2) to get a “small”
momentum (M1 +M2 ∈ L).

The reality condition v−M = v∗M becomes v− = v∗+, so that

(
vRex
vIex

)
=




vR+
vR−
vI+
vI−


 =




vR+
vR+
vI+
−vI+


 =




1 0
1 0
0 1
0 −1



(
vR+
vI+

)
. (IV.5.13)

We can combine this with (IV.5.11) and (IV.5.12) to give

vex
trMexvex =

(
vR+
vI+

)tr(
1 1 0 0
0 0 1 −1

)



MR
+ MR

− −M I
+ −M I

−
MR

− MR
+ M I

− M I
+

M I
+ M I

− MR
+ MR

−
−M I

− −M I
+ MR

− MR
+







1 0
1 0
0 1
0 −1



(
vR+
vI+

)

=2

(
vR+
vI+

)tr(
MR

+ +MR
− −M I

+ +M I
−

M I
+ +M I

− MR
+ −MR

−

)(
vR+
vI+

)
.

(IV.5.14)

This allows us to rewrite (IV.5.5) as

L0+φφ =
1

2

[
φ̇trmφ̇− φtr̟φ+

d

dt
(φtrṁφ)

]
, (IV.5.15)
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where

φ =
√
2

(
φR+
φI+

)
=
√
2

(
{φRM}
{φIM}

)
(IV.5.16)

m =

(
{δM1M2 − λ(ΦR

M1−M2
+ΦR

M1+M2
)} {−λ(−ΦI

M1−M2
+ΦI

M1+M2
)}

{−λ(ΦI
M1−M2

+ΦI
M1+M2

)} {δM1M2 − λ(ΦR
M1−M2

− ΦR
M1+M2

)}

)

(IV.5.17)

̟ =

(
{̟UL

M1M2
} {̟UR

M1M2
}

{̟LL

M1M2
} {̟LR

M1M2
}

)
(IV.5.18)

and

̟UL

M1M2
=δM1M2k

2
M1
− λ(ΦR

M1−M2
k2M1M2

+ΦR
M1+M2

k2M1,−M2
+ Φ̈R

M1−M2
+ Φ̈R

M1+M2
)

(IV.5.18a)

̟UR

M1M2
=− λ(−ΦI

M1−M2
k2M1M2

+ΦI
M1+M2

k2M1,−M2
− Φ̈I

M1−M2
+ Φ̈I

M1+M2
)

(IV.5.18b)

̟LL

M1M2
=− λ(ΦI

M1−M2
k2M1M2

+ΦI
M1+M2

k2M1,−M2
+ Φ̈I

M1−M2
+ Φ̈I

M1+M2
)

(IV.5.18c)

̟LR

M1M2
=δM1M2k

2
M1
− λ(ΦR

M1−M2
k2M1M2

− ΦR
M1+M2

k2M1,−M2
+ Φ̈R

M1−M2
− Φ̈R

M1+M2
);

(IV.5.18d)

φ is a vector in, and m and ̟ are real symmetric matrices acting on, RS/2⊕S/2.

In light of (IV.5.15), the third option is the most useful one. If we choose the normalization
of (IV.5.4) so that

Dφ =
∏

M∈S/2
2DφRMDφIM, (IV.5.19)

The measure Dφ is just the product of the measures corresponding to all the components of
φ.

IV.5.2 The propagator

We now have a workable vector expression for the path integral (IV.5.1):

eiW0+φφ[Φ1,Φ2] =

∫
Dφ1Dφ2ρφ(φ′1, φ′2)δ(φ′′2 − φ′′1 )ei(S0+φφ[φ1,Φ1]−S0+φφ[φ2,Φ2])

=

∫
dφ′1dφ

′
2dφ

′′ρφ(φ
′
1, φ

′
2)K0+φφ(φ

′′|φ′1; Φ1]K∗
0+φφ(φ

′′|φ′2; Φ2]

(IV.5.20)

where

K0+φφ(φ
′′|φ′; Φ] =

∫

φ′′φ′

DφeiS0+φφ[φ,Φ] (IV.5.21)
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is the propagator for the quadratic action. It is useful to write

K0+φφ(φ
′′|φ′; Φ] = e

i
2 (φ

′′trṁ′′φ′′−φ′trṁ′φ′)K

(
φ′′
T

2

∣∣∣∣φ′
T

2

)
(IV.5.22)

where

K(φbtb|φata) =
∫

φbφa

e
i
2

∫ tb
ta
dt[φ̇(t)

tr
m(t)φ(t)−φ(t)tr̟(t)φ(t)] (IV.5.23)

is the propagator for a simple harmonic oscillator with time-dependent matrices m(t) and
̟(t) in place of m and mω2. [The dependence on Φ is now implicit in the time dependence
of m(t) and ̟(t), given by (IV.5.17–IV.5.18).]

This propagator is found in Appendix IV.B to be

K(φbtb|φata)

=
1√

det (2πiC(tb|ta))
exp

[
i

2

(
φb
φa

)tr(
C−1(tb|ta)B(tb|ta) −C−1(tb|ta)
−C−1(tb|ta)tr A(tb|ta)C−1(tb|ta)

)(
φb
φa

)]
,

(IV.B.8′)

where

B(tb|ta) =
∞∑

n=0

(
n∏

k=1

∫ t̃k−1

ta

dtk

∫ tk

ta

dt̃k

)
1∏

k=n

[
−m−1(t̃k)̟(tk)

]
(IV.B.19a)

C(tb|ta) =−
dB(tb|ta)

dtb
̟−1(tb) (IV.B.19b)

A(tb|ta) =−m(ta)
dC(tb|ta)
dta

. (IV.B.19c)

These exact expressions are expanded to first order in λ in Sec. IV.C.1 of Appendix IV.C,
using the values of m(t) and ̟(t) given by (IV.5.17) and (IV.5.18), respectively.

Given the expression (IV.B.8′) for the time-dependent propagator, (IV.5.22) be-
comes

K0+φφ(φ
′′|φ′; Φ] = 1√

det(2πiC[Φ])
exp

[
i

2

(
φ′′

φ′

)tr(
B[Φ] −C[Φ]
−C[Φ]tr A[Φ]

)(
φ′′

φ′

)]
, (IV.5.24)

where

A[Φ] = A

(
T

2

∣∣∣∣−
T

2

)
C
−1

(
T

2

∣∣∣∣−
T

2

)
− ṁ

(
−T

2

)
(IV.5.25a)

B[Φ] = C
−1

(
T

2

∣∣∣∣−
T

2

)
B

(
T

2

∣∣∣∣−
T

2

)
+ ṁ

(
T

2

)
(IV.5.25b)

C[Φ] = C
−1

(
T

2

∣∣∣∣−
T

2

)
. (IV.5.25c)



120 CHAPTER IV. MODELLING THE DECOHERENCE OF SPACETIME

This means that (IV.5.20) becomes

eiW0+φφ[Φ1,Φ2] =

∫
dφ′1dφ

′
2dφ

′′ρφ(φ′1, φ
′
2)√

det(2πC[Φ1]) det(2πC[Φ2])

× exp


 i
2



φ′′

φ′1
φ′2




tr

B[Φ1]−B[Φ2] −C[Φ1] C[Φ2]

−C[Φ1]
tr

A[Φ1] 0

C[Φ2]
tr 0 −A[Φ2]





φ′′

φ′1
φ′2




 (IV.5.26)

IV.5.3 The initial state

For the initial state ρφ of the SWMs I choose a thermal state with temperature

1/kBβ. The density matrix for this is given as an operator by ρ̂ ∝ e−βĤ . Using the full
hamiltonian corresponding to the action (IV.4.9) would couple the short- and long-wavelength
modes, preventing the separation (IV.2.3) of the initial state. So instead I use the zero-order
non-interacting action S0, which gives the thermal density matrix for a simple harmonic

oscillator of frequency Ω0 =
(

diag{kM} 0
0 diag{kM}

)
and unit mass:

ρφ(φ
′
1, φ

′
2) ∝ exp

[
−1

2

(
φ′1
φ′2

)tr
(

Ω0

tanhΩ0β
− Ω0

sinhΩ0β

− Ω0

sinhΩ0β
Ω0

tanhΩ0β

)(
φ′1
φ′2

)]
(IV.5.27)

Equation (IV.5.24) is simplified if we express it in terms of φ′ = φ′
1+φ

′
2

2 and ∆φ′ =
φ′1 − φ′2 using (

φ′1
φ′2

)
=

(
1 1
1 −1

)(
φ′

∆φ′/2

)
. (IV.5.28)

Both Ω0

tanhΩ0β
− Ω0

sinhΩ0β
and Ω0

tanhΩ0β
+ Ω0

sinhΩ0β
can be expressed in terms of

V(Ω0) =
2

Ω0

coshΩ0β − 1

sinhΩ0β
=

2

Ω0

sinhΩ0β

coshΩ0β + 1
=

2

Ω0

√
coshΩ0β − 1

coshΩ0β + 1
=

2

Ω0
tanh

Ω0β

2

(IV.5.29)
to give

ρφ(φ
′
1, φ

′
2) ∝ exp

[
−1

2

(
φ′

∆φ′/2

)tr(
Ω2

0V(Ω0) 0
0 V−1(Ω0)

)(
φ′

∆φ′/2

)]
; (IV.5.30)

if we also define

A± =A[Φ1]±A[Φ2] (IV.5.31a)

B± =B[Φ1]±B[Φ2] (IV.5.31b)

C± =C[Φ1]± C[Φ2], (IV.5.31c)
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(IV.5.26) becomes

eiW0+φφ[Φ1,Φ2] ∝
∫

dφ′d∆φ′dφ′′√
det(2πC[Φ1]) det(2πC[Φ2])

exp


−1

2




φ′′

φ′

∆φ′/2




tr

M




φ′′

φ′

∆φ′/2







=

{
det(2πC[Φ1]) det(2πC[Φ2]) det

(M
2π

)}−1/2

(IV.5.32)

where

M =



−iB− iC− iC+
iC−tr Ω2

0V(Ω0)− iA− −iA+

iC+tr −iA+ 4V−1(Ω0)− iA−


 (IV.5.33)

Since the matrix A[Φ] can be expanded (see Sec. IV.C.2 of Appendix IV.C) as A[Φ] = A0 +
λA1[Φ]+O(λ2), where A1[Φ] is a linear function of its argument, we have A+ = 2A0+O(λ)
and A− = λA1[∆Φ] + O(λ2), with similar expressions holding for B± and C±. This means
the sub-matrices ofM are of the following order:

M =



O(λ) O(λ) O(1)
O(λ) Ω2

0V(Ω0) +O(λ) O(1)
O(1) O(1) 4V−1(Ω0) +O(λ)


 . (IV.5.34)

Given the relation

4V−1(Ω0) = 2Ω0

√
coshΩ0β + 1

coshΩ0β − 1
≥ 2Ω0 ≥ 2Ω0

√
coshΩ0β − 1

coshΩ0β + 1
= Ω2

0V(Ω0) (IV.5.35)

we see that α = 4V−1(Ω0) − iA− is the largest of the sub-matrices on the diagonal, and is
no smaller than O(1). Thus we partially diagonalizeM about it to get

M̃ =



1 0 −iC+α−1

0 1 iA+α
−1

0 0 1


M




1 0 0
0 1 0

−iα−1C+tr iα−1A+ 1




=



C+α−1C+tr − iB− −C+α−1A+ + iC− 0
−A+α

−1C+tr + iC−tr A+α
−1A+ +Ω2

0V(Ω0)− iA− 0
0 0 α




(IV.5.36)

IV.5.4 Controlling the breakdown of perturbation theory

Before proceeding further, we need to consider more carefully the perturbation
theory approach. If we try to expand the influence functional eiW defined by (IV.2.4b) in
powers of λ, we note that as the zero-order term in SE [φ,Φ] is just S0[φ] [i.e., the “system”
and “environment” are decoupled to zeroth order; cf. (IV.4.9)],
(
eiW [Φ1,Φ2]

)
0
=

∫
Dφ1Dφ2ρφ(φ′1, φ′2)δ(φ′′2 − φ′′1 )ei(S0[φ1]−S0[φ2]) = Tr

[
e−iT Ĥρφe

iT Ĥ
]
= 1.

(IV.5.37)
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Perturbatively, then, we would conclude eiW = 1 + O(λ). The problem is that for the
influence phase to be effective at producing decoherence, we need eiW [Φ1Φ2] ≪ 1 for suf-
ficiently different coarse grainings. This can only be possible if the perturbative analysis
breaks down somehow. I will focus my attention on a scenario where that breakdown is
manageable. If the temperature β−1 is high enough, there will be some modes in S for which
V(k) = 2

k
sinh kβ

cosh kβ+1 → β, and the O(β) terms like C+α−1C+tr may become smaller than O(λ)
terms like B−. At that point, if the O(λ) correction to eiW is also O(β−1), it can cause
perturbation theory to break down. We keep a handle on this breakdown by neglecting O(λ)
terms only when they are not compared to potentially O(β) terms.

IV.5.5 Evaluation of the influence phase

Using the approximation of Sec. IV.5.4, we have

M̃ =

(
C+ V(Ω0)

4 C+tr − iB− −C+ V(Ω0)
4 A+ + iC−

−A+
V(Ω0)

4 C+tr + iC−tr A+
V(Ω0)

4 A+ +Ω2
0V(Ω0)− iA−

)
⊕ 4V−1(Ω0)

=

(
Ω2

0V(Ω0)
sin2 Ω0T

− iλB1[∆Φ] −Ω2
0V(Ω0) cosΩ0T

sin2 Ω0T
+ iλC1[∆Φ]

−Ω2
0V(Ω0) cosΩ0T

sin2 Ω0T
+ iλC1[∆Φ]

tr Ω2
0V(Ω0)

sin2 Ω0T
− iλA1[∆Φ]

)
⊕ 4V−1(Ω0).

(IV.5.38)

Noting that the matrices used to perform the diagonalization in (IV.5.36) have unit deter-
minant, we have

detM = detM̃ = det (4V−1(Ω0)) det(ℵ0 − iλℵ1[∆Φ]) ∝ det
(
1− iλℵ−1/2

0 ℵ1[∆Φ]ℵ−1/2
0

)

(IV.5.39)
where

ℵ0 =
Ω2

0V(Ω0)

sin2 Ω0T

(
1 − cosΩ0T

− cosΩ0T 1

)
and ℵ1[∆Φ] =

(
B1[∆Φ] −C1[∆Φ]

−C1[∆Φ]
tr

A1[∆Φ]

)

(IV.5.40)
Now, eiReW is simply a phase multiplying the decoherence functional (IV.2.4); the

part which can actually make the off-diagonal components of D[Φ1,Φ2] small is e− ImW =∣∣eiW
∣∣. Noting that the factors of detC in (IV.5.32) give, to lowest order in λ, the Φ-

independent values det sinΩ0T
Ω0

, we have

∣∣∣eiW0+φφ[Φ1,Φ2]
∣∣∣ ∝

[
det
(
M†M

)]−1/4 ∝
{
det
(
1 + λ2ℵ−1/2

0 ℵ1[∆Φ]ℵ−1
0 ℵ1[∆Φ]ℵ−1/2

0

)}−1/4

.

(IV.5.41)
The normalization is set by (IV.5.37), and in fact

∣∣∣eiW0+φφ[Φ1,Φ2]
∣∣∣ =

{
det
(
1 + λ2ℵ−1/2

0 ℵ1[∆Φ]ℵ−1
0 ℵ1[∆Φ]ℵ−1/2

0

)}−1/4

. (IV.5.42)

For any positive matrix a2, a straightforward analysis in the diagonal basis shows det(1 +
a2) ≥ 1 + Tr a2, so

∣∣∣eiW0+φφ[Φ1,Φ2]
∣∣∣ ≤

{
1 + Tr

(
λℵ−1

0 ℵ1[∆Φ]
)2}−1/4

. (IV.5.43)
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Using

ℵ−1
0 =

1

Ω2
0V(Ω0)

(
1 cosΩ0T

cosΩ0T 1,

)
(IV.5.44)

we have

ℵ−1
0 ℵ1 =

1

Ω2
0V(Ω0)

(
B1 − cosΩ0TC1

tr −C1 + cosΩ0TA1

cosΩ0TB1 − C1
tr − cosΩ0TC1 +A1

)
(IV.5.45)

so3

Tr
(
λℵ−1

0 ℵ1
)2

= Tr

[
λ

Ω2
0V(Ω0)

(B1 − cosΩ0TC1
tr)

λ

Ω2
0V(Ω0)

(B1 − cosΩ0TC1
tr)

+
λ

Ω2
0V(Ω0)

(−C1 + cosΩ0TA1)
λ

Ω2
0V(Ω0)

(cosΩ0TB1 − C1
tr)

+
λ

Ω2
0V(Ω0)

(cosΩ0TB1 − C1
tr)

λ

Ω2
0V(Ω0)

(−C1 + cosΩ0TA1)

+
λ

Ω2
0V(Ω0)

(− cosΩ0TC1 +A1)
λ

Ω2
0V(Ω0)

(− cosΩ0TC1 +A1)

]

=
∑

M1,M2∈S

λ2

k2M1
V(kM1)k

2
M2
V(kM2)




B1M2M1

A1M2M1

C1
tr
M2M1

C1M2M1




tr

×




1 cos kM1T cos kM2T − coskM2T − cos kM1T
cos kM1T cos kM2T 1 − coskM1T − cos kM2T
− cos kM2T − coskM1T 1 cos kM1T cos kM2T
− cos kM1T − coskM2T cos kM1T cos kM2T 1




×




B1M1M2

A1M1M2

C1M1M2

C1
tr
M1M2


 . (IV.5.46)

If we define the shorthand c± = cos k±T2 and s± = sin k±T
2 (where k± = kM1 ± kM2) and

note that

cos kM1T cos kM2T =
1

2
(cos k+T + cos k−T ) = 1− s2+ − s2− = c2+ + c2− − 1 (IV.5.47a)

sin kM1T sin kM2T =
1

2
(− cos k+T + cos k−T ) = s2+ − s2− = −c2+ + c2− (IV.5.47b)

cos kM1T =cos
k+ + k−

2
T = c+c− − s+s− (IV.5.47c)

cos kM2T =cos
k+ − k−

2
T = c+c− + s+s−, (IV.5.47d)

3For the conversion of the range of the indices of these real matrices from S/2⊕ S/2 to S, see (IV.C.8).
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we can use the result (IV.C.28) from Sec. IV.C.2 of Appendix IV.C, written as



B1M1M2

A1M1M2

C1M1M2

C1
tr
M1M2


 = − kM1kM2

2(s2+ − s2−)




c− −s− c+ −s+
c− s− c+ s+
c+ −s+ c− −s−
c+ s+ c− s−







χ−
σ−
χ+

σ+


 (IV.C.28′)

to say

Tr
(
λℵ−1

0 ℵ1
)2

=
∑

M1,M2∈S

λ2

k2M1
V(kM1)k

2
M2
V(kM2)




B1M1M2

A1M1M2

C1M1M2

C1
tr
M1M2




tr

×




1 1− s2+ − s2− −c+c− − s+s− −c+c− + s+s−
1− s2+ − s2− 1 −c+c− + s+s− −c+c− − s+s−
−c+c− − s+s− −c+c− + s+s− 1 1− s2+ − s2−
−c+c− + s+s− −c+c− − s+s− 1− s2+ − s2− 1







B1M1M2

A1M1M2

C1M1M2

C1
tr
M1M2




=
∑

M1,M2∈S

λ2

V(kM1)V(kM2)4(s
2
+ − s2−)2




χ−
σ−
χ+

σ+




tr


c− c− c+ c+
−s− s− −s+ s+
c+ c+ c− c−
−s+ s+ −s− s−




×




c−(c2− − c2+) s−(s2+ − s2−) c+(c
2
+ − c2−) s+(s

2
− − s2+)

c−(c2− − c2+) s−(s2− − s2+) c+(c
2
+ − c2−) s+(s

2
+ − s2−)

c+(c
2
+ − c2−) s+(s

2
− − s2+) c−(c2− − c2+) s−(s2+ − s2−)

c+(c
2
+ − c2−) s+(s

2
+ − s2−) c−(c2− − c2+) s−(s2− − s2+)







χ−
σ−
χ+

σ+




=
∑

M1,M2∈S

λ2

4V(kM1)V(kM2)

(
χ2
− + σ2

− + χ2
+ + σ2

+

)
(IV.5.48)

where

χ± =

∫ T/2

−T/2
dt[m1(t)∓ n1(t)]M1M2 cos k±t∓ m1(t)M1M2

k±
kM1kM2

sin 2k±t

∣∣∣∣
T/2

−T/2

(IV.C.30a)

and

σ± =

∫ T/2

−T/2
dt[m1(t)∓ n1(t)]M1M2 sin k±t± m1(t)M1M2

k±
kM1kM2

cos 2k±t

∣∣∣∣
T/2

−T/2
.

(IV.C.30b)

Expressing the influence phase in terms of the original field

Now it’s time to take the result in terms of the real matrices m1[Φ] and ̟1[Φ] on
RS/2⊕S/2 defined by (IV.5.17) and (IV.5.18), and reconstruct from them useful expressions
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in terms of {ΦN} and the complex matrices

(m1ex)M1M2 = ΦM1−M2 (IV.5.49a)

(̟1ex)M1M2 = k2M1M2
(m1ex)M1−M2 + (m̈1ex)M1−M2 (IV.5.49b)

on CS defined by (IV.5.6), as well as [cf. (IV.C.21)]

(n1ex)M1M2 =
(̟1ex)M1M2 − (m̈1ex)M1M2 − (m1ex)M1M2(k

2
M1

+ k2M2
)

kM1kM2

=
(m1ex)M1M2(k

2
M1M2

− k2M1
− k2M2

)

kM1kM2

= −(m1ex)M1M2

kM1 · kM2

kM1kM2

=− (m1ex)M1M2 cos θM1M2 .

(IV.5.49c)

These are related to the real matrices m and ̟ on RS (or RS/2⊕S/2) by (IV.5.14). Namely,
for M1,M2 ∈ S/2,

MUL

M1M2
=MM1M2 = (Mex)

R
M1M2

+ (Mex)
R
M1,−M2

(IV.5.50a)

MLR

M1M2
=M−M1,−M2 = (Mex)

R
M1M2

− (Mex)
R
M1,−M2

(IV.5.50b)

MLL

M1M2
=M−M1M2 = (Mex)

I
M1M2

+ (Mex)
I
M1,−M2

(IV.5.50c)

MUR

M1M2
=MM1,−M2 = −(Mex)

I
M1M2

+ (Mex)
I
M1,−M2

. (IV.5.50d)

Since

∑

M1,M2∈S
(MM1M2)

2

= 2
∑

M1,M2∈S/2

{[
(Mex)

R
M1M2

]2
+
[
(Mex)

R
M1,−M2

]2
+
[
(Mex)

I
M1M2

]2
+
[
(Mex)

I
M1,−M2

]2}

=
∑

M1,M2∈S
|MM1M2 |2 , (IV.5.51)
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we can use (IV.5.49a) and (IV.5.49c), along with
∣∣∑

i αiβ
R
i

∣∣2 +
∣∣∑

i αiβ
I
i

∣∣2 = 1
2

(
|∑i αiβi|

2

+ |∑i αiβ
∗
i |2
)
, to write

Tr(λℵ−1
0 ℵ1)2 =

∑

M1,M2∈S

λ2

4V(kM1)V(kM2)

×
{∣∣∣∣∣sin

2 θM1M2

2

∫ T/2

−T/2
dt∆Φ(t)M1−M2e

ik−t − i k−
kM1kM2

[
ei2k−t∆Φ(t)M1−M2

]T/2
−T/2

∣∣∣∣∣

2

+

∣∣∣∣∣sin
2 θM1M2

2

∫ T/2

−T/2
dt∆Φ(t)M1−M2e

−ik−t + i
k−

kM1kM2

[
e−i2k−t∆Φ(t)M1−M2

]T/2
−T/2

∣∣∣∣∣

2

+

∣∣∣∣∣cos
2 θM1M2

2

∫ T/2

−T/2
dt∆Φ(t)M1−M2e

ik+t + i
k+

kM1kM2

[
ei2k+t∆Φ(t)M1−M2

]T/2
−T/2

∣∣∣∣∣

2

+

∣∣∣∣∣cos
2 θM1M2

2

∫ T/2

−T/2
dt∆Φ(t)M1−M2e

−ik+t − i k+
kM1kM2

[
e−i2k+t∆Φ(t)M1−M2

]T/2
−T/2

∣∣∣∣∣

2}
.

(IV.5.52)

This can be returned to continuum form by using ΦN = ϕqN
(δDk)1/2Θ(kc − qN) and λ =

ℓ(δDk)1/2

(2π)D/2 to give

Tr(λℵ−1
0 ℵ1)2 =

∫

k1,k2>kc

dDk1d
Dk2Θ(kc − q)

4(2π)DV(k1)V(k2)

×
{∣∣∣∣∣sin

2 θk1k2

2

∫ T/2

−T/2
dtℓ∆ϕq(t)e

ik−t − i k−
k1k2

[
ei2k−tℓ∆ϕq(t)

]T/2
−T/2

∣∣∣∣∣

2

+

∣∣∣∣∣sin
2 θk1k2

2

∫ T/2

−T/2
dtℓ∆ϕq(t)e

−ik−t + i
k−
k1k2

[
e−i2k−tℓ∆ϕq(t)

]T/2
−T/2

∣∣∣∣∣

2

+

∣∣∣∣∣cos
2 θk1k2

2

∫ T/2

−T/2
dtℓ∆ϕq(t)e

ik+t + i
k+
k1k2

[
ei2k+tℓ∆ϕq(t)

]T/2
−T/2

∣∣∣∣∣

2

+

∣∣∣∣∣cos
2 θk1k2

2

∫ T/2

−T/2
dtℓ∆ϕq(t)e

−ik+t − i k+
k1k2

[
e−i2k+tℓ∆ϕq(t)

]T/2
−T/2

∣∣∣∣∣

2}
,

(IV.5.53)

where now q = k1 − k2 and k± = k1 ± k2.

Specializing to D=3

If there are three spatial dimensions, the integration in (IV.5.53) is over the six com-
ponents of k1 and k2. The integrand, however, is expressed in terms of the three components
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of q and the two amplitudes k1 and k2 (or equivalently, k±). There is also a dependence on
cos θk1k2 = k1·k2

k1k2
, but that can be expressed in terms of the other five variables by

q2 = k21 + k22 − 2k1k2 cos θk1k2 . (IV.5.54)

To effect the change of variables from {k1,k2} to {q, k+, k−}, we first let k = k1+k2

2 and
transform

d3k1d
3k2 = d3qd3k = d3qk

2
dkdµdφ (IV.5.55)

where θ = cos−1 µ and φ are the polar angles of k relative to q (i.e., k · q = kqµ). The
integrand on (IV.5.53) is independent of the azimuthal angle φ. We want to transform the
coördinates k and µ to k+ and k− for a given q. We can find k by

k
2
=

(
k1 + k2

2

)2

=
k21 + k22 + 2k1k2 cos θk1k2

4
=
k21 + k22 + (k21 + k22 − q2)

4
=
k21 + k22

2
− q2

4
;

(IV.5.56)
to obtain a usable expression for µ, we consider

k21 =
(
k+

q

2

)2
= k

2
+ kqµ+

q2

4
(IV.5.57a)

k22 =
(
k− q

2

)2
= k

2 − kqµ+
q2

4
, (IV.5.57b)

so

µ =
k21 − k22
2kq

. (IV.5.58)

We can convert these into expressions involving k± by using

k21 + k22 =
k2+ + k2−

2
, k1k2 =

k2+ − k2−
4

, k21 − k22 = k+k−, (IV.5.59)

to give

µ =
k+k−

2kq
(IV.5.60a)

k
2
=
k2+ + k2− − q2

4
. (IV.5.60b)

The Jacobian matrix corresponding to this transformation is

(
dk
dµ

)
= J

(
dk+
dk−

)
=

( k+
4k

k−
4k

k−
2kq
− k+k−

2k
2
q

(
k+
4k

)
k+
2kq
− k+k−

2k
2
q

(
k−
4k

)
)(

dk+
dk−

)
, (IV.5.61)

so the Jacobian determinant is

|detJ | = k2+ − k2−
8k

2
q

(IV.5.62)
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(since k2+ − k2− = 4k1k2 > 0). Thus the measure becomes

d3k1d
3k2 = d3qk

2
dkdµdφ =

(k2+ − k2−)d3qdk+dk−dφ
8q

; (IV.5.63)

since the integrand is independent of φ, we will assume that integral has already been per-
formed and replace it with 2π.

Now that we’ve converted the measure, we want to consider the limits of integration
on the five variables {q, k+, k−}. There are two sources for this limit. First, there are the
inherent geometrical restrictions involved in what values k± take as k1 and k2 each range
over R3. Second, the conditions k1, k2 ≥ kc ≥ q should then be added. We consider the first
set of constraints on the region of integration first. The condition of interest is

1 ≥ cos θk1k2 ≥ −1; (IV.5.64)

since

cos θk1k2 =
k21 + k22 − q2

2k1k2
=
k2+ + k2− − 2q2

k2+ − k2−
, (IV.5.65)

this means

k2+ + k2− − 2q2 ≤ k2+ − k2− ≥ 2q2 − k2+ − k2−, (IV.5.66)

from which we get the restrictions

k2− ≤ q2 ≤ k2+. (IV.5.67)

By its construction, k+ is inherently positive, but k− is not. This makes the geometric limits
of integration

∫
d3k1d

3k2 = 2π

∫ ∞

0

dq

∫∫
q2d2Ωq̂

∫ ∞

q

dk+

∫ q

−q
dk−

k2+ − k2−
8q

. (IV.5.68)

Moving to the second set of restrictions, q ≤ kc is easy to add, while the conditions

k+ + k− =2k1 ≥ 2kc (IV.5.69a)

k+ − k− =2k2 ≥ 2kc (IV.5.69b)

translate to either

k+ ≥ 2kc, |k−| ≤ k+ − 2kc (IV.5.70a)

or

any k−, k+ ≥ 2kc + |k−| . (IV.5.70b)

Combining the two sets of limits gives (see Fig. IV.2)
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q

q

kc

k1

k2

k–
k+

kc

Figure IV.2: The regions of integration for (IV.5.53). The inherent geometrical restrictions
k+ = k1 + k2 ≥ q and |k−| = |k1 − k2| ≤ q limit us to the region shaded vertically, while
the additional requirement that k1, k2 ≥ kc requires that the mode be in the region shaded
horizontally. Their intersection gives the region of integration for (IV.5.53).
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∫

k1,k2>kc>|k1−k2|

d3k1d
3k2 =2π

∫

limits

d3qdk+dk−
k2+ − k2−

8q

=2π

∫ ∞

0

dq

∫∫
q2d2Ωq̂

∫ q

−q
dk−

∫ ∞

2kc+|k−|
dk+

k2+ − k2−
8q

(IV.5.71a)

= 2π

∫ ∞

0

dq

∫∫
q2d2Ωq̂

(∫ 2kc+q

2kc

dk+

∫ k+−2kc

−(k+−2kc)

dk− +

∫ ∞

2kc+q

dk+

∫ q

−q
dk−

)
k2+ − k2−

8q
.

(IV.5.71b)

(The first of these two is more convenient to work with.) This means that in the three-
dimensional case, (IV.5.53) becomes

Tr(λℵ−1
0 ℵ1)2 =

∫

limits

d3qdk+dk−(k2+ − k2−)
(2π)232qV

(
k++k−

2

)
V
(
k+−k−

2

)

×
{∣∣∣∣∣

q2 − k2−
k2+ − k2−

∫ T/2

−T/2
dtℓ∆ϕq(t)e

ik−t − i 4k−
k2+ − k2−

[
ei2k−tℓ∆ϕq(t)

]T/2
−T/2

∣∣∣∣∣

2

+

∣∣∣∣∣
q2 − k2−
k2+ − k2−

∫ T/2

−T/2
dtℓ∆ϕq(t)e

−ik−t + i
4k−

k2+ − k2−
[
e−i2k−tℓ∆ϕq(t)

]T/2
−T/2

∣∣∣∣∣

2

+

∣∣∣∣∣
k2+ − q2
k2+ − k2−

∫ T/2

−T/2
dtℓ∆ϕq(t)e

ik+t + i
4k+

k2+ − k2−
[
ei2k+tℓ∆ϕq(t)

]T/2
−T/2

∣∣∣∣∣

2

+

∣∣∣∣∣
k2+ − q2
k2+ − k2−

∫ T/2

−T/2
dtℓ∆ϕq(t)e

−ik+t − i 4k+
k2+ − k2−

[
e−i2k+tℓ∆ϕq(t)

]T/2
−T/2

∣∣∣∣∣

2}
;

(IV.5.72)

noting that

1

V(k1)V(k2)
=
k1k2
4

coth
βk1
2

coth
βk2
2

=
k2+ − k2−

16
coth

βk1
2

coth
βk2
2
, (IV.5.73)
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we have

Tr(λℵ−1
0 ℵ1)2 =

∫ ∞

0

dq

∫∫
q2d2Ωq̂

∫ q

−q
dk−

∫ ∞

2kc+|k−|
dk+

cothβ k++k−
4 cothβ k+−k−

4

(2π)2512q

×
{∣∣∣∣∣(q

2 − k2−)
∫ T/2

−T/2
dtℓ∆ϕq(t)e

ik−t − i4k−
[
ei2k−tℓ∆ϕq(t)

]T/2
−T/2

∣∣∣∣∣

2

+

∣∣∣∣∣(q
2 − k2−)

∫ T/2

−T/2
dtℓ∆ϕq(t)e

−ik−t + i4k−
[
e−i2k−tℓ∆ϕq(t)

]T/2
−T/2

∣∣∣∣∣

2

+

∣∣∣∣∣(k
2
+ − q2)

∫ T/2

−T/2
dtℓ∆ϕq(t)e

ik+t + i4k+
[
ei2k+tℓ∆ϕq(t)

]T/2
−T/2

∣∣∣∣∣

2

+

∣∣∣∣∣(k
2
+ − q2)

∫ T/2

−T/2
dtℓ∆ϕq(t)e

−ik+t − i4k+
[
e−i2k+tℓ∆ϕq(t)

]T/2
−T/2

∣∣∣∣∣

2}
.

(IV.5.74)

IV.6 The full action

Now we need to consider the effects of adding the terms Sφ and Sφφφ back into the
action, and determine what effect, if any, this has on the influence phase (IV.5.43).

IV.6.1 The linear terms

The effect of the linear term Sφ can, as usual, be elucidated by completing the
square, as shown in this section.

We define the “all-but-cubic” lagrangian

L3[φ,Φ] = L0+φφ[φ,Φ] + λLφ[φ,Φ] (IV.6.1)

by adding to the quadratic action considered in Sec. IV.5 the linear terms [cf. (IV.4.8c)]

λLφ[φ,Φ] = λ
∑

M∈S
(−φ∗Mx̃M + φMỹM) (IV.6.2)

where4 [cf. (IV.4.8c)

x̃M =− λ

2

(
q2M−N,NΦM−NΦN − Φ̇M−NΦ̇N

)
(IV.6.3a)

ỹM =− λ

2

(
Φ̇M−NΦN − ΦM−NΦ̇N

)
, (IV.6.3b)

with q2M−N,N defined analogously [cf. (IV.5.3)] to k2M1M2
:

q2M−N,N = −k−M · qM−N − qM−N · qN − qN · k−M = k2
M + q2

N − kM · qN. (IV.6.4)

4recall that ΦM−N = 0 when M−N /∈ L
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The reality condition Φ−N = Φ∗
N forces x̃−M = x̃∗M and ỹ−M = ỹ∗M, so we can use the

identity

vex†wex =
∑

M∈S
v∗MwM =

∑

M∈S

(
vRMwR

M + vIMwI
M

)
= 2

∑

M∈S/2

(
vRMwR

M + vIMwI
M

)
= vtrw,

(IV.6.5)
where v and w are vectors in RS/2⊕S/2 defined as in (IV.5.16), to write

λLφ = −φtrx̃+ φ̇trỹ; (IV.6.6)

by integrating by parts, we can also write this, for arbitrary z(t) as

λLφ = −φtrx+ φ̇try +
d

dt

(
φtrz

)
, (IV.6.7)

where

x =x̃+ ż (IV.6.8a)

y =ỹ − z (IV.6.8b)

to give

L3[φ,Φ] =
1

2

[
φ̇trmφ̇+ 2φ̇try − φtr̟φ− 2φtrx+

d

dt

(
φtrṁφ+ 2φtrz

)]
. (IV.6.9)

Comparing this to

L0+φφ[φ+̟−1x] =
1

2

[
φ̇trmφ̇+ 2φ̇trm

d

dt
(̟−1x) +

d

dt
(xtr̟−1)m

d

dt
(̟−1x)

−φtr̟φ− 2φtrx+ xtr̟−1x+
d

dt
(φtrṁφ+ φtrṁ̟−1x+ xtr̟−1ṁ̟−1x)

]
, (IV.6.10)

we see that if

y = m
d

dt
(̟−1x) (IV.6.11)

this becomes

L0+φφ[φ+̟−1x]

= L3[φ,Φ] +
ytrm−1y

2
− xtr̟−1x

2
+
d

dt

[
φtr(ṁ̟−1x− z)

]
+
d

dt

xtr̟−1ṁ̟−1x

2
(IV.6.12)

The condition (IV.6.11) is equivalent to the second order inhomogeneous ODE

d

dt
(̟−1ż) +m−1z = m−1ỹ − d

dt
(̟−1x̃). (IV.6.13)

A particular Φ(t) generates x̃(t) and ỹ(t) via (IV.6.3), and for that source term, we can solve
(IV.6.13), with the freedom to fix two boundary conditions which are functions of z′, z′′, (ż)′

and (ż)′′.
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We can use this expression for L3 to express K3, the propagator for S3, in terms of
K0+φφ as

K3(φ
′′|φ′; Φ] =

∫

φ′′φ′

DφeiS3 [φ,Φ]

=e
i
2

∫ T/2

−T/2
dt(xtr̟−1x−ytrm−1y)

e
iφtr(z−ṁ̟−1x)|T/2

−T/2

∫

φ′′φ′

DφeiS0+φφ[φ+̟
−1x,Φ].

(IV.6.14)

Recognizing the last expression as K0+φφ(φ
′′ + {̟−1x}′′|φ′ + {̟−1x}′; Φ], we have

K3(φ
′′|φ′; Φ] = K0+φφ(φ

′′|φ′; Φ] exp
{
i

(
φ′′

φ′

)tr

X [Φ]
}
eiψ[Φ], (IV.6.15)

where

ψ[Φ] =
1

2

∫ T/2

−T/2
dt(xtr̟−1x− ytrm−1y)

+
1

2

(
(̟−1x)′′

(̟−1x)′

)tr(
B[Φ]− ṁ′′ −C[Φ]
−C[Φ]tr A[Φ] + ṁ′

)(
(̟−1x)′′

(̟−1x)′

) (IV.6.16)

is a real phase, and

X (Φ) =
(
z′′ − (ṁ̟−1x)′′

−z′′ + (ṁ̟−1x)′

)
+

(
B[Φ] −C[Φ]
−C[Φ]tr A[Φ]

)(
(̟−1x)′′

(̟−1x)′

)
. (IV.6.17)

By substituting for x using (IV.6.8a), we see that X [Φ] = 0 is just a pair of first order
boundary conditions on z(t), and so we can choose the solution to (IV.6.13) to obey them,
leaving

K3(φ
′′|φ′; Φ] = K0+φφ(φ

′′|φ′; Φ]eiψ[Φ]. (IV.6.18)

Proceeding along the same lines as (IV.5.20), we find that

eiW3[Φ1,Φ2] = eiW0+φφ[Φ1,Φ2]ei(ψ[Φ1]−ψ[Φ2]). (IV.6.19)

Since ψ[Φ] is real, and it is the imaginary part of W which imposes decoherence,
∣∣∣eiW3[Φ1,Φ2]

∣∣∣ =
∣∣∣eiW0+φφ[Φ1,Φ2]

∣∣∣ (IV.6.20)

and adding in the linear terms does not change the result (IV.5.43).

IV.6.2 The cubic terms

Now we are ready to consider the full action

SE [φ,Φ] = S3[φ,Φ] + Sφφφ[φ] (IV.6.21)
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including the cubic terms from

Lφφφ(φ) = −
1

2

∑

M1,M2,M3∈S
δM1+M2+M3,0

(
φM1 φ̇M2 φ̇M3 −

k2
M1

+ k2
M2

+ k2
M3

6
φM1φM2φM3

)
.

(IV.6.22)
Here we need to resort to using a generating functional

Z[J1, J2,Φ1,Φ2] =

∫
Dφ1Dφ2ρφ(φ′1, φ′2)δ(φ′′2 − φ′′1 )

× exp

{
i

(
S3[φ1,Φ1]− S3[φ2,Φ2] +

∫ T/2

−T/2
dt[φ1

trJ1 − φ2trJ2]
)}

(IV.6.23a)

and expressing5

eiW [Φ1,Φ2] = exp

(
iλSφφφ

[
1

i

D
DJ1

,Φ1

]
− iλSφφφ

[
−1

i

D
DJ2

,Φ2

])
Z[J1, J2,Φ1,Φ2].

(IV.6.23b)

The wrong way to complete the square

The “propagators” involved in constructing the generating functional

Z[J1, J2,Φ1,Φ2] =

∫
dφ′1dφ

′
2dφ

′′ρφ(φ
′
1, φ

′
2)KZ(φ′′|φ′1; Φ1, J1]K∗

Z(φ
′′|φ′2; Φ2, J2] (IV.6.24)

are of the form

KZ(φ′′|φ′; Φ, J ] =
∫

φ′′φ′

Dφei
(
S3[φ,Φ]+

∫ T/2

−T/2
dtφtrJ

)

(IV.6.25)

and involve the modified “lagrangian”

LZ [φ,Φ, J ] = L3[φ,Φ] + J trφ =
1

2

[
φ̇trmφ̇+ 2φ̇trỹ − φtr̟φ− 2φtr(x̃− J) + d

dt

(
φtrṁφ

)]
;

(IV.6.26)
We might try to carry out the same completion of the square as was done in Sec. IV.6.1,
getting the form (IV.6.7), where now

x = x̃+ ż − J. (IV.6.8a′)

The differential equation for z becomes

d

dt
(̟−1ż) +m−1z = m−1ỹ − d

dt
[̟−1(x̃− J)]; (IV.6.13′)

5The choice of sign of J2 may seem unusual, but it allows us to write the argument of the exponential in
(IV.6.23a) as SZ [φ1,Φ1, J1]− SZ [φ2,Φ2, J2] rather than SZ [φ1,Φ1, J1]− SZ [φ2,Φ2,−J2].
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once again, we would find an expression like

KZ(φ′′|φ′; Φ, J ] = K0+φφ(φ
′′|φ′; Φ] exp

{
i

(
φ′′

φ′

)tr

X [Φ, J ]
}
eiψ[Φ,J], (IV.6.15′)

with the expressions (IV.6.16) and (IV.6.17) for ψ[Φ, J ] and X [Φ, J ] in terms of x still holding.
Again, the boundary conditions on (IV.6.15′) would allow us to set X [Φ, J ] = 0, leaving

KZ(φ′′|φ′; Φ, J ] = K0+φφ(φ
′′|φ′; Φ]eiψ[Φ,J]. (IV.6.18′)

However, this form is not convenient, even if we insert x = x̃+ż−J , since the expression would
depend on J not only explicitly, but also implicitly via the solution z[Φ, J ] to (IV.6.13′).

The correct way to complete the square

Since we cannot fruitfully complete the square for the J-terms in the way we did
for Lφ in Sec. IV.6.1, let us instead combine Lφ with the J-terms by integrating by parts
until y = 0, i.e.,

x =x̃+ ˙̃y (IV.6.27a)

z =ỹ (IV.6.27b)

so that

LZ [φ,Φ, J ] =
1

2

[
φ̇trmφ̇− φtr̟φ+ 2φtrJ̃ +

d

dt

(
φtrṁφ+ 2φtrỹ

)]
(IV.6.28)

where

J̃ = J − x̃+ ˙̃y. (IV.6.29)

First, we define a Green’s function G(t, t1) (implicitly dependent upon Φ) satisfying

[∂tm(t)∂t +̟(t)]G(t, t1) = δ(t− t1), (IV.6.30)

so that

(G ◦ J)(t) =
∫ T/2

−T/2
dt1G(t, t1)J(t1) (IV.6.31)

obeys

(∂tm∂t +̟)G ◦ J = J. (IV.6.32)

We can construct this perturbatively, with the lowest order term being

G0(t, t1) =
sinΩ0 |t− t1|

2Ω0
(IV.6.33)
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Then we can complete the square by calculating

L0+φφ[φ−G ◦ J̃ ,Φ]

= L0+φφ[φ,Φ] + L0+φφ[G ◦ J̃ ,Φ]−
(
φ̇trmĠ ◦ J̃ − φtr̟G ◦ J̃

)
− d

dt

(
φtrṁG ◦ J̃

)

= L0+φφ[φ,Φ] + L0+φφ[G ◦ J̃ ,Φ] + φtr (∂tm∂t +̟)G ◦ J̃ − d

dt

[
φtr∂t(mG ◦ J̃)

]

= LZ [φ,Φ, J ] + L0+φφ[G ◦ J̃ ,Φ]−
d

dt

{
φtr[∂t(mG ◦ J̃) + ỹ]

}
. (IV.6.34)

This gives

KZ(φ′′|φ′; Φ, J ]

=

∫

φ′′φ′

Dφ exp
(((
i

{
S0+φφ[φ−G ◦ J̃ ,Φ]− S0+φφ[G ◦ J̃ ,Φ] + φtr[∂t(mG ◦ J̃) + ỹ]

∣∣∣
T/2

−T/2

})))

= K0+φφ

[
φ′′ − (G ◦ J̃)′′|φ′ − (G ◦ J̃)′

]

× exp

(((
i

{
−S0+φφ[G ◦ J̃ ,Φ] + φtr[∂t(mG ◦ J̃) + ỹ]

∣∣∣
T/2

−T/2

})))
. (IV.6.35)

The generating functional is thus

Z[J1, J2,Φ1,Φ2] =

∫
dφ′1dφ

′
2dφ

′′ρφ(φ′1, φ
′
2)√

det(2πC[Φ1]) det(2πC[Φ2])

× exp





i

2




φ′′ − (G1 ◦ J̃1)′′
φ′′ − (G2 ◦ J̃2)′′
φ′1 − (G1 ◦ J̃1)′
φ′2 − (G2 ◦ J̃2)′




tr


B[Φ1] 0 −C[Φ1] 0
0 −B[Φ2] 0 C[Φ2]

−C[Φ1]
tr

0 A[Φ1] 0

0 C[Φ2]
tr

0 −A[Φ2]







φ′′ − (G1 ◦ J̃1)′′
φ′′ − (G2 ◦ J̃2)′′
φ′1 − (G1 ◦ J̃1)′
φ′2 − (G2 ◦ J̃2)′




+i




φ′′

φ′′

φ′1
φ′2




tr




[
∂t(m1G1 ◦ J̃1) + ỹ1

]′′

−
[
∂t(m2G2 ◦ J̃2) + ỹ2

]′′

−
[
∂t(m1G1 ◦ J̃1) + ỹ1

]′
[
∂t(m2G2 ◦ J̃2) + ỹ2

]′



− iS0+φφ[G1 ◦ J̃1,Φ1] + iS0+φφ[G2 ◦ J̃2,Φ2]





;

(IV.6.36)

inserting the form of ρφ from (IV.5.27), and making the transformation (cf. (IV.5.28))



φ′′1
φ′′2
φ′1
φ′2


 =




1 1 0 0
−1 1 0 0
0 0 1 1
0 0 1 −1







∆φ′′/2
φ′′

φ′

∆φ′/2


 , (IV.6.37)
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we have

Z[J1, J2,Φ1,Φ2] ∝
∫

dφ′d∆φ′dφ′′√
det(2πC[Φ1]) det(2πC[Φ2])

× exp





i

2




−∆(G ◦ J̃)′′/2
φ′′ − (G ◦ J̃)′′
φ′ − (G ◦ J̃)′

∆φ′/2−∆(G ◦ J̃)′/2




tr


B− B+ −C+ −C−
B+ B− −C− −C+
−C+tr −C−tr A− A+

−C−tr −C+tr A+ A−







−∆(G ◦ J̃)′′/2
φ′′ − (G ◦ J̃)′′
φ′ − (G ◦ J̃)′

∆φ′/2−∆(G ◦ J̃)′/2




− 1

2

(
φ′

∆φ′/2

)tr(
Ω2

0V(Ω0) 0
0 4V−1(Ω0)

)(
φ′

∆φ′/2

)
+ i




φ′′

φ′

∆φ′/2




tr




∆
[
∂t(mG ◦ J̃) + ỹ

]′′

−∆
[
∂t(mG ◦ J̃) + ỹ

]′

−2
[
∂t(mG ◦ J̃) + ỹ

]′




− iS0+φφ[G1 ◦ J̃1,Φ1] + iS0+φφ[G2 ◦ J̃2,Φ2]




. (IV.6.38)

Defining the matrix

P =



0 0 0
0 Ω2

0V(Ω0) 0
0 0 4V−1(Ω0)


 (IV.6.39)

so thatM, defined in (IV.5.33), can be written

M = P − i



B− −C− −C+
−C−tr A− A+

−C+tr A+ A−


 . (IV.6.40)

Then (IV.6.38) becomes

Z[J1, J2,Φ1,Φ2] ∝
∫

dφ′d∆φ′dφ′′√
det(2πC[Φ1]) det(2πC[Φ2])

exp




−1

2




φ′′

φ′

∆φ′/2




tr

M




φ′′

φ′

∆φ′/2




+




φ′′

φ′

∆φ′/2




tr 
(M−P)U [J̃ ] + iW [J̃ ] + i




∆ỹ′′

−∆ỹ′
−2ỹ′




+ iQ[J̃1, J̃2]




, (IV.6.41)
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where

U [J̃ ] =




(G ◦ J̃)′′
(G ◦ J̃)′

∆(G ◦ J̃)′/2


 (IV.6.42a)

W [J̃ ] =




−B+∆(G ◦ J̃)′′/2 + ∆
[
∂t(mG ◦ J̃)

]′′

C+tr∆(G ◦ J̃)′′/2−∆
[
∂t(mG ◦ J̃)

]′

C−tr∆(G ◦ J̃)′′/2− 2
[
∂t(mG ◦ J̃)

]′




(IV.6.42b)

Q[J̃1, J̃2] =
1

2




∆(G ◦ J̃)′′/2
(G ◦ J̃)′′
(G ◦ J̃)′

∆(G ◦ J̃)′/2




tr


B− B+ −C+ −C−
B+ B− −C− −C+
−C+tr −C−tr A− A+

−C−tr −C+tr A+ A−







∆(G ◦ J̃)′′/2
(G ◦ J̃)′′
(G ◦ J̃)′

∆(G ◦ J̃)′/2




− S0+φφ[G1 ◦ J̃1,Φ1] + S0+φφ[G2 ◦ J̃2,Φ2].

(IV.6.42c)

Completing the square in (IV.6.41) gives

Z[J1, J2,Φ1,Φ2] = eiW0+φφ[Φ1,Φ2] exp





1

2


U [J̃ ]

tr
(M−P) + iW [J̃ ]

tr
+ i




∆ỹ′′

−∆ỹ′
−2ỹ′




tr



×M−1


(M−P)U [J̃ ] + iW [J̃ ] + i




∆ỹ′′

−∆ỹ′
−2ỹ′




+ iQ[J̃1, J̃2]



 (IV.6.43)

Expanding (IV.6.23b) in a perturbation series, we see that terms beyond the zeroth
have at least one factor of λ, from the λSφφφ. Again, the only way that a perturbative
expression could tell us about the non-perturbative result eiW ≪ 1 is if some of the terms
have a λ/β behavior. Thus, we should look for the terms in the exponential of (IV.6.43)
which are larger than O(1) to see if any O(β−1) terms can produce significant contributions.
The only object which can be larger than O(1) isM−1 [the matricesM and P individually
have V−1 eigenvalues, but the combination M−P is O(1)]. Since the smallest eigenvalue
ofM is O(V) + O(λ), λM−1 will also be no larger than O(1). And since the terms ỹ and

J̃ − J = −x̃+ ˙̃y coming from Sφ are O(λ), this means that

Z[J1, J2,Φ1,Φ2] = eiW0+φφ[Φ1,Φ2]

× exp

(
1

2

{
U [J ]tr(M−P) + iW [J ]tr

}
M−1 {(M−P)U [J ] + iW [J ]}+O(1)

)
. (IV.6.44)



IV.6. THE FULL ACTION 139

Now,
[
U tr(M−P) + iWtr

]
M−1 [(M−P)U + iW ]

=U trMU − 2U tr(PU − iW) + (U trP − iWtr)M−1(PU − iW)

=U tr(M−P)U − U trPU + 2iU trW + (U trP − iWtr)M−1(PU − iW)

=− U trPU + (U trP − iWtr)M−1(PU − iW) +O(1);
(IV.6.45)

if we use (IV.5.36) to write

M−1 =




1 0 0
0 1 0

−iα−1C+tr iα−1A+ 1


M̃−1



1 0 −iC+α−1

0 1 iA+α
−1

0 0 1


 (IV.6.46)

and observe [since 4V−1(Ω0) = α+ iA−]

1 0 −iC+α−1

0 1 iA+α
−1

0 0 1


P =



0 0 −iC+(1 + iα−1A−)
0 Ω2

0V(Ω0) iA+(1 + iα−1A−)
0 0 4V−1(Ω0)


 , (IV.6.47)

we have

− U trPU + (U trP − iWtr)M−1(PU − iW) = −U tr



0 0 0
0 Ω2

0V(Ω0) 0
0 0 4V−1(Ω0)


U

+


U tr




0 0 0
0 Ω2

0V(Ω0) 0
−i(1 + iA−α−1)Ctr+ i(1 + iA−α−1)A+ 4V−1(Ω0)




−iWtr




1 0 0
0 1 0

−iα−1C+tr iα−1A+ 1






× M̃−1





0 0 −iC+(1 + iα−1A−)
0 Ω2

0V(Ω0) iA+(1 + iα−1A−)
0 0 4V−1(Ω0)


U − i



1 0 −iC+α−1

0 1 iA+α
−1

0 0 1


W


 . (IV.6.48)

Because the matrices P and ℵ0− iλℵ1[∆Φ])−1⊕α−1 are in block diagonal form, we split up
the expression (IV.6.48) into

− U tr



0 0 0
0 Ω2

0V(Ω0) 0
0 0 0


U

+


U tr




0 0
0 Ω2

0V(Ω0)
−i(1 + iA−α−1)Ctr+ i(1 + iA−α−1)A+


− iWtr




1 0
0 1

−iα−1C+tr iα−1A+






×(ℵ0−iλℵ1[∆Φ])−1

[(
0 0 −iC+(1 + iα−1A−)
0 Ω2

0V(Ω0) iA+(1 + iα−1A−)

)
U − i

(
1 0 −iC+α−1

0 1 iA+α
−1

)
W
]
.

(IV.6.49a)
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and

−U tr
3 4V−1(Ω0)U3 +

[
U tr
3 4V−1(Ω0)− iWtr

3

]
α−1

[
4V−1(Ω0)U3 − iW3

]
, (IV.6.49b)

where U3 is the bottom third of U ,

U3 =



0
0
1




tr

U . (IV.6.50)

Using 4V−1(Ω0) = α+ iA−, (IV.6.49b) can be converted, noting

−4V−1(Ω0) + 4V−1(Ω0)α
−14V−1(Ω0) =− α− iA− + α+ 2iA− −A−α

−1A−

=iA− −A−α
−1A−,

(IV.6.51)

to

U tr
3 (iA− −A−α

−1A−)U3 − 2iWtr
3 (1 + iα−1A−)U3 −Wtr

3 α
−1W3 = O(1), (IV.6.52)

This leaves us with (IV.6.49a), making the exponential in (IV.6.43)

1

2


U tr




0 0
0 Ω2

0V(Ω0)
−iCtr+ iA+


− iWtr




1 0
0 1

−iα−1C+tr iα−1A+




 (ℵ0 − iλℵ1[∆Φ])−1

×
[(

0 0 −iC+
0 Ω2

0V(Ω0) iA+

)
U − i

(
1 0 −iC+α−1

0 1 iA+α
−1

)
W
]
+O(1); (IV.6.53)

inserting (IV.6.42a) and (IV.6.42b), we find

(
0 0 −iC+
0 Ω2

0V(Ω0) iA+

)
U [J ]− i

(
1 0 −iC+α−1

0 1 iA+α
−1

)
W [J ]

=

(
−iC+∆(G ◦ J)′/2 + iB+∆(G ◦ J)′′/2− i∆ [∂t(mG ◦ J)]′′
iA+∆(G ◦ J)′/2− iC+tr∆(G ◦ J)′′/2 + i∆ [∂t(mG ◦ J)]′

)

+ V(Ω0)


 V−1(Ω0)C+α−1

{
C−tr∆(G ◦ J)′′/2− 2[∂t(mG ◦ J)]′

}

Ω2
0(G ◦ J)′ − V−1(Ω0)A+α

−1
{
C−tr∆(G ◦ J)′′/2− 2[∂t(mG ◦ J)]′

}

 ,

(IV.6.54)

so again discarding O(1) terms {including (ℵ0 − iλℵ1[∆Φ])−1V(Ω0)}, we end up with

Z[J1, J2,Φ1,Φ2]

= eiW0+φφ[Φ1,Φ2] exp

[
−1

2

(
−C0G0 ◦ (∆J)′ +B0G0 ◦ (∆J)′′ − Ġ0 ◦ (∆J)′′
A0G0 ◦ (∆J)′ − C0G0 ◦ (∆J)′′ + Ġ0 ◦ (∆J)′

)tr

×(ℵ0 − iλℵ1[∆Φ])−1

(
−C0G0 ◦ (∆J)′ +B0G0 ◦ (∆J)′′ − Ġ0 ◦ (∆J)′′
A0G0 ◦ (∆J)′ − C0G0 ◦ (∆J)′′ + Ġ0 ◦ (∆J)′

)
+O(1)

]
.

(IV.6.55)
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The fact that the leading term in the exponential in (IV.6.55) depends only upon
∆J = J1 − J2 is crucial, because of the operator

λSφφφ

[
1

i

D
DJ1

,Φ1

]
− λSφφφ

[
−1

i

D
DJ2

,Φ2

]
(IV.6.56)

in (IV.6.23b), which annihilates any functional depending only on the combination J1 − J2.
If all of the terms in the exponential in Z were functions of ∆J alone, that would mean
that eiW = eiW3 ; however, there are O(1) terms in the exponential which depend on J . The
situation can be written as

Z[J1, J2,Φ1,Φ2] = eiW0+φφ[Φ1,Φ2] exp

(
1

2
∆J ◦ F−1 ◦∆J +

1

2
J ◦ F0 ◦ J + J ◦ G0

)
,

(IV.6.57)
where 1

2∆J ◦ F−1 ◦∆J is the argument of the exponential in (IV.6.55), and 1
2J ◦ F0 ◦ J and

J ◦ G0 are the quadratic and linear terms of O(1). Thinking in terms of a diagrammatic
expansion, this means that there are three kinds of “propagators” in Z:

F−1✒✑
✓✏

✲✛
(IV.6.58a)

F0✒✑
✓✏

✲✛
(IV.6.58b)

G0✒✑
✓✏

✲
(IV.6.58c)

(note that the last is not truly a propagator, since it accepts only one “input”). These are
used to connect the vertices, which all have the form

t λ✲ ✡✡
✢

❏❏
❪ (IV.6.59)

A term in the series which has more λ vertices than F−1 propagators will be perturbatively
small, one with the same number will be O(1), and one with more F−1 propagators than
λ vertices will be able to disrupt the perturbative analysis and have an impact upon eiW .
We can make a list of the objects in the theory by their order in perturbation theory and
number of legs (with the legs on propagators counted negative so that a closed diagram has
zero net legs):

Graph Order Legs
(IV.6.58a) -1 -2
(IV.6.58b) 0 -2
(IV.6.58c) 0 -1
(IV.6.59) 1 3



142 CHAPTER IV. MODELLING THE DECOHERENCE OF SPACETIME

Since the vertex (IV.6.59) has three legs and the propagator (IV.6.58a) has minus two, we’d
expect divergent graphs starting with

F−1✒✑
✓✏

❩
❩⑦

✚
✚❂

F−1✒✑
✓✏

✲✛

F−1✒✑
✓✏

✚
✚❃

❩
❩⑥

t λ❩
❩

✚
✚

tλ ✚
✚

❩
❩

(IV.6.60)

However, in this case we have just the situation described above: all of the propagators
depend only on ∆J , so the graph vanishes. This sort of identity places the restriction that
at least one leg of a vertex must be coupled to an F0 or G0 propagator. This means that we
must abandon (IV.6.59) by itself and use as our primitive vertices

F0✒✑
✓✏

✲✛ t λ✡✡
✢

❏❏
❪

tλ❏
❏

❫

✡✡
✣ (IV.6.61a)

G0✒✑
✓✏

✲ t λ✡✡
✢

❏❏
❪ (IV.6.61b)

which makes the pieces out of which non-vanishing graphs can be constructed

Graph Order Legs
(IV.6.58a) -1 -2
(IV.6.58b) 0 -2
(IV.6.58c) 0 -1
(IV.6.61a) 2 4
(IV.6.61b) 1 2

Now the most divergent graph which can be constructed with zero net legs is O(1).
This means that, perturbatively, the influence functional is

eiW [Φ1,Φ2] = O(1)× eiW3[Φ1,Φ2], (IV.6.62)

so, perturbatively at least,

∣∣∣eiW [Φ1,Φ2]
∣∣∣ .

{
1 + Tr

(
λℵ−1

0 ℵ1[∆Φ]
)2}−1/4

. (IV.6.63)

A word about the perturbative analysis

The conclusion that

eiW [Φ1,Φ2]−iW3[Φ1,Φ2] = O(1) (IV.6.62)
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is based upon an upper limit on each term in the perturbation series (the first term is
obviously unity). There are two ways this analysis could fail. First, there may be cancellation
among the various O(1) terms causing the net expression to be a higher order in λ or β.
Since this would only make

∣∣eiW
∣∣ smaller than our estimate, it would only improve the upper

limit given by (IV.6.63)
The second is more problematic. While each individual term is at most O(1), the

entire infinite series could be quite large, counteracting the tendency of eiW0+φφ to become
small. This is a shortcoming of the perturbative analysis, and there’s not a lot to be done,
other than to tackle the non-perturbative problem.6 Note, however, that we can say with
confidence that

∣∣eiW−iW3
∣∣ does not have terms which are O(λ2/β2), which could directly

cancel similar terms in the expansion. So if
∣∣eiW−iW3

∣∣ becomes large, it is not in the same

way which
∣∣eiW3

∣∣ =
∣∣eiW0+φφ

∣∣ becomes small.

IV.7 Interpretation

IV.7.1 Which modes are suppressed?

Having determined that the influence functional is bounded from above by
∣∣∣eiW [Φ1,Φ2]

∣∣∣ .
{
1 + Tr

(
λℵ−1

0 ℵ1[∆Φ]
)2}−1/4

, (IV.6.63)

and hence becomes small when

Tr(λℵ−1
0 ℵ1)2 =

∫ ∞

0

dq

∫∫
q2d2Ωq̂

∫ q

−q
dk−

∫ ∞

2kc+|k−|
dk+

cothβ k++k−
4 cothβ k+−k−

4

(2π)2512q

×
{∣∣∣∣∣(q

2 − k2−)
∫ T/2

−T/2
dtℓ∆ϕq(t)e

ik−t − i4k−
[
ei2k−tℓ∆ϕq(t)

]T/2
−T/2

∣∣∣∣∣

2

+

∣∣∣∣∣(q
2 − k2−)

∫ T/2

−T/2
dtℓ∆ϕq(t)e

−ik−t + i4k−
[
e−i2k−tℓ∆ϕq(t)

]T/2
−T/2

∣∣∣∣∣

2

+

∣∣∣∣∣(k
2
+ − q2)

∫ T/2

−T/2
dtℓ∆ϕq(t)e

ik+t + i4k+
[
ei2k+tℓ∆ϕq(t)

]T/2
−T/2

∣∣∣∣∣

2

+

∣∣∣∣∣(k
2
+ − q2)

∫ T/2

−T/2
dtℓ∆ϕq(t)e

−ik+t − i4k+
[
e−i2k+tℓ∆ϕq(t)

]T/2
−T/2

∣∣∣∣∣

2}
.

(IV.5.74)

becomes large, we would like to consider when that happens. Looking at (IV.5.74), and
disregarding the surface terms, we see that not all of the space/time modes

∆ϕqω =

∫ T/2

−T/2

dt√
2π

∆ϕq(t)e
iωt (IV.7.1)

6For instance, we can’t use (IV.5.37) to conclude that the O(1) factor in (IV.6.62) is unity, since that
would involve an illegal interchange of the β → 0 and λ → 0 limits.
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appear. The first two terms include only modes where |ω| = |k−| ≤ q, while the last two
are limited to modes where |ω| = |k+| ≥ 2kc. This is illustrated in Fig. IV.3. Just as our
coarse graining considers only long-wavelength modes (q ≤ kc), it is reasonable to focus on
long-period modes (|ω| ≤ kc) as well. Thus the limit of interest comes from the first two
terms, and we write

Tr(λℵ−1
0 ℵ1)2 ≥

∫ ∞

0

dq

∫∫
q2d2Ωq̂

∫ q

−q
dk−

∫ ∞

2kc+|k−|
dk+

cothβ k++k−
4 cothβ k+−k−

4

(2π)2512q

×
{∣∣∣(q2 − k2−)

√
2πℓ∆ϕqk− − i4k−

[
ei2k−tℓ∆ϕq(t)

]T/2
−T/2

∣∣∣
2

+
∣∣∣(q2 − k2−)

√
2πℓ∆ϕq,−k− + i4k−

[
e−i2k−tℓ∆ϕq(t)

]T/2
−T/2

∣∣∣
2
}
.

=

∫ ∞

0

dq

∫∫
q2d2Ωq̂

∫ q

−q
dk−

∣∣∣(q2 − k2−)
√
2πℓ∆ϕqk− − i4k−

[
ei2k−tℓ∆ϕq(t)

]T/2
−T/2

∣∣∣
2

×
∫ ∞

2kc+|k−|
dk+

cothβ k++k−
4 cothβ k+−k−

4

(2π)2256q
. (IV.7.2)

The factor

R =

∫ ∞

2kc+|k−|
dk+

coth βk1
2 coth βk2

2

(2π)2256q
(IV.7.3)

can be evaluated, to leading order in β, by noting that

coth η1 coth η2 =
cosh η1 cosh η2
sinh η1 sinh η2

=
cosh η+ + cosh η−
cosh η+ − cosh η−

= 1 +
2 cosh η−

cosh η+ − cosh η−
, (IV.7.4)

so that

R =

∫ ∞

2kc+|k−|

dk+
(2π)2256q

(
1 +

2 cosh βk−
2

cosh βk+
2 − cosh βk−

2

)
= R0+

∫ ∞

2kc+|k−|

dk+
(2π)2256q

. (IV.7.5)

Now,

R0 =

∫ ∞

2kc+|k−|

dk+
(2π)2256q

2 cosh βk−
2

cosh βk+
2 − cosh βk−

2

=
4 cosh βk−

2

(2π)2256qβ sinh β|k−|
2

ln

(
sinhβ k+−|k−|

4

sinhβ k++|k−|
4

)∣∣∣∣∣

∞

2kc+|k−|

=
4 coth β|k−|

2

(2π)2256qβ
ln

(
sinhβ kc+|k−|

2

sinh βkc
2 eβ|k−|/2

)
.

(IV.7.6)

Again, since we only expect a useful answer when small β causes perturbation theory to break
down, we look at the leading terms in β, working in the high-temperature limit βkc ≫ 1.
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ω

2kc

kc

– 2kc

– kc

q

—

—

Figure IV.3: The modes represented in (IV.5.74), plotted by their ω and q values. The
modes with q ≥ kc are traced over, and so that region is shaded horizontally. The first two
terms in (IV.5.74) can suppress modes with |ω| ≤ q, which are shaded vertically, the third
can suppress modes which have ω ≥ kc and the fourth, ω ≤ −kc; these last two are shaded
diagonally. Since we are concerned with coarse grainings of low temporal frequency ω as well
as spatial frequency q, the first two terms are the ones of interest.
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(See Sec. IV.7.2 for the physical significance of this.) In this limit, (IV.7.6) becomes

R0 =
8

(2π)2256qβ2 |k−|
ln

(
1 +
|k−|
kc

)
; (IV.7.7)

since R −R0 is independent of β, the leading term in R is7

R =
1

(2π)232qβ2 |k−|
ln

(
1 +
|k−|
kc

)
, (IV.7.8)

so

Tr(λℵ−1
0 ℵ1)2 &

∫ ∞

0

dq

∫∫
q2d2Ωq̂

∫ q

−q

dω

(2π)232qβ2 |ω| ln
(
1 +
|ω|
kc

)

×
∣∣∣(q2 − ω2)

√
2πℓ∆ϕqω − i4ω

[
ei2ωtℓ∆ϕq(t)

]T/2
−T/2

∣∣∣
2

. (IV.7.9)

IV.7.2 Practical coarse grainings

The physical scales

The expression (IV.7.9) has three parameters, kc, β and T which are not integrated
over. The scale kc for division into SWMs and LWMs can be tailored to the coarse graining
to give the strongest possible results, while the other two are features of the model. As
alluded to in Sec. IV.3.3, the time scale T over which we expect the Minkowski space model
to be valid should be slightly below the Hubble scale H−1

0 . In suitable units, this gives

T . H−1
0 ∼ 1010 yr ∼ 1029 cm. (IV.7.10)

This is so large that it allows us to set T much larger than all the other scales in the problem.
In particular, it means that the cross terms in

∣∣∣(q2 − ω2)
√
2πℓ∆ϕqω − i4ω

[
ei2ωtℓ∆ϕq(t)

]T/2
−T/2

∣∣∣
2

= 2π
∣∣(q2 − ω2)ℓ∆ϕqω

∣∣2 + 16ω2
∣∣eiωT ℓ∆ϕ′′

q − e−iωT ℓ∆ϕ′
q

∣∣2

+ i
√
2π(q2 − ω2)ℓ∆ϕqω4ω

(
e−iωT ℓ∆ϕ′′

q

∗ − eiωT ℓ∆ϕ′
q

∗)

− i
√
2π(q2 − ω2)ℓ∆ϕ∗

qω4ω
(
eiωT ℓ∆ϕ′′

q − e−iωT ℓ∆ϕ′
q

) (IV.7.11)

will oscillate rapidly and vanish when ω is integrated over, leaving

= 2π
∣∣(q2 − ω2)ℓ∆ϕqω

∣∣2 + 16ω2
∣∣eiωT ℓ∆ϕ′′

q − e−iωT ℓ∆ϕ′
q

∣∣2 ≥ 2π
∣∣(q2 − ω2)ℓ∆ϕqω

∣∣ .
(IV.7.12)

7Of course, this is a dubious approximation, since R − R0, while down by a factor of β2 from R0, is
ultraviolet divergent. However, any suitable well-behaved regulation of the result will give a result which
agrees with R0 to O(β−2) when the β → 0 limit is taken before the cutoff limit. Note also that our
perturbative analysis has ignored terms like λ2(R−R0), which are perturbatively small in λ without having
corresponding factors of β. One might hope that such terms will cancel the divergence in R−R0. However,
this turns out not to be the case, as can be seen by calculating all of the O(λ2) terms in eiW0+φφ .
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Turning our attention to the inverse temperature β, we might reasonably treat
the high-temperature thermal state ρφ as corresponding to the cosmic graviton background
radiation[50], which has a temperature on the order of 1K. This means that in suitable
units,

β ∼ 1

1K
∼ 1

10−4 eV
∼ 10−1 cm. (IV.7.13)

This is the most severe limit to the usefulness of the calculations in this chapter. It means that
to be in the high-temperature limit βkc ≪ 1, we need to have the cutoff scale k−1

c dividing
“short” and “long” wavelengths be above the millimeter scale. While we don’t expect to have
laboratory data on millimeter-scale oscillations of vacuum gravity any time soon (contrast
this scale to the length corresponding to a typical component of the curvature tensor at the
surface of a 1M⊙ black hole, which is GM⊙ ∼ 1 km ∼ 106β), it might be a bit surprising to
learn that coarse grainings corresponding to micron-scale variations in the gravitational field
do not decohere. At any rate, that is not the prediction of this chapter, even assuming that
the results for the toy model are an accurate indicator of the behavior of the actual theory.
First, this analysis only applies to decoherence of the vacuum gravitational field induced by
gravity itself. If the gravitational field is coupled to some form of matter, unobserved modes
of the matter can also induce decoherence, as described in [27] and [26]. In addition, our
perturbative analysis of vacuum gravity simply cannot make fruitful predictions outside of
the perturbative regime. It is quite possible that for lower temperatures, non-perturbative
effects can cause the influence functional to become small for large ∆ϕ.

Field averages

A simple quantity by which we’d like to coarse grain would be a field average

〈ℓϕ〉 =
∫
d3x

∫ T/2

−T/2
dtf(x, t)ℓϕ(x, t), (IV.7.14)

where f(x, t) is some sort of smoothing function with spatial width ∆x and temporal width
∆t obeying ∫

d3x

∫ T/2

−T/2
dtf(x, t) = 1. (IV.7.15)

In terms of Fourier modes, this becomes

〈ℓϕ〉 =
∫
d3qdωf∗

qωℓϕqω, (IV.7.16)

where I have approximated the sum over ω values separated by δω = 2π/T by an integral,
and assumed that f(x, t) vanishes as t → ±T/2, so that it is acceptable to replace the field
̟q(t) by its periodic counterpart

ϕP
q(t) =

∫
dωϕqωe

−iωt =

{
ϕ′′

q+ϕ
′
q

2 t = ±T2
̟q(t) −T2 < t < T

2 .
(IV.7.17)
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The normalization condition (IV.7.15) becomes f00 = (2π)−2, so a useful field average might
be

〈ℓϕ〉 =
∫ ∆q/2

0

dq

∫∫
q2d2Ωq̂

∫ ∆ω/2

−∆ω/2

dωϕqω, (IV.7.18)

where the width of the smoothing function in Fourier space is

∆q ∼ 1

2∆x
(IV.7.19a)

∆ω ∼ 1

2∆t
(IV.7.19b)

and the origin of the spatial coördinates has been chosen to correspond with the center of
f(x, t). If we shift the center of the group of Fourier modes by q0 and ω0, while keeping the
mode volume the same, we get another dimensionless quantity

〈̃ℓϕ〉 =
∫ q0+∆q/2

q0−∆q/2

dq

∫∫

Ω

q2d2Ωq̂

∫ ω0+∆ω/2

ω0−∆ω/2

dω
ϕqω

(2π)2
, (IV.7.20)

where the solid angle integrated over is centered about q̂0 and is chosen to preserve the mode
volume:

4π(∆q/2)3

3
= Ω

∫ q0+∆q/2

q0−∆q/2

q2dq = Ω
(q0 +∆q/2)3 − (q0 −∆q/2)3

3
(IV.7.21)

so

Ω =
π(∆q)2

6q20 + (∆q)2/2
. (IV.7.22)

The influence phase

Now we can cast (IV.7.9) into a useful form, so long as q0 −∆q/2 ≥ |ω0|+∆ω:

Tr(λℵ−1
0 ℵ1)2 &

∫ ∞

0

dq

∫∫
q2d2Ωq̂

∫ q

−q

dω

(2π)232qβ2 |ω| ln
(
1 +
|ω|
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) ∣∣∣(q2 − ω2)
√
2πℓ∆ϕqω

∣∣∣
2

≥
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dq
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Ω

q2d2Ωq̂
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ω0−∆ω/2

dω
(q2 − ω2)2

(2π)32qβ2 |ω| ln
(
1 +
|ω|
kc

)
|ℓ∆ϕqω|2 .

(IV.7.23)
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The strongest result will be obtained if we take kc = q0 + ∆q/2. If ∆ω and ∆q are small
relative to ω0 and q0 (which means large ∆t and ∆x), we can approximate

Tr(λℵ−1
0 ℵ1)2 &Θ(q0 − |ω0|)

(q20 − ω2
0)

2

(2π)32q0β2 |ω0|
ln

(
1 +
|ω0|
q0

)

×
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q0−∆q/2

dq

∫∫

Ω

q2d2Ωq̂

∫ ω0+∆ω/2

ω0−∆ω/2

dω |ℓ∆ϕqω|2

≈Θ(q0 − |ω0|)
(q20 − ω2

0)
2

(2π)32q0β2 |ω0|
ln

(
1 +
|ω0|
q0

) (2π)2
∣∣∣〈̃ℓ∆ϕ〉

∣∣∣
2

π∆ω(∆q)3/6

(IV.7.24)

so that the influence phase is bounded by

∣∣∣eiW [Φ1,Φ2]
∣∣∣ .




1 +

3π(q20 − ω2
0)

2
∣∣∣〈̃ℓ∆ϕ〉

∣∣∣
2

8q0β2 |ω0|∆ω(∆q)3
ln
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|ω0|
q0

)




−1/4

. (IV.7.25)

This means that if

3π(q20 − ω2
0)

2
∣∣∣〈̃ℓ∆ϕ〉

∣∣∣
2

8q0β2 |ω0|∆ω(∆q)3
ln

(
1 +
|ω0|
q0

)
≫ 1 (IV.7.26)

the decoherence functional corresponding to two values of 〈̃ℓϕ〉 separated by 〈̃ℓ∆ϕ〉 will be
small. This limit corresponds to

∣∣∣〈̃ℓ∆ϕ〉
∣∣∣≫ β

√
8q0 |ω0|∆ω(∆q)3
(q20 − ω2

0)
√
3π

[
ln

(
1 +
|ω0|
q0

)]−1/2

; (IV.7.27)

Considering the static limit |ω0| ≪ q0 for simplicity, (IV.7.27) becomes

∣∣∣〈̃ℓ∆ϕ〉
∣∣∣≫ β

√
8q0 |ω0|∆ω(∆q)3

q20
√
3π

[ |ω0|
q0

]−1/2

= βq0

√
8∆ω(∆q)3

3πq40
. (IV.7.28)

For sufficiently small ∆ω and ∆q (which corresponds to averaging over a large spacetime
region), the right hand side of (IV.7.28) becomes small, and thus (IV.7.28) can hold even in

the perturbative limit where
∣∣∣〈̃ℓ∆ϕ〉

∣∣∣ is small. [Recall that ℓ∆ϕ(x, t) is the representation in

this toy model of a metric perturbation γab.]
So a coarse graining which should decohere is one consisting of a set of alternatives

{cn} which correspond to 〈̃ℓϕ〉 ∈ [n∆, (n+1)∆). As long as the size ∆ of the regions is much
larger than

δ = βq0

√
8∆ω(∆q)3

3πq40
, (IV.7.29)

the analysis of Fig. III.1, with f replaced by 〈̃ℓϕ〉 and G(f − f ′) replaced by eiW , car-
ries through, and off-diagonal elements of the decoherence functional D(n1, n2) will be sup-
pressed.



150 CHAPTER IV. MODELLING THE DECOHERENCE OF SPACETIME

IV.8 Conclusions

In this chapter I have demonstrated that, in a simplified theory analogous to per-
turbative GR, some coarse grainings which restrict only the long wavelength modes of the
field should decohere. This was done by calculating the influence functional eiW between
pairs of LWM histories which describes the effect of tracing out the short-wavelength modes.
Decoherence is expected when

∣∣eiW [Φ1,Φ2]
∣∣ becomes small for sufficiently large Φ1 − Φ2.

Even though the zero order term in the influence functional is unity, and one might
normally assume that perturbative corrections cannot make

∣∣eiW
∣∣ much smaller than one,

it was possible to consider a regime where perturbation theory broke down enough to give∣∣eiW
∣∣ ≪ 1, but not so much that we were unable to calculate anything. This was done by

working in the high-temperature regime where the inverse temperature β of the thermal state
describing the SWMs was small. In this case terms which were higher order in the coupling
ℓ could still become large for high temperature if they were proportional to, for example,
(ℓ/β)2.

These ℓ/β terms in the influence functional were handled non-perturbatively for
the terms in the action which are quadratic or linear in the SWMs, but the cubic terms in
the action were analyzed using a perturbative expansion. That expansion showed that while

there are corrections which go like O(ℓ)
O(ℓ)+O(β) or O(β)

O(ℓ)+O(β) , those are at largest O(1), and
there are no O(ℓ/β) terms to cancel out the effect from the quadratic action.

The reliance on perturbative analysis is one of the limitations of this result. It
means that we can only analyze the question of decoherence in the high-temperature limit,
defined in terms of the momentum kc which defines SWMs from LWMs by βkc ≪ 1. If the
temperature of the SWM thermal state is taken to be that of the present-day cosmic graviton
background, the length scale corresponding to this limit is on the order of a millimeter.

Another problem comes from the non-renormalizability of our derivative action (a
property it shares with GR itself). While the terms in the influence functional proportional
to (ℓ/β)2 are finite, there are terms proportional to ℓ2 alone which are ultraviolet divergent.
We were able to ignore those by working in the high-temperature limit, but they may provide
another way in which perturbation theory breaks down, demanding a fully non-perturbative
analysis.

Before moving to a possible non-perturbative analysis, perhaps using the Regge
calculus to skeletonize geometry, another improvement of this work would be to restore the
tensor nature of the gravitational field and see if that modifies our scalar-field result.

And finally, the focus of this model has not been on cosmological systems (as con-
trasted to the matter-induced decoherence of spacetime described in [26] and [27]). The back-
ground spacetime was taken as Minkowski space and the temperature of the short-wavelength
graviton state was taken to be its present-day value. Different background spacetimes might
also be studied once the tensor nature of perturbative GR is restored.



IV.A. APPENDIX: EXPANDING THE G.R. ACTION TO THIRD ORDER 151

IV.A Appendix: Expanding the action for perturbative

GR to third order

In this appendix, I consider a metric

gab(λ) = gab + λγab (IV.3.1)

and use an approach similar to that in Sec. 7.5 of [14] to expand the gravitational action
constructed from gab(λ)

S =
1

16πG

∫ √
|g(λ)| d4xR(λ), (IV.A.1)

viewed as a function of γab on the background spacetime with metric gab, in powers of λ out
to third order.

The “scalar curvature” R(λ) is constructed from the corresponding “Riemann ten-
sor” Rabc

d according to

R(λ) = gac(λ)Rabc
b(λ) (IV.A.2)

and has an expansion

R(λ) =
∑

n

λn nR. (IV.A.3)

The “inverse metric” gab(λ) is defined by8

gab(λ)gbc(λ) = δac (IV.A.4)

and its expansion is given iteratively by

0gab = gab (IV.A.5a)
n+1gab = − ngacγcdg

db = − ngacγbc . (IV.A.5b)

To work towards an expression for the curvature tensor Rabc
d(λ) constructed from

gab(λ), one first considers the covariant derivative ∇a(λ) constructed from gab(λ) so that
∇a(λ)gbc(λ) = 0. This is related to the covariant derivative ∇a for the background metric
by

∇a(λ)ωb = ∇aωb − Ccab(λ)ωc. (IV.A.6)

Ccab(λ) is called the connection tensor relating the two metrics, and in a particular coördinate
system, it relates the Christoffel symbols for the two metrics:

Cσµν(λ) = Γσµν(λ)− Γσµν . (IV.A.7)

8Note that it is not defined by raising the indices with gab: gab(λ) 6= gacgcd(λ)g
db. We are using the

convention that gab is the “actual” metric used in manipulating geometric quantities (for example γab =
gacγcdg

db), but that function is “turned off” for parametrized quantities [like gab(λ)] and their expansion
terms (like ngab), and such tensors with indices in new places must be explicitly defined as in (IV.A.4) or
(IV.A.3).
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It is given by

Ccab(λ) =
1

2
gcd(λ)[∇agdb(λ) +∇bgad(λ)−∇dgab(λ)] =

λ

2
gcd(λ)[∇aγdb +∇bγad −∇dγab].

(IV.A.8)
Its expansion is given by

nCcab(λ) =
n−1gcd

2
[∇aγdb +∇bγad −∇dγab]. (IV.A.9)

where ngab is as given by (IV.A.5). In particular,

1Ccab =
1

2
(∇aγcb +∇bγca −∇cγab) (IV.A.10a)

2Ccab = −
γcd

2
(∇aγdb +∇bγad −∇dγab) (IV.A.10b)

By using9 2∇[a(λ)∇b](λ)ωc = Rabc
d(λ)ωd [see (I.B.7)] one has

Rabc
d(λ) = Rabc

d − 2∇[aC
d
b]c(λ) + 2Cec[a(λ)C

d
b]e(λ), (IV.A.11)

which contracts, recalling that gab is Ricci-flat, to

Rab(λ) = −2∇[aC
c
c]b(λ) + 2Cdb[a(λ)C

c
c]d(λ). (IV.A.12)

This then gives the expansion

0Rab = 0 (IV.A.13a)
1Rab = −2∇[a

1Ccc]b (IV.A.13b)

2Rab = −2∇[a
2Ccc]b + 2 1Cdb[a

1Ccc]d (IV.A.13c)

3Rab = −2∇[a
3Ccc]b + 2 1Cdb[a

2Ccc]d + 2 2Cdb[a
1Ccc]d. (IV.A.13d)

The scalar curvature is given by inserting (IV.A.13) and into [cf. (IV.A.5)]

0R = 0 (IV.A.14a)

1R = gab 1Rab (IV.A.14b)
2R = gab 2Rab − γab 1Rab (IV.A.14c)

3R = gab 3Rab − γab 2Rab + γacγbc
1Rab. (IV.A.14d)

Of course, it is not enough simply to expand R(λ); the action (IV.A.1) also includes
a factor of

√
|g(λ)|. Now, since

gab(λ) = gac(δ
c
b + λγcb ), (IV.A.15)

9I introduce here the usual antisymmetrization notation ω[ab] =
1
2
(ωab − ωba) etc.
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the determinant is given by
g(λ) = g[1 + λγ +O(λ2)], (IV.A.16)

where γ = gabγab is the trace of γab. This means we can easily expand
√
|g(λ)| out to first

order:

0
√
|g| =

√
|g| (IV.A.17a)

1
√
|g| = γ

2

√
|g| (IV.A.17b)

to get the expansion for the action

0S = 0 (IV.A.18a)

1S =
1

16πG

∫ √
|g| d4x 1R (IV.A.18b)

2S =
1

16πG

∫ √
|g| d4x

(
2R+

γ

2
1R
)

(IV.A.18c)

3S =
1

16πG

∫ √
|g| d4x

(
3R+

γ

2
2R+

2(
√
|g|)√
|g|

1R

)
. (IV.A.18d)

There would appear to be some difficulty in expanding to third order, as (IV.A.18d)
contains the as yet unknown 2(

√
|g|). This is resolved by the detailed form of 1R; to see

this, though, we must consider the issue of the diffeomorphism invariance of S in the next
section.

IV.A.1 Gauge freedom

If we make the infinitesimal transformation [cf. (I.B.24)]

gab(λ)→ g̃ab(λ) = gab(λ)− 2λ∇(aδxb), (IV.A.19)

the geometry described by g̃ab(λ) is the same as that described by gab(λ). Since g̃ab(0) =
gab = gab(0), we can define

γ̃ab = g̃ab(1)− gab (IV.A.20)

so that
g̃ab(λ) = gab + λγ̃ab (IV.A.21)

This means that the perturbations γab and γ̃ab on the same background metric gab give the
same perturbed geometry, so γab has a gauge symmetry

γab → γ̃ab = γab − 2λ∇(aδxb). (IV.A.22)

Building up finite transforms from the infinitesimal (IV.A.22), one can [14] convert
any perturbation γab, by a suitable gauge transformation, into the transverse, traceless (TT)
gauge in which

∇aγab = 0 (IV.A.23a)

γ = 0. (IV.A.23b)
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IV.A.2 Expansion terms in the transverse, traceless gauge

In the TT gauge, we have from (IV.A.10a)

1Cccb =
1

2
∇bγ = 0 (IV.A.24)

so
1Rab = ∇c 1Ccab = ∇c∇(aγ

c
b) −

1

2
∇c∇cγab (IV.A.25)

Contracting a and b makes the first term proportional to ∇aγca and the second proportional
to γ, so 1R vanishes in the TT gauge.10 This means that (IV.A.18) reduces in this gauge to

nS =

{
0 n = 0 or 1

1
16πG

∫ √
|g| d4x nR n = 2 or 3

(IV.A.26)

Using (I.B.7), we have the result that in the TT gauge

∇c∇aγcb = ∇a∇cγcb +Rcab
dγcd −Rcadcγdb = Rcab

dγcd, (IV.A.27)

where we have used the fact that Rab = 0. Thus

1Rab = −
1

2
∇c∇cγab −Racbdγcd, (IV.A.28)

Note that this first order expansion gives the first order vacuum Einstein equation (7.5.23)
in [14].

The second order expansion term 2Rab is given by (IV.A.13c). In the TT gauge,
this becomes

2Rab = −2∇[a
2Ccc]b − 1Cdbc

1Ccad. (IV.A.29)

For the calculation of 2S, the divergence term will contribute only a surface term, so we put
it aside for the moment and consider

2Rab + 2∇[a
2Ccc]b =−

(
∇(aγ

c
d) −

1

2
∇cγad

)(
∇(bγ

d
c) −

1

2
∇dγbc

)

=− 1

4
(∇aγcd)(∇bγdc ) +

1

2
(∇cγda)(∇cγbd)−

1

2
(∇cγda)(∇dγcb )

=− 1

4
(∇aγcd)(∇bγdc ) +

1

2
(∇cγda)(∇cγbd)−

1

2
∇c(γda∇dγcb) +

1

2
γdaRcdb

eγce

(IV.A.30)

Thus the second order action is, ignoring surface terms,

2S =
1

16πG

∫ √
|g| d4x(gab 2Rab − γab 1Rab)

=
1

16πG

∫ √
|g| d4x

[
−1

4
(∇cγab)(∇cγab) +

1

2
γabRacbdγ

cd

]
.

(IV.A.31)

10Note that in any gauge, 1R = ∇a(−gab 1Cc
cb

+gcb 1Ca
cb
) is a total divergence, so 1S is just a surface term.

However, the TT gauge result that 1R = 0 allows us to remove it from 2S and 3S as well.
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Varying this with respect to γab gives the first order equation 1Rab = 0.

Finally, we calculate the third order action 3S = (16πG)−1
∫ √
|g| d4x 3R. First,

note that all the terms in 3R can be brought, by integration by parts and relabelling of
indices, into one of the following forms:

γab(∇cγda)(∇cγbd), γab(∇aγdc )(∇bγcd), γab(∇cγda)(∇dγcb ), or γabRacb
dγceγde.

(IV.A.32)
There is one other term which is allowed by dimensional analysis and the TT gauge condi-
tions, but it is related to these by

γab(∇aγdc )(∇dγcb) ∼=− (∇dγab)(∇aγdc )γcb − γab(∇d∇aγdc )γcb
=− γab(∇cγda)(∇dγcb ) + γabRacb

dγceγde,
(IV.A.33)

Where ∼= indicates equality up to a total divergence. Now,

gab 3Rab = gab(−2∇[a
3Ccc]b + 2 1Cdb[a

2Ccc]d + 2 2Cdb[a
1Ccc]d) (IV.A.34)

is simplified by noting that the first term is a total derivative, that 1Ccabg
ab = 0 in the TT

gauge, and that 2Ccab = −γcd 1Cdab, so

gab 3Rab ∼=2gab 1Cdbc
1Ceadγ

c
e =

γab

2
(∇aγdc +∇cγda −∇dγac)(∇cγbd +∇dγcb −∇bγcd)

=
γab

2
[−(∇aγdc )(∇bγcd) + 2(∇aγdc )(∇dγcb)]

∼=γab
[
−1

2
(∇aγdc )(∇bγcd)− (∇cγda)(∇dγcb) +Racb

dγceγde

]
.

(IV.A.35)

Now we move on to −γab 2Rab, using (IV.A.30) to say

2Rab = −∇a 2Cccb +∇c
(

2Ccab −
1

2
γda∇dγcb

)

− 1

4
(∇aγcd)(∇bγdc ) +

1

2
(∇cγda)(∇cγbd) +

1

2
γdaRcdb

eγce ; (IV.A.36)

since

2Ccab −
1

2
γda∇dγcb = −γcd∇(aγb)d +

1

2
γcd∇dγab −

1

2
γda∇dγcb , (IV.A.37)
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we have

−γab 2Rab ∼=(∇cγab)
(
−γcd∇aγbd +

1

2
γcd∇dγab −

1

2
γda∇dγcb

)

− γab
[
−1

4
(∇aγcd)(∇bγdc ) +

1

2
(∇cγda)(∇cγbd)−

1

2
Racb

dγceγde

]

=γab
[
−3

2
(∇aγdc )(∇dγcb) +

3

4
(∇aγcd)(∇bγdc )−

1

2
(∇cγda)(∇cγbd) +

1

2
Racb

dγceγde

]

∼=γab
[
−1

2
(∇cγda)(∇cγbd) +

3

4
(∇aγcd)(∇bγdc ) +

3

2
(∇cγda)(∇dγcb)−Racbdγceγde

]

(IV.A.38)

Finally,

γacγbc
1Rab = −

1

2
γacγbc∇d∇dγab − γacγbcRaebdγed ∼= γab

[
(∇cγda)(∇cγbd)−Racbdγceγde

]
,

(IV.A.39)
so

3R ∼= γab
[
1

2
(∇cγda)(∇cγbd) +

1

4
(∇aγdc )(∇bγcd) +

1

2
(∇cγda)(∇dγcb)−Racbdγceγde

]
(IV.A.40)

So the action to third order in λ, not including surface terms, is

S =
1

16πG

∫ √
|g| d4x

{
λ2
[
−1

4
(∇cγab)(∇cγab) +

1

2
γabRacbdγ

cd

]

λ3γab
[
1

2
(∇cγda)(∇cγbd) +

1

4
(∇aγdc )(∇bγcd) +

1

2
(∇cγda)(∇dγcb)−Racbdγceγde

]

+O(λ4)
}
. (IV.A.41)

IV.B Appendix: The propagator for a time-dependent

harmonic oscillator

For a simple harmonic oscillator with one degree of freedom φ(t) and the lagrangian

L(t) =
1

2

[
mφ̇2(t)−mω2φ2(t)

]
(IV.B.1)

one can easily calculate the propagator via a path integral[41]:

K(φbtb|φata) =
∫

φbφa

Dφ exp
[
i

2

∫ tb

ta

dt(mφ̇2 −mω2φ2)

]

=

√
mω

2πi sinωTba
exp

[
imω

2 sinωTba

(
φb
φa

)tr(
cosωTba −1
−1 cosωTba

)(
φb
φa

)]
.

(IV.B.2)
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The purpose of this appendix is to calculate the propagator when the coördinate φ
is a real vector, and the lagrangian is

L(t) =
1

2

[
φ̇(t)

tr
m(t)φ̇(t)− φ(t)tr̟(t)φ(t)

]
, (IV.B.3)

where the arbitrary time-dependent real symmetric matrices m(t) and ̟(t) have taken the
place of the constants m and mω2, respectively.

First, for the case of time-independent matrices m and ̟, we observe that as the
action is quadratic, the propagator must have the form[41] K = F (Tba)e

iScl (where Tba =
tb − ta). The action Scl of the classical path with endpoints φcl(ta) = φa and φcl(tb) = φb
can be calculated by defining q = m1/2φ so that

L(t) =
1

2

[
q̇(t)trq̇(t)− q(t)trm−1/2̟m−1/2q(t)

]
. (IV.B.4)

Defining Ω by Ω2 = m−1/2̟m−1/2, the classical solution is

qcl(t) = cosΩ(t− ta)qa + sinΩ(t− ta)
(

1

sinΩTba
qb −

cosΩTba
sinΩTba

qa

)
, (IV.B.5)

which makes the classical action

Scl =
1

2

∫ tb

ta

dt(q̇trcl q̇cl − qcltrΩ2qcl) =
1

2

(
qb
qa

)tr
(

Ω cosΩTba

sinΩTba
− Ω

sinΩTba

− Ω
sinΩTba

Ω cosΩTba

sinΩTba

)(
qb
qa

)

=
1

2

(
φb
φa

)tr

m1/2

(
Ω cosΩTba

sinΩTba
− Ω

sinΩTba

− Ω
sinΩTba

Ω cosΩTba

sinΩTba

)
m1/2

(
φb
φa

)
.

(IV.B.6)

This tells us that the infinitesimal propagator in the time-dependent case is

K(φbt+ dt|φat)

= F (t+ dt|t) exp
[
i

2

(
φb
φa

)tr

m1/2(t)

(
1−Ω2(t)(dt)2/2

dt − 1
dt

− 1
dt

1−Ω2(t)(dt)2/2
dt

)
m1/2(t)

(
φb
φa

)]

= F (t+ dt|t) exp
[
i

2

(
φb
φa

)tr
(
m(t)−̟(t)(dt)2/2

dt −m(t)
dt

−m(t)
dt

m(t)−̟(t)(dt)2/2
dt

)(
φb
φa

)]
(IV.B.7)

We can then build up the finite propagator Kba = K(φbtb|φata) by the composition
rule Kba =

∫
dφcKbcKca [which also allows us to determine the coëfficientF (tb|ta)]. A little

tinkering reveals that the form for K which is preserved under composition is

Kba =
1√

det(2πiCba)
exp

[
i

2

(
φb
φa

)tr(
C
−1
ba Bba −C−1

ba

−C−1
ba

tr
AbaC

−1
ba

)(
φb
φa

)]
, (IV.B.8)
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where Aba = A(tb|ta), Bba = B(tb|ta), and Cba = C(tb|ta) are all real matrices to be deter-
mined. In the infinitesimal case, they are given from (IV.B.7) by

A(t+ dt|t) = 1−̟(t)m−1(t)
dt2

2
+O(dt4) (IV.B.9a)

B(t+ dt|t) = 1−m−1(t)̟(t)
dt2

2
+O(dt4) (IV.B.9b)

C(t+ dt|t) = m−1(t)dt+O(dt3) (IV.B.9c)

Without loss of generality, we can take the matrix in the exponential to be symmetric, which
makes AC−1 = C−1trAtr and C−1B = BtrC−1tr.11 Using the Gaussian integral

∫
dv e

i
2v

trAv±ibtrv =
e−

i
2 b

trA−1b

√
det
(
A
2πi

) , (IV.B.10)

we can perform the composition

Kba =

∫
dφcKbcKca

=
1√

det(2πiCbc) det(2πiCca)
exp

{
i

2

[
φc

tr(AbcC
−1
bc + C

−1
ca Bca)φc

−2φctr(C−1
bc

tr
φb + C

−1
ca φa) + φb

tr
C
−1
bc Bbcφb + φa

tr
AcaC

−1
ca φa

]}

=
1√

det(2πiCbc) det
(

AbcC
−1
bc +C

−1
ca Bca

2πi

)
det(2πiCca)

exp

{
i

2

[
φb

tr
C
−1
bc Bbcφb

+φa
tr
AcaC

−1
ca φa − (φb

tr
C
−1
bc + φa

tr
C
−1
ca

tr
)(AbcC

−1
bc + C

−1
ca Bca)

−1(C−1
bc

tr
φb + C

−1
ca φa)

]}

(IV.B.11)

and read off

Aba = AcaAbc + AcaC
−1
ca BcaCbc − C

−1
ca

tr
Cbc (IV.B.12a)

Bba = BcaBbc + CcaAbcC
−1
bc Bbc − CcaC

−1
bc

tr
(IV.B.12b)

Cba = CcaAbc +BcaCbc. (IV.B.12c)

We can use these, along with the values (IV.B.9) for infinitesimal propagation, to get ex-
pressions for A(tb+ dtb|ta), B(tb+ dtb|ta), and C(tb+ dtb|ta) in terms of A(tb|ta), etc., which

11The matrix in (IV.B.8) seems to treat the matrices and their transposes unequally, but as
(

C−1B −C−1

−C−1tr AC−1

)
=

(
BtrC−1tr −C−1tr

−C−1 C−1trAtr

)
, this is not the case.
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give the differential equations

dA(tb|ta)
dtb

=
[
A(tb|ta)C−1(tb|ta)B(tb|ta)− C

−1(tb|ta)tr
]
m−1(tb) (IV.B.13a)

dB(tb|ta)
dtb

= −C(tb|ta)̟(tb) (IV.B.13b)

dC(tb|ta)
dtb

= B(tb|ta)m−1(tb); (IV.B.13c)

similarly, the expressions for A(tb|ta + dta) give the equations

dA(tb|ta)
dta

= ̟(ta)C(tb|ta) (IV.B.14a)

dB(tb|ta)
dta

= −m−1(ta)
[
A(tb|ta)C−1(tb|ta)B(tb|ta)− C

−1(tb|ta)tr
]

(IV.B.14b)

dC(tb|ta)
dta

= −m−1(ta)A(tb|ta). (IV.B.14c)

The initial conditions for either of these systems of equations are [see (IV.B.9)] A(t|t) = 1 =
B(t|t) and C(t|t) = 0.

Focusing on the tb equations, we can write (IV.B.13b) and (IV.B.13c) as a larger
matrix equation

d

dtb

(
B(tb|ta)tr
C(tb|ta)tr

)
=

(
0 −̟(tb)

m−1(tb) 0

)(
B(tb|ta)tr
C(tb|ta)tr

)
=M(tb)

(
B(tb|ta)tr
C(tb|ta)tr

)
(IV.B.15)

whose solution can be written in terms of a time-ordered exponential

(
B(tb|ta)tr
C(tb|ta)tr

)
= Texp

∫ tb

ta

dtM(t)

(
1
0

)
=

∞∑

n=0

(
n∏

k=1

∫ t̃k−1

ta

dt̃kM(t̃k)

)(
1
0

)
(IV.B.16)

where t̃0 = tb. Since

M(t)M(t̃) =

(
−̟(t)m−1(t̃) 0

0 −m−1(t)̟(t̃)

)
, (IV.B.17)

Btr contains only terms with even numbers of Ms, and

B(tb|ta)tr =
∞∑

n=0

n∏

k=1

(
−
∫ t̃k−1

ta

dtk

∫ tk

ta

dt̃k̟(tk)m
−1(t̃k)

)
. (IV.B.18)

Thus

B(tb|ta) =
∞∑

n=0

(
n∏

k=1

∫ t̃k−1

ta

dtk

∫ tk

ta

dt̃k

)
1∏

k=n

[
−m−1(t̃k)̟(tk)

]
, (IV.B.19a)
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and we can obtain the other two matrices by using (IV.B.13b) and (IV.B.14c):

C(tb|ta) = −
dB(tb|ta)

dtb
̟−1(tb) (IV.B.19b)

A(tb|ta) = −m(ta)
dC(tb|ta)
dta

. (IV.B.19c)

IV.C Appendix: Perturbative expansions

IV.C.1 A, B and C

To make practical use of the exact expressions (IV.B.19), we need to expand them
in powers of the coupling constant λ. The zero-order expansion is trivial, since m0 = 1 and
̟0 = Ω2

0, where

Ω0 =

(
{δM1M2kM1} {0}

{0} {δM1M2kM1}

)
. (IV.C.1)

The expansion is

A0 = cosΩ0Tba = B0 (IV.C.2a)

C0 =
sinΩ0Tba

Ω0
(IV.C.2b)

Proceeding to the first order terms, we first need to expand

1∏

k=n

[
−m−1(t̃k)̟(tk)

]
=

1∏

k=n

{
−[1 + λm1(t̃k)]

−1[Ω2
0 + λ̟1(tk)]

}

=

1∏

k=n

[1 + λm1(t̃k)]
−1[1 + λµ1(tk)](−Ω2

0),

(IV.C.3)

where I have defined µ1(tk) = ̟1(tk)Ω
−2
0 , and used the fact that the expressions (IV.5.17–

IV.5.18) have only zero- and first-order terms. The first order term in (IV.C.3) is thus

n∑

k=1

(−Ω2
0)
n−k[µ1(tk)−m1(t̃k)](−Ω2

0)
k, (IV.C.4)

which gives

B1 =

∞∑

n=1

(
n∏

k=1

∫ t̃k−1

ta

dtk

∫ tk

ta

dt̃k

)
n∑

k=1

(−Ω2
0)
n−k[µ1(tk)−m1(t̃k)](−Ω2

0)
k. (IV.C.5)
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If we use12

(
n∏

k=1

∫ t̃k−1

ta

dt̃k

)
f(t̃ℓ) =

(
ℓ∏

k=1

∫ t̃k−1

ta

dt̃k

)
f(t̃ℓ)

(
n∏

k=ℓ+1

∫ t̃k−1

ta

dt̃k

)

=

(
ℓ∏

k=1

∫ t̃k−1

ta

dt̃k

)
f(t̃ℓ)

(t̃ℓ − ta)n−ℓ
(n− ℓ)! =

(
ℓ∏

k=1

∫ tb

t̂k−1

dt̂k

)
f(t̂1)

(t̂1 − ta)n−ℓ
(n− ℓ)!

=

∫ tb

ta

dt̂1f(t̂1)
(t̂1 − ta)n−ℓ
(n− ℓ)!

(
ℓ∏

k=2

∫ tb

t̂k−1

dt̂k

)
=

∫ tb

ta

dtf(t)
(tb − t)ℓ−1

(ℓ− 1)!

(t− ta)n−ℓ
(n− ℓ)! , (IV.C.6)

we find that

B1 =

∞∑

n=1

(−1)n
(2n− 1)!

∫ tb

ta

dt

n∑

k=1

[
Ω2n−2k

0 (t− ta)2n−2k+1
(
2n−1
2k−2

)
µ1(t)(tb − t)2k−2Ω2k

0

− Ω2n−2k
0 (t− ta)2n−2k

(
2n−1
2k−1

)
m1(t)(tb − t)2k−1Ω2k

0

]

=

∞∑

n=1

(−1)n
(2n− 1)!

∫ tb

ta

dt

n∑

k=1

{
Ω−1

0 [Ω0(t− ta)]2n−2k+1
(
2n−1
2k−2

)
̟1(t)[Ω0(tb − t)]2k−2

− [Ω0(t− ta)]2n−2k
(
2n−1
2k−1

)
m1(t)[Ω0(tb − t)]2k−1Ω0

}
.

(IV.C.7)

To proceed further, we should streamline the notation for components of matrices
on RS/2⊕S/2. At the moment, the components of Ω0 are written as ΩUL

0M1M2
= δM1M2kM1 ,

ΩUR

0M1M2
= 0, ΩLL

0M1M2
= 0, and ΩLR

0M1M2
= δM1M2kM1 . This is greatly simplified if we

observe that k−M = |−kM| = kM, and define

M =

(
{MUL

M1M2
} {MUR

M1M2
}

{MLL

M1M2
} {MLR

M1M2
}

)
=

(
{MM1M2} {MM1,−M2}
{M−M1,M2} {M−M1,−M2}

)
= {MM1M2}, (IV.C.8)

where the indices in the first two expressions range over S/2 and those in the third range

12As defined in Appendix IV.B, t̃0 = tb. In addition, t̂0 = ta.
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over S. Then Ω0M1M2 = δM1M2kM1 , and

B1M1M2

=

∞∑

n=1

(−1)n
(2n− 1)!

∫ tb

ta

dt

{
̟1(t)M1M2

kM1

n∑

k=1

(
2n−1
2k−2

)
[

θA1︷ ︸︸ ︷
kM1(t− ta)]2n−2k+1[

θB2︷ ︸︸ ︷
kM2(tb − t)]2k−2

− kM2m1(t)M1M2

n∑

k=1

(
2n−1
2k−1

)
[kM1(t− ta)]2n−2k[kM2(tb − t)]2k−1

}

=

∞∑

n=1

(−1)n
(2n− 1)!

∫ tb

ta

dt

(
̟1(t)M1M2k

−1
M1

(θA1 + θB2)
2n−1 + (θA1 − θB2)

2n−1

2

−m1(t)M1M2kM2

(θA1 + θB2)
2n−1 − (θA1 − θB2)

2n−1

2

)

=−
∫ tb

ta

dt

(
̟1(t)M1M2k

−1
M1

sin(θA1 + θB2) + sin(θA1 − θB2)

2

−m1(t)M1M2kM2

sin(θA1 + θB2)− sin(θA1 − θB2)

2

)

=

∫ tb

ta

dt
[
m1(t)M1M2kM2 cos θA1 sin θB2 −̟1(t)M1M2k

−1
M1

sin θA1 cos θB2

]

(IV.C.9)

Then we can use the first order term in (IV.B.19b)

C1 = −dB1

dtb
Ω−2

0 − Ω0 sinΩ0TbaΩ
−2
0 ̟1(tb)Ω

−2
0 (IV.C.10)

to calculate

C1M1M2 = −
∫ tb

ta

dt

[
m1(t)M1M2 cos θA1 cos θB2 +̟1(t)M1M2

sin θA1 sin θB2

kM1kM2

]
; (IV.C.11)

likewise, the first order term in (IV.B.19c),

A1 = −dC1

dta
+m1(ta) cosΩ0Tba, (IV.C.12)

gives

A1M1M2 =

∫ tb

ta

dt
[
m1(t)M1M2kM1 sin θA1 cos θB2 −̟1(t)M1M2k

−1
M2

cos θA1 sin θB2

]
.

(IV.C.13)
It is straightforward to check that (IV.C.9), (IV.C.11), and (IV.C.13) satisfy (IV.B.13) and
(IV.B.14)
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IV.C.2 A, B and C

We can use the expansions for A, B and C calculated in Section IV.C.1 to find
expansions for

A[Φ] = A

(
T

2

∣∣∣∣−
T

2

)
C
−1

(
T

2

∣∣∣∣−
T

2

)
− ṁ

(
−T

2

)
(IV.5.25a)

B[Φ] = C
−1

(
T

2

∣∣∣∣−
T

2

)
B

(
T

2

∣∣∣∣−
T

2

)
+ ṁ

(
T

2

)
(IV.5.25b)

and

C[Φ] = C
−1

(
T

2

∣∣∣∣−
T

2

)
. (IV.5.25c)

From (IV.C.2), the zero order terms are

A0 =
Ω0

tanΩ0T
= B0 (IV.C.14a)

C0 =
Ω0

sinΩ0T
; (IV.C.14b)

Proceeding to the first order terms, we have

A1[Φ] = A1
Ω0

sinΩ0T
− cosΩ0T

Ω0

sinΩ0T
C1

Ω0

sinΩ0T
− ṁ1

(
−T

2

)
; (IV.C.15)

using (IV.C.13) and (IV.C.11) gives

A1M1M2 =
kM1kM2

sin kM1T sin kM2T

∫ T/2

−T/2
dt

[
m1(t)M1M2 sin kM1T sin θA1 cos θB2

− ̟1(t)M1M2

kM1kM2

sinkM1T cos θA1 sin θB2 +m1(t)M1M2 cos kM1T cos θA1 cos θB2

+
̟1(t)M1M2

kM1kM2

cos kM1T sin θA1 sin θB2

]
− ṁ1

(
−T

2

)

M1M2

; (IV.C.16)

if we note that kM1T − θA1 = kM1(T/2− t) = θB1, we can convert this to

A1M1M2 =
kM1kM2

sin kM1T sin kM2T

∫ T/2

−T/2
dt

[
m1(t)M1M2 cos θB1 cos θB2

− ̟1(t)M1M2

kM1kM2

sin θB1 sin θB2

]
− ṁ1

(
−T

2

)

M1M2

. (IV.C.17)
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The ṁ boundary term can be converted as follows:

− ṁ1

(
−T

2

)

M1M2

sin kM1T sin kM2T = ṁ(t)M1M2 sin θB1 sin θB2

∣∣T/2
−T/2

=

∫ T/2

−T/2
dt

[
m̈1(t)M1M2 sin θB1 sin θB2 + ṁ1(t)M1M2

d

dt
(sin θB1 sin θB2)

]
; (IV.C.18)

integration by parts gives

∫ T/2

−T/2
dtṁ1(t)M1M2

d

dt
(sin θB1 sin θB2)

= m1(t)M1M2

d

dt
(sin θB1 sin θB2)

∣∣∣∣
T/2

−T/2
−
∫ T/2

−T/2
dtm1(t)M1M2

d2

dt2
(sin θB1 sin θB2)

= m1

(
−T

2

)

M1M2

(kM1 cos kM1T sin kM2T + kM2 sinkM1T cos kM2T )

+

∫ T/2

−T/2
dtm1(t)M1M2

[
(k2M1

+ k2M2
) sin θB1 sin θB2 − 2kM1kM2 cos θB1 cos θB2

]
, (IV.C.19)

so

A1M1M2 = m1

(
−T

2

)

M1M2

(
kM1

tan kM1T
+

kM2

tankM2T

)

− kM1kM2

sin kM1T sin kM2T

∫ T/2

−T/2
dt

[
m1(t)M1M2 cos θB1 cos θB2 + n1(t)M1M2 sin θB1 sin θB2

]

(IV.C.20)

where

n1(t)M1M2 =
̟1(t)M1M2 − m̈1(t)M1M2 −m1(t)M1M2(k

2
M1

+ k2M2
)

kM1kM2

. (IV.C.21)

Analogously, we find

B1M1M2 = m1

(
T

2

)

M1M2

(
kM1

tan kM1T
+

kM2

tan kM2T

)

− kM1kM2

sin kM1T sin kM2T

∫ T/2

−T/2
dt

[
m1(t)M1M2 cos θA1 cos θA2 + n1(t)M1M2 sin θA1 sin θA2

]

(IV.C.22)
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The first order term C1 = − Ω0

sinΩ0T
C1

Ω0

sinΩ0T
can be cast into a similar form by noticing that

∫ T/2

−T/2
dtm̈1(t)M1M2 sin θA1 sin θB2

= ṁ1(t)M1M2 sin θA1 sin θB2

∣∣T/2
−T/2 −

∫ T/2

−T/2
dtṁ1(t)M1M2

d

dt
(sin θA1 sin θB2)

= −m1(t)M1M2 (kM1 cos θA1 sin θB2 − kM2 sin θA1 cos θB2)
∣∣T/2
−T/2

+

∫ T/2

−T/2
dtm1(t)M1M2

d2

dt2
(sin θA1 sin θB2)

= m1

(
T

2

)

M1M2

kM2 sinkM1T +m1

(
−T

2

)

M1M2

kM1 sin kM2T

−
∫ T/2

−T/2
dtm1(t)M1M2

[
(k2M1

+ k2M2
) sin θA1 sin θB2 + 2kM1kM2 cos θA1 cos θB2

]
, (IV.C.23)

so that

C1M1M2 = m1

(
T

2

)

M1M2

kM2

sin kM2T
+m1

(
−T

2

)

M1M2

kM1

sin kM1T

− kM1kM2

sin kM1T sin kM2T

∫ T/2

−T/2
dt

[
m1(t)M1M2 cos θA1 cos θB2 − n1(t)M1M2 sin θA1 sin θB2

]
.

(IV.C.24)

Now, each of the expressions (IV.C.20), (IV.C.22) and (IV.C.24) contains integrals over
terms with two t-dependent trigonometric functions, e.g., cos θA1 cos θB2 = cos kM1(t +
T/2) coskM2(T/2− t); this can be rewritten using

cos kM1(t+ T/2) coskM2(T/2− t) =
1

2
[cos(k−t+ k+T/2) + cos(k+t+ k−T/2)]

=
1

2

[
cos k−t cos

k+T

2
− sink−t sin

k+T

2
+ cos k+t cos

k−T

2
− cos k+t cos

k−T

2

]
,

(IV.C.25)

where k± = kM1 ± kM2 . This sort of identity allows us to rewrite (IV.C.20), (IV.C.22) and
(IV.C.24) as

A1M1M2 = m1

(
−T

2

)

M1M2

(
kM1

tan kM1T
+

kM2

tankM2T

)

− kM1kM2

2 sinkM1T sin kM2T

∫ T/2

−T/2
dt

{
[m1(t) + n1(t)]M1M2

(
cos k−t cos

k−T

2
+ sin k−t sin

k−T

2

)

+ [m1(t)− n1(t)]M1M2

(
cos k+t cos

k+T

2
+ sin k+t sin

k+T

2

)}
(IV.C.26a)
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B1M1M2 = m1

(
T

2

)

M1M2

(
kM1

tan kM1T
+

kM2

tan kM2T

)

− kM1kM2

2 sinkM1T sin kM2T

∫ T/2

−T/2
dt

{
[m1(t) + n1(t)]M1M2

(
cos k−t cos

k−T

2
− sin k−t sin

k−T

2

)

+ [m1(t)− n1(t)]M1M2

(
cos k+t cos

k+T

2
− sink+t sin

k+T

2

)}
(IV.C.26b)

C1M1M2 = m1

(
T

2

)

M1M2

kM2

sin kM2T
+m1

(
−T

2

)

M1M2

kM1

sin kM1T

− kM1kM2

2 sinkM1T sin kM2T

∫ T/2

−T/2
dt

{
[m1(t) + n1(t)]M1M2

(
cos k−t cos

k+T

2
− sin k−t sin

k+T

2

)

+ [m1(t)− n1(t)]M1M2

(
cos k+t cos

k−T

2
− sin k+t sin

k−T

2

)}
(IV.C.26c)

These seem to be taking on a nice form in terms of more basically defined modes

χ± =

∫ T/2

−T/2
dt[m1(t)∓ n1(t)]M1M2 cosk±t+ boundary terms (IV.C.27a)

and

σ± =

∫ T/2

−T/2
dt[m1(t)∓ n1(t)]M1M2 sink±t+ boundary terms, (IV.C.27b)

namely




B1M1M2

A1M1M2

C1M1M2

C1
tr
M1M2


 = − kM1kM2

2 sin kM1T sin kM2T




cos k−T2 − sin k−T
2 cos k+T2 − sin k+T

2

cos k−T2 sin k−T
2 cos k+T2 sin k+T

2

cos k+T2 − sin k+T
2 cos k−T2 − sin k−T

2

cos k+T2 sin k+T
2 cos k−T2 sin k−T

2







χ−
σ−
χ+

σ+


 ,

(IV.C.28)
Where we calculate C1

tr
M1M2

= C1M2M1 . We can use this to define χ± and σ±, and inverting
the matrix to write



χ−
σ−
χ+

σ+


 = − 1

2kM1kM2




cos k−T2 cos k−T2 − cos k+T2 − cos k+T2
sin k−T

2 − sin k−T
2 − sin k+T

2 sin k+T
2

− cos k+T2 − cos k+T2 cos k−T2 cos k−T2
− sin k+T

2 sin k+T
2 sin k−T

2 − sin k−T
2







B1M1M2

A1M1M2

C1M1M2

C1
tr
M1M2




(IV.C.29)
determines the boundary terms, giving

χ± =

∫ T/2

−T/2
dt[m1(t)∓ n1(t)]M1M2 cos k±t∓ m1(t)M1M2

k±
kM1kM2

sin 2k±t

∣∣∣∣
T/2

−T/2
(IV.C.30a)
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and

σ± =

∫ T/2

−T/2
dt[m1(t)∓ n1(t)]M1M2 sin k±t± m1(t)M1M2

k±
kM1kM2

cos 2k±t

∣∣∣∣
T/2

−T/2
.

(IV.C.30b)
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Chapter V

What have we learned?

In conclusion, these are some lessons and accomplishments of this research program.

The first project (Chapter II) concerned spacetime alternatives in the general-
ized quantum mechanics of a relativistic particle. While the theory was chosen for its
reparametrization invariance, in analogy to the time reparametrization invariance of gen-
eral relativity, that invariance was not the focus of the work. Rather, the goal was to exhibit
a simple coarse graining which would decohere for certain initial and final conditions. Due
to the complexity of the theory (notably the inclusion in the sum of paths which go both for-
ward and backward in time), the decoherence functional could only be calculated for coarse
grainings involving a region extending arbitrarily far into the past and future. This leads
to a number of further complications, such as a non-trivial final condition which allowed
non-overlapping branch wavefunctions to interfere with one another, and a possible depen-
dence of the decoherence functional upon the choice of surfaces on which the initial and final
conditions are attached. Nonetheless it is possible to choose initial conditions which lead to
decoherence and the assignment of probabilities.

When generalized quantum mechanics was applied to a non-Abelian gauge theory
(Chapter III), the gauge invariance of the theory, and the constraints associated therewith,
were of paramount interest. First (Sec III.3), I demonstrated one way to convert the for-
mal sum-over-histories expression for the class operators used to construct the decoherence
functional to a more explicit “skeletonized” construction on a spacetime lattice. In the limit
that the lattice spacing vanishes, this construction is gauge invariant and gives the same
result for the propagator as a reduced phase space operator theory. Then I turned to results
for particular coarse grainings, concentrating on those defined by the constraints. When the
constraints are expressed in terms of the full phase space variables (Sec III.4), with the gauge
electric field represented by the momentum conjugate to the vector potential, the scalar po-
tential acts as a Lagrange multiplier, enforcing the constraint identically. This holds for any
coarse graining which does not involve a covariant time derivative. If the constraints are
defined solely in terms of configuration space variables (Sec. III.5), however, with the gauge
electric field expressed in terms of the scalar and vector potentials, things are less clear-cut.
For coarse grainings defined by the non-Abelian equivalent of the longitudinal part of the
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electric field, I extended the result from Abelian theory, namely that any coarse graining
which decoheres produces a definite prediction that the constraint is satisfied, and exhibited
such a decohering coarse graining. However, the result did not extend to the non-Abelian
divergence of the electric field because of the covariant derivative’s dependence on what are
usually called the physical degrees of freedom. And in the Abelian case, I constructed a
quantity which should vanish in the presence of the constraints, but which also involves the
“physical” degrees of freedom, and demonstrated that there were decohering coarse grainings
by this quantity which predicted non-zero probabilities for alternatives inconsistent with the
constraint. This is a different result than would be predicted for the analogous phase space
quantity. Insight into the nature of this dilemma was gained by demonstrating the manifest
Lorentz invariance (Sec III.6) of the sum-over-histories generalized quantum mechanics of
this theory when expressed in the solely configuration-space form. Even the operator con-
straints imposed upon the initial and final wavefunctions do not pick out an arbitrary time
direction. Instead, the relevant direction is the local normal to the spacelike surface on which
the wavefunctions are defined. (These results were demonstrated only formally, and not in a
skeletonized theory.) I observed that, from the point of view of Lorentz invariance, it is not
surprising that the constraints, expressed as configuration space quantities, are not always
satisfied, as there is nothing to distinguish them from any of the other components of the
equations of motion. Since defining alternatives at a moment of time would select a preferred
time direction, it is reasonable to conjecture that the spacetime nature of the field averages
is an essential part of this result.

The final project, concerning the decoherence of spacetime (Chapter IV), demon-
strated a toy model result which suggested that coarse grainings by long-wavelength features
of the gravitational field might be made to decohere via their coupling to the unobserved
short-wavelength modes. The toy model used has an action similar to that for perturbative
general relativity, with the perturbed metric replaced by a scalar field. Due to the pertur-
bative nature of the calculation, the non-perturbative effect of decoherence can only occur if
some other quantity, such as the inverse temperature of the short-wavelength “environment”,
becomes small. If the short-wavelength modes are taken to be in a thermal state defined by
the expected cosmic graviton background temperature, the scale dividing “long” and “short”
wavelengths must be larger than around a millimeter. In that case, sufficiently coarse-grained
sets of alternatives involving long-wavelength modes whose spatial frequency is higher than
their temporal frequency (which includes static configurations) should decohere.

So I have illustrated some of the capabilities of, and challenges to, generalized
quantum mechanics as a quantization method for a theory of gravity, in particular in the areas
of spacetime coarse grainings, the role of the constraints, and the use of some gravitational
modes to induce decoherence in others. Of course, many issues remain. The relativistic
particle could be formulated in a manner which more heavily stressed the reparametrization
invariance, the relationship between spacetime alternatives in a gauge theory and the singling
out of the constraint could be further explored, and there remains much ground to cover on
the decoherence of spacetime, notably to restore the tensor nature of the field, and eventually
to attempt a non-perturbative analysis. In addition, there are many open questions in the
quantization of gravity and similar theories which were not addressed here, including the
resolution of the non-renormalizability problem and the impact of global topological effects.
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