
STAT 489-01: Bayesian Methods of Data Analysis

Problem Set 3

Assigned 2017 February 7
Due 2017 February 14

Show your work on all problems! Be sure to give credit to any collaborators, or
outside sources used in solving the problems. Note that if using an outside source to do
a calculation, you should use it as a reference for the method, and actually carry out the
calculation yourself; it’s not sufficient to quote the results of a calculation contained in an
outside source.

1 Marginalization and the Hessian Matrix

Suppose that the joint posterior on a pair of parameters θ1, θ2 is exactly Gaussian, and that
the MAP values for the observed data y happen to be zero:

p(θ|y, I) ∝ exp
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(1.1)

(a) Complete the square to write H11(θ1)
2+2H12θ1θ2+H22(θ2)

2 in the form [Aθ2−B]2+C
(with the explicit forms of A, B and C specified).

(b) Marginalize over θ2 to obtain the posterior p(θ1|y, I). Show that it is a Gaussian with
mean zero and variance Σ11 = H22/(H11H22 − [H12]

2).

(c) Show that the matrix

Σ =
1

H11H22 − (H12)2

(
H22 −H12

−H12 H11

)
(1.2)

is the matrix inverse of H, i.e., verify that the matrix product ΣH is the identity

matrix 1 =

(
1 0
0 1

)
.

2 McElreath Chapter 3, Exercises 3H1-3H5

1



3 Multi-Parameter Posterior

Consider a model where the data y are a sample of size n drawn from a Gamma distribution
with unknown shape parameter θ1 and rate parameter θ2:

p(y|θ, I) =
n∏
i=1

θθ12
Γ(θ1)

yθ1−1
i e−θ2y 0 < yi <∞ (3.1)

Assume the improper prior p(θ|I) ∝ 1
θ2

, 0 < θ1, θ2 < ∞, and let the observed data be
{yi} = {0.38601, 0.58601, 0.81969, 0.09019, 0.30903}.

(a) Evaluate the log-posterior ln p(θ|y, I), up to an additive constant, on a 100× 100 grid
of points in θ1 and θ2, and produce a contour plot. Choose a grid which extends far
enough to include all the points where ln p(θ|y, I) & max(ln p(θ|y, I))− 3. This may
take a little experimentation, but a good starting point is to work out the method-of-
moments estimates for θ1 and θ2, and go out about five times as far in each direction.

(b) Evaluate the posterior distribution p(θ|y, I), and produce a contour plot.

(c) Marginalize your gridded expressions to obtain posterior distributions p(θ1|y, I) and
p(θ2|y, I), and plot each of them.

(d) Draw a sample of size N = 12345 from your grid-estimated posterior, with appropriate
jitter, and produce a scatter plot of the two-dimensional sample.

(e) Use the dens() function from the rethinking package to produce estimates of p(θ1|y, I)
and p(θ2|y, I) from your sample.

(f) Separately estimate each of the following from your grid-evaluated posterior and your
sample: E(θ1|y, I), E(θ2|y, I), V (θ1|y, I), V (θ2|y, I), Cov(θ1, θ2|y, I).

(g) Comment on the behavior of your posterior at the boundaries of your grid, and the
implications for defining a practical grid. What method could you use to improve upon
this procedure?
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