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1 Bayesian Model Comparison

So far we’ve concentrated on parameter estimation in a Bayesian
context. We have some information I about the way a system
works, which includes a model with a vector of parameters θ, a
sampling distribution p(y|θ, I), and a prior distribution p(θ|I)
for the parameter values. We use Bayes’s theorem to construct
a posterior distribution p(θ|y, I) for the parameters, in light of
the data y:

p(θ|y, I) =
p(y|θ, I) p(θ|I)

p(y|I)
(1.1)

where

p(y|I) =

∫
p(y|θ, I) p(θ|I) dθ (1.2)

is the sampling distribution appropriately averaged over the full
range of parameter values allowed by the model. We have often
thought of this denominator as a normalizing factor which can
be worked out after the fact as long as we keep track of the θ
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dependence, i.e., by writing Bayes’s theorem as

p(θ|y, I) ∝ p(y|θ, I) p(θ|I) (1.3)

So far the background information I has implicitly included the
model that determined both the likelihood/sampling distribu-
tion and the prior. Now we wish to explicitly separate that out
and write it as M, I, since we might want to compare two models
M1 and M2. In that case the marginalized sampling distribution
becomes

p(y|M, I) =

∫
p(y|θ,M, I) p(θ|M, I) dθ (1.4)

We might be interested in the posterior probability of the model
being correct, which we could write by Bayes’s theorem as

Pr(M |y, I) =
p(y|M, I) Pr(M |I)

p(y|I)
(1.5)

Note that we might not want to take a probability like Pr(M |I)
too literally. Models almost always simplify reality, so in all
likelihood no model is exactly correct. As George Box said1,
“Essentially, all models are wrong, but some are useful.” So
when we assign a probability to a model being correct, we mean
that it’s the best available description in the context of our ob-
servations.

There are a few problems with assigning a posterior probabil-
ity to a model’s correctness. The first is the common problem
that we need the prior probability Pr(M |I) to construct the
posterior probability Pr(M |y, I). A more serious problem is the
construction of the marginal sampling distribution p(y|I). To

1Box & Draper, Empirical Model-Building and Response Surfaces (Wi-
ley. 1987)

get this we need a complete set {Mi} of possible models and the
prior probabilities for all of them:

p(y|I) =
∑
i

p(y|Mi, I) Pr(Mi, I) (1.6)

Fortunately, things become a lot simpler if we compare two mod-
els and consider the posterior odds ratio

Pr(M1|y, I)

Pr(M2|y, I)
=
p(y|M1, I) Pr(M1|I)/p(y|I)

p(y|M2, I) Pr(M2|I)/p(y|I)

=

(
p(y|M1, I)

p(y|M2, I)

)(
Pr(M1|I)

Pr(M2|I)

) (1.7)

We see that not only has the troublesome factor p(y|I) cancelled
out, we’re left with a posterior odds ratio which factors into the
product of the prior odds ratio Pr(M1|I)/Pr(M2|I) and the so-
called Bayes factor

B12 =
p(y|M1, I)

p(y|M2, I)
(1.8)

The Bayes factor tells us how much our relative assessment of the
two models M1 and M2 has changed as a result of the observed
data y. It’s handy because even though two observers might
disagree on the prior odds ratio, Pr(M1|I)

Pr(M2|I) 6=
Pr(M1|I′)
Pr(M2|I′) , they’re more

likely to agree on the factor by which it changes as a result of
y, p(y|M1,I)

p(y|M2,I)
= p(y|M1,I′)

p(y|M2,I′)

This is the reason why the marginalized likelihood

p(y|M, I) =

∫
p(y|θ,M, I) p(θ|M, I) dθ (1.9)

is sometimes called the “evidence” for model M contained in
the data y. The Bayes factor between two models is the ratio
of the evidences.
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1.1 Jaynesian Evidence

One interesting application of this construction is to use as the
two models a hypothesis H and its negation H:

Pr(H|y, I)

Pr(H|y, I)
=

(
p(y|H, I)

p(y|H, I)

)(
Pr(H|I)

Pr(H|I)

)
(1.10)

Jaynes2 constructs a log-odds-ratio between a hypothesis and its
negation in light of any state of knowledge X:

e(H|X) = 10 log10

Pr(H|X)

Pr(H|X)
= 10 log10

Pr(H|X)

1− Pr(H|X)
(1.11)

Somewhat confusingly, he calls this the “evidence” for hypoth-
esis H. Since evidence is usually taken to have the different
meaning just described, we’ll call e(H|X) the Jaynesian evi-
dence. The use of 10 as the base of the logarithm, and the factor
of 10 out front, is a matter of convention, but it can make the
interpretation a little easier. The Jaynesian evidence is usually
quoted in units of decibels (dB), with 10 dB corresponding to a
factor of 10. (Decibels were invented as a unit of sound intensity,
but it’s well known that logarithmic scales are appropriate for
many areas of human percention, and the basis of, for example,
the Richter scale for earthquakes and the stellar magnitude scale
for astronomical objects.) A few (approximate) points on the
scale should give you a sense of how it works

2Probability Theory: the Logic of Science (Cambridge, 2003)

Pr(H|X) Pr(H|X) : Pr(H|X) e(H|X)
10−6 1 : 1,000,000 −60 dB
10−3 1 : 1,000 −30 dB
1% 1 : 100 −20 dB
9% 1 : 10 −10 dB
10% 1 : 9 −9.5 dB
20% 1 : 4 −6 dB
33% 1 : 2 −3 dB
50% 1 : 1 0 dB
67% 2 : 1 +3 dB
80% 4 : 1 +6 dB
90% 9 : 1 +9.5 dB
91% 10 : 1 +10 dB
99% 100 : 1 +20 dB

1− 10−3 1,000 : 1 +30 dB
1− 10−6 1,000,000 : 1 +60 dB

You can see how this log-odds scale wrings out more information
when probabilities are close to zero or one. An analogy is in the
field of reliability engineering, where an uptime of 99.999% is
referred to as “five nines”. This would correspond to an evidence
value of +50 dB for the proposition that the system will be up
when you spot-check it once.

The application of the Jaynesian evidence scale to Bayesian
inference is that (1.10) becomes an additive relationship

e(H|y, I) = e(H|I) + 10 log10

p(y|H, I)

p(y|H, I)
(1.12)
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In fact, you can use the product rule to decompose the change-
of-evidence term and write, e.g.,

e(H|y1y2, y3, I) = e(H|I) + 10 log10

p(y1|H, I)

p(y1|H, I)

+ 10 log10

p(y2|y1, H, I)

p(y2|y1, H, I)
+ 10 log10

p(y3|y1, y2, H, I)

p(y3|y1, y2, H, I)
(1.13)

In fact, if the successive observations are logically independent
under both H and H, so that, e.g., p(y2|y1, H, I) = p(y2|H, I)
and p(y2|y1, H, I) = p(y2|H, I), things simplify even further.
But that’s not as common as it sounds, and basically only works
when there are two competing models, so that e.g., H = M1

and H = M2. If there are multiple models, it becomes more
complicated, because H provides a complicated description of
the system. For instance, if we have three models Mi, k = 1, 2, 3,
we may have p(y2|y1,Mi, I) = p(y2|Mi, I) for all of them, but

p(y2|y1,M1, I)

= p(y2|y1,M2, I) Pr(M2|y1,M1, I)+p(y2|y1,M3, I) Pr(M3|y1,M1, I)

= p(y2|M2, I) Pr(M2|y1,M1, I)+p(y2|M3, I) Pr(M3|y1,M1, I)
(1.14)

Now p(y2|y1,M1, I) does still depend on y1, since the previ-
ous observation influences our assessment of which competing
model is most likely to apply to y2. You can actually trace
the fortunes of competing models and see their influences on
each others’ Jaynesian evidence; see the example in Jaynes
chapter four, and on the upcoming homework. You can also
see that the ratio of the terms p(y2|M2, I) Pr(M2|y1,M1, I) and
p(y2|M3, I) Pr(M3|y1,M1, I) is just the posterior odds ratio for

M2 and M3, in light of all the data:

p(y2|M2, I) Pr(M2|y1,M1, I)

p(y2|M3, I) Pr(M3|y1,M1, I)

=
p(y2|M2, I) Pr(M2|y1, I)/�������

Pr(M1|y1, I)

p(y2|M3, I) Pr(M3|y1, I)/Pr(�����
M1|y1, I)

=
Pr(M2|y1y2, I)

Pr(M3|y1y2, I)
(1.15)

1.2 Promotion of unlikely models by obser-
vation

The Bayes factor and similar constructions can put into context
inferences that seem to “step outside” of the formalism. We can
perform inference in the context of a model M1, and effectively
assume it’s true while e.g., inferring the values of unspecified
parameters using e.g., the posterior distribution p(θ|y,M1, I).
But presumably you’re not completely certain M1 is the “right”
model. Suppose you allow for the 1000-to-1 possibility that
your assumptions are wrong. Then the prior Jaynesian evi-
dence for your model is not infinite, but +30 dB. But then
you find that the data don’t “fit” the model too well, in par-
ticular because p(y|M1, I) is rather small. Small in comparison
to what is a question we’ll consider at length later, but sup-
pose the competing model M2 with negligible prior evidence
−30 dB has a much higher evidence p(y|M2, I), say a Bayes fac-
tor p(y|M2, I)/p(y|M1, I) of one million? Then the posterior
Jaynesian evidences have flipped, and now M2 is at +30 dB and
almost certainly the right model. It’s not generally as cleancut
as that, but the point is that, in addition to the model or models
you lay out when you set up your problem, there are probably a
handful of remote possibilities you consider negligible. But if the
data fit the expected model(s) badly, you can check whether any
of the initially unlikely models will get promoted to a significant
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posterior probability.

1.3 Bayes factor example

One danger in just considering how well a model “fits” observed
data is that you can always produce a model to fit data arbi-
trarily well, by adding enough parameters and tuning them. In
the extreme limit, define one parameter per data point and let
the model specify all of the data exactly. Fortunately, the Bayes
factor has a way to penalize models for “overtuning”. Consider
a simple case where there are two models: M0, which has no
parameters and M1, which has a parameter θ. If we measure
data y, the Bayes factor comparing the two models is

B10 =

∫∞
−∞ p(y|θ,M1, I) p(θ|M1, I) dθ

p(y|M0, I)
(1.16)

To get a handle on what the marginalization of the parameter
θ does, as compared with the maximization done by the frequen-
tist method, let’s make some simplifying assumptions. First let’s
assume the likelihood p(y|θ,M1, I), seen as a function of θ, can
be approximated as a Gaussian about the maximum likelihood
value θ̂:

p(y|θ,M1, I) ≈ p(y|θ̂,M1, I) e−H(θ−θ̂)/2 (1.17)

We’ll also assume that this is sharply peaked compared to the
prior p(θ|M1, I) and therefore we can replace θ in the argument

of the prior with θ̂, and∫ ∞
−∞

p(y|θ,M1, I) p(θ|M1, I) dθ

≈ p(y|θ̂,M1, I) p(θ̂|M1, I)

∫ ∞
−∞

e−H(θ−θ̂)/2 dθ

= p(y|θ̂,M1, I) p(θ̂|M1, I)
√

2π/H (1.18)

We can then approximate the Bayes factor as

B10 =
p(y|θ̂,M1, I)

p(y|M0, I)

√
2π/H

[p(θ̂|M1, I)]−1
(1.19)

The first factor is the ratio of the likelihoods between the best-fit
version of model M1 and the parameter-free model M0. That’s
basically the end of the story in frequentist model comparison,
and we can see that if M0 is included as a special case of M1,
this ratio will always be greater or equal to one, i.e., the tunable
model will always be able to find a higher likelihood than the
model without that tunable parameter. But in Bayesian model
comparison, there is also the second factor:√

2π/H

[p(θ̂|M1, I)]−1
“Occam factor” (1.20)

This is called the Occam factor because it implements Occam’s
razor, the principle that, all else being equal, simpler explana-
tions will be favored over more complicated ones. Because the
prior p(θ|M1, I) is normalized, [p(θ̂|M1, I)]−1 is a measure of the
width of the prior, i.e., how much parameter space the tunable
model has available to it. In particular, if the prior is uniform
over some range:

p(θ|M1, I) =

{
1

θmax−θmin
θmin < θ < θmax

0 otherwise
(1.21)

then the Occam factor becomes√
2π/H

θmax − θmin

(1.22)

because we assumed the likelihood function was narrowly peaked
compared to the prior, the Occam factor is always less than one,
and the tunable model must have a large enough increase in
likelihood over the simpler model in order to overcome this.
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Thursday 23 February 2017 – Review for Pre-
lim Exam One

The exam covers materials from the first four weeks of the term,
i.e., all the material covered in the Parameter Estimation notes,
and problem sets 1-4.

Tuesday 28 February 2017 – First Prelim
Exam

Thursday 2 March 2017
– Refer to Chapter Six of Gelman

1.4 Caveats About the Bayes Factor

You may notice that it takes Gelman a while to get around to
even talk about the Bayes factor, and by the time he does he
mostly has negative things to say about it. There are two major
shortcomings that come to mind: First, the Bayes factor only
compares the evidences for two models, rather than considering
whether either of them is really appropriate in light of the data.
Second: if one of the models being compared has one or more
continuous parameters, the Bayes factor can depend sensitively
on the prior range you assign to the parameter(s), and as a corol-
lary is typically undefined if you try to use a non-informative
prior.

The first is in some sense a feature rather than a bug. Bayesian
analysis is not designed to ask, in the abstract, how likely the
data are given the model; the data have been observed, and
we want to use them to evaluate the model. But this is only
meaningful in the context of other models which could have
produced the same data. Even classical methods which claim
to check if data are consistent with a model have to make a
choice of test statistic into which to combine the data in order

to do quantitative hypothesis tests. (Later in this lecture we
will consider the role of such tests in Bayesian analysis.) Still,
clues that something is not right with the model can cause us
to examine our prior knowledge more carefully and look for the
alternative models down below −30 dB of Jaynesian evidence
and see which of them might be promoted by the data. So we
should definitely not limit ourselves to a Bayes factor between
assumed models, which would amount to wearing blinders.

The problem with prior ranges is a serious technical limitation.
We saw last time that with a Gaussian likelihood of width H−1/2

and maximum likelihood point θ̂, the Bayes factor between a
model M1 with a tunable parameter θ given a uniform prior from
θmin to θmax and a model M0 with no parameter was (assuming

θmax − θmin � H−1/2 and θmin < θ̂ < θmax)

B10 ≈
p(y|θ̂,M1, I)

p(y|M0, I)

√
2π/H

θmax − θmin

(1.23)

The second ratio is the “Occam factor” penalizing M1 for having
a tunable parameter. But we see that the prior range for that
parameter is part of the Bayes factor, and if we tried to go to
the limit of a non-informative prior by taking θmin → −∞ and
θmax → ∞, the Occam factor, and therefore the Bayes factor,
would go to zero. This is indeed a serious problem, and indicates
that we should be careful about assigning too much meaning to
a Bayes factor of say 10 or so.

There are a couple of saving graces that can come into play,
however. First, we’re assuming the likelihood function is a Gaus-
sian, and in general probability distributions tend to fall off ex-
ponentially once you get far from their peaks. One reasonable
pair of evidence functions would look like (keeping in mind that
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θ̂ is a function of the data y)

p(y|M0, I) =

√
H

2π
exp

(
−H

2
θ̂2
)

(1.24a)

p(y|θ,M1, I) =

√
H

2π
exp

(
−H

2
(θ̂ − θ)2

)
(1.24b)

Then the Bayes factor will be

B10 ≈ eHθ̂
2/2 ×

√
2π/H

θmax − θmin

(1.25)

If Hθ̂2 is large, it may not matter much what the prior range
for θ was. One often quotes Bayes factors on a log scale as well,
and the log Bayes factor will be

lnB10 ≈
Hθ̂2

2

√
2π/H

θmax − θmin

(1.26)

We may not know the precise range of reasonable parameter
values for a model, but we will usually know it to a couple of

orders of magnitude. If, for example,
∣∣∣θ̂∣∣∣ is 8/

√
H, the part of

the log Bayes factor coming from the likelihood ratio is 32, which
means the increase in relative plausibility forM1, not considering
the Occam factor, is3 e32 ≈ 8× 1013. The Occam factor (which
is more or less the ratio of the widths of the likelihood and the
prior) is almost certainly nowhere near 10−13, and we can say
this with confidence even if we don’t know the reasonable prior
range to better than one or two orders of magnitude.

The other reason why an undefined scale for the Bayes factor
may not be a big deal is that we don’t always need to look at

3We can see the awkwardness in interpreting the natural log scale, even
though it’s simpler mathmatically. One number to keep in mind is ln 10 =
1/(log10 e) ≈ 2.303). Thirty-two e-foldings is 32/2.303 ≈ 13.9 orders of
magnitude or 139 dB.

the numerical value of the Bayes factor itself. We can also use
it as a statistic in decision theory, for example preferring H1 if
B12 > c for some threshold c, and H2 if B12 < c. (It is the
Bayesian analogue of the likelihood ratio statistic specified by
the Neyman-Pearson lemma.) But typically we’ll choose c to
obtain some specified value of the efficiency Pr(B12 > c|H1, I)
or the false alarm probability Pr(B12 > c|H2, I), and in prac-
tice the threshold c can be tied to the prior parameter range
in a way that makes things like efficiency as a function of false
alarm probability remain constant in the limit of a noninforma-
tive prior.

2 Model Checking

It is important to make sure we’re not blinded by our models.
For instance if we assume we’re observing a series of independent
Bernoulli trials, we know the sufficient statistics for the proba-
bility parameter θ are the total number of trials and the total
number of successes. Nothing else is relevant for constructing
the posterior. And so if the data are something like

1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 (2.1)

Bayesian parameter estimation will happily return a posterior
which is sharply peaked at θ = 1/3 based on 8 successes in 24
trials. (Frequentist inferences which assume a binomial model
will give similar results.) But of course if we look at the data, it’s
strongly suggestive of something other than repeated Bernoulli
trials.

So it’s always wise to examine the actual data and verify that
they have the proprties we’d expect from the model. (For ex-
ample, you did this on the homework with the problem about
genders of first and second children.) It’s not straightforward,
though, to pick the measures to look at. For example, if we
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have the hypothesis that we’re rolling a fair six-sided die, any
specific sequence of 10 rolls has only a 6−10 ≈ 1.7× 10−8 of oc-
curring. But we can pick different ways to divide up the data
space and check whether the observed results are in some way
“extreme”. In practice this means defining some statistic T (y)
from the data, and noting whether the value of the statistic is
unusual.

2.1 Posterior Predictive Checking

Since a typical model has unknown parameters, it is in effect a
family of models, and the observed data are picking out a mem-
ber from that family. A natural question about the normalcy of
the data y is then, if we took another sample ỹ from the version
of our model that y prefers, would it “look like” y. That means
using the posterior predictive distribution

p(ỹ|y, H, I) =

∫
p(ỹ|θ,H, I) p(θ|y, H, I) dθ (2.2)

If we have a statistic T (y) that we want to use to check the
data, we can rate the value as “extreme” if the new data would
be unlikely to fall on one side or the other of this, expressed as
a probability

Pr(T (ỹ)≥ T (y)|y, H, I) (2.3)

or
Pr(T (ỹ)≤ T (y)|y, H, I) (2.4)

since either direction would be extreme, we should generally use
a two-tailed test and write this probability as

p = 2 min
(
Pr(T (ỹ)≤ T (y)|y, H, I),Pr(T (ỹ)≥ T (y)|y, H, I)

)
(2.5)

We can estimate such probabilities easily by Monte Carlo sim-
ulation if we can draw samples from the posterior predictive
distribution p(ỹ|y, H, I).

This probability is of course a p-value, and has the usual
caveats and drawbacks associated with p values, for example:

• We should not get hung up on some magic value of p such
as 0.05. Gelman makes the point that we shouldn’t use this
p as a rejection of a hypothesis per se, but as an impetus
to rethink out model.

• We have to choose a statistic T (y), and so if we didn’t
choose the “right” one we might not notice the way in which
our model fails to explain the data.

• If we try enough different statistics, eventually we will find
a low-seeming one by random chance.

The last concern is sometimes handled with what’s known as a
trials factor or a Bonferroni correction. Suppose we’ve tested N
different statistics, and the most anomolous result has a p-value
of p∗. By definition the probability that we’d get a p-value of
less than p∗ for a specific statistic is p∗, while the probability of
getting one higher than p∗ is 1 − p∗. But the chance that the
lowest p-value in N tests will be less than p∗ is greater than that.
To calculate it in the event that the N tests are independent in
the probabilistic sense, note that the probability of the lowest
p-value being greater than p∗ is the probability that all p values
will exceed p∗. This is (1− p∗)N . The probability that they will
not all exceed p∗ is thus

p = 1− (1− p∗)N (2.6)

which is the true combined p-value. Note that if Np∗ is small,
we can use the binomial expansion to write

p = 1−
(

1−Np∗ +
N(N − 1)

2
(p∗)2 + . . .

)
≈ 1−(1−Np∗) = Np∗

(2.7)
so we multiply the lowest p-value p∗ by the trials factor N to
get the effective p-value.

8



2.2 Prior predictive checking

Note that an alternative is to use the prior predictive distribu-
tion

p(ỹ|H, I) =

∫
p(ỹ|θ,H, I) p(θ|H, I) dθ (2.8)

which considers how likely the observed data would be from any
member of the family, not just the one(s) preferred by the ob-
served data. You will investigate this on the current homework.

Tuesday 7 March 2017

3 Example: Event Rate

Suppose our data consist of the times {ti|i = 1, . . . , y} of a series
of events (phone calls, gamma-ray bursts, car accidents. . . ). For
concreteness, let them be in units of hours starting at midnight
on the first day of the observation. One simple model/hypothesis
M is that they’re events in a Poisson process with unknown rate
θ. Then the time between each successive pair of events will be
an exponential random variable, and the sampling distribution
is

p(t1, . . . , ty|θ,M, I) = θe−θt1θe−θ(t2−t1) · · · θe−θ(ty−ty−1)

= θye−θty
(3.1)

Suppose we also know these are the only events seen before some
time T > ty. According to the model, the number of events
between time ty and T is a Poisson random variable with mean
θ(T − ty), so the probability it is zero is

Pr(no events in (ty, T )|θ,M, I) = e−θ(T−ty) (3.2)

and thus the overall probability for {ti} being the only events
from 0 to T is

p({ti}|θ, T,M, I) = θye−θT (3.3)

If we place a uniform prior on ln θ, p(θ|M, I) ∝ θ−1, the posterior
from the model will be a Gamma distribution

p(θ|{ti}, T,M, I) =
T y

Γ(α)
θy−1e−θT (3.4)

We apply this model to the data which can be down-
loaded from http://ccrg.rit.edu/~whelan/courses/2017_

1sp_STAT_489/data/notes_models_poisproc.dat

which represent seven days of data.

> data = read.table(’notes_models_poisproc.dat’)

> eventtimes = data[,1]

> y = length(eventtimes)

> T = 24*7

> thetaMLE = y / T

> theta = seq(0,2*thetaMLE,length.out=1000)

> posterior = dgamma(theta,y,rate=T)

> plot(theta,posterior,’l’)

The posterior is quite sharply peaked about the maximum-
likelihood value of y/T ≈ 6:
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However, this is within the context of the model. Are the data
actually well explained by this model? Here are the event times
versus the ordered event indices:

> plot(eventtimes,1:y,pch=20,xaxp=c(0,24*7,7))

0 24 48 72 96 120 144 168
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0
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0
10

00

eventtimes

1:
y

Note that we’ve explicitly put the tick marks at multiples of 24
hours. It’s good form to put tick marks at sensible intervals
which evenly divide 24 hours, 360◦, or 2π radians. Few things
are as needlessly annoying as a plot of angles in radians with
tick marks at integer values.

Anyway, we see a hint of daily periodicity in the event rate.
There are two obvious things that can be wrong about the Pois-
son hypothesis:

1. The “memoryless” property can fail, so the events can be
correlated or anticorrelated in time.

2. The event rate can vary with time.

To check the first one, we note that the Poisson process hypoth-
esis means that the waiting times between events4 should be
exponentially distributed. We check this with a density plot:

> waittimes = eventtimes[2:y] - eventtimes[1:y-1]

> library(rethinking)

> dens(waittimes)

> wt = seq(0,1,length.out=100)

> pt = dexp(wt,thetaMLE)

> lines(wt,pt,col=’green’)
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The exponential agreement looks pretty good, except where
dens is trying to interpolate near a boundary.

To check time-variability of the rate, plot wait times versus
event times:

4Note that in the code we haven’t included the “waiting time” from the
start of the experiment to the first event, but it’s just one event out of over
thousand, so it doesn’t have a signficant impact.
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> plot(eventtimes[2:y],waittimes,pch=20,

+ xaxp=c(0,24*7,7))
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We see the daily pattern more strongly now; in the middle of
the day (12, 36, 60, etc) there are more events and shorter wait
times. We can see this more strongly if we “fold” the event times
and plot them as time of day:

> plot(eventtimes[2:y] %% 24,waittimes,pch=20,

+ xaxp=c(0,24,6))
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We can also histogram the events, with one bin per hour:

> hist(eventtimes %% 24,breaks = 24)

Histogram of eventtimes%%24
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There’s some variability, but there seems to be one rate be-
tween 06:00 and 18:00 (daytime) and another before 06:00 or
after 18:00 (nighttime). We can see this even more clearly if we
histogram the number of hours before or after noon:

> hist(abs(eventtimes %% 24 - 12))

Histogram of abs(eventtimes%%24 − 12)
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So we divide the data into “day” and “night” sets according to
the time of day, and find the posteriors for the Poisson rates
associated with each:

> yday = sum(abs(eventtimes %% 24 - 12)<6)

> yday

[1] 678

> ynight = sum(abs(eventtimes %% 24 - 12)>6)

> ynight

[1] 324

These don’t actually add up to 1003 because it is possible for
times to be exactly 6 or 18 to two decimal places. We assign
06:00 to the day and 18:00 to the night:

> sum(eventtimes %% 24 == 6)

[1] 1

> sum(eventtimes %% 24 == 18)

[1] 0

> yday = yday + sum(eventtimes %% 24 == 6)

> ynight = ynight + sum(eventtimes %% 24 == 18)

> yday

[1] 679

> ynight

[1] 324

> Tday = 12*7

> Tnight = 12*7

> postday = dgamma(theta,yday,rate=Tday)

> postnight = dgamma(theta,ynight,rate=Tnight)

> plot(theta,postnight,’l’,col=’blue’)

> lines(theta,postday,col=’red’)
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We see that there is basically no support for the two rates being
the same. We can also test this using a p-value; the obvious
statistic is the number of events occuring in day vs night hours.
The problem is simple enough that we don’t actually need to
work out predictive distributions; we can just ask, given 1003
events, what are the odds that 324 or fewer of them will end up
in one half of the observing time:

> 2*pbinom(ynight,y,0.5)

[1] 1.337515e-29

To construct a Bayes factor, we need to construct the evidence
(first for the original model)

p({ti}|T,M, I) =

∫ ∞
0

p({ti}|θ, T,M, I) p(θ|M, I) dθ (3.5)

For this purpose, we can’t use the original improper prior
p(θ|M, I) ∝ θ−1. The mathematically simple way would be to
use the conjugate prior Gamma distribution

βα

Γ(α)
θα−1e−βθ (3.6)

with α and β small but non-zero. It’s not so easy to interpret the
values of those parameters, however, so instead, we suppose the
prior is non-informative except for the range of possible rates:

p(θ|M, I) =

{
1

ln(θmax/θmin)
θ−1 θmin < θ < θmax

0 otherwise
(3.7)

This prior is normalized, so we can construct the evidence

p({ti}|T,M, I) =
1

ln(θmax/θmin)

∫ θmax

θmin

θy−1e−θT dθ

≈ 1

ln(θmax/θmin)

∫ ∞
0

θy−1e−θT dθ =
Γ(y)

T y ln(θmax/θmin)
(3.8)

We’ll see that it doesn’t matter too much what we choose for
θmin and θmax as long as the sharp peak of the integrand (which
is proportional to the posterior under this model) lies between
the two of them. Our perspective on the actual minimum and
maximum possible rates depends on the process in question,
but we can take a hint from the fact that the data file only
records the arrival time to the nearest hundredth of an hour.
Thus it seems we don’t expect more than θmax ≈ 100 events
per hour. On the other hand we are reporting on 7 days, or 168
hours. Presumably we expected to see one or more event in that
time. So let’s call our minimum possible rate θmin ≈ .01 evebts
per hour. With those values, we’d get a normalizing factor of
ln(θmax/θmin) ≈ ln 104 ≈ 9.21.

Under the day/night model, we have two rates θ1 and θ2 de-
scribing two different processes, and the evidence will be

p({t1,i}, {t2,i}|T1, T2,M ′, I) = p({t1,i}|T1,M ′, I) p({t1,2}|T2,M ′, I)

≈ Γ(y1)Γ(y2)

T y11 T
y2
2 [ln(θmax/θmin)]2

(3.9)

so the Bayes factor is

BM ′,M =
p({t1,i}, {t2,i}|T1, T2,M ′, I)

p({ti}|T,M, I)

=
Γ(y1)Γ(y2)

Γ(y)

T y

T y11 T
y2
2

1

ln(θmax/θmin)

(3.10)

Note that in this case, where T1 = T2 = T/2, the second factor
becomes

T y

T y11 T
y2
2

=
T y

(T1/2)y1(T2/2)y2
= 2y (3.11)
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which is a very large number. On the other hand,

Γ(y1)Γ(y2)

Γ(y)
= B(y1, y2) =

(y1 − 1)!(y2 − 1)!

(y − 1)!
=

[(
y − 2

y1 − 1

)
(y − 1)

]−1
(3.12)

is a very small number. We can combine these all numerically,
but it’s a good idea to work with the logarithm of the Bayes
factor,

lnBM ′,M = ln B(y1, y2) + y ln 2− ln

(
ln
θmax

θmin

)
(3.13)

We can evaluate that for this data set:

> logB1 = lgamma(yday) + lgamma(ynight) - lgamma(y)

> logB1

[1] -632.7965

> lbeta(yday,ynight)

[1] -632.7965

> logB2 = ( y * log(T)

+ - yday * log(Tday) - ynight * log(Tnight) )

> logB2

[1] 695.2266

> y * log(2)

[1] 695.2266

> logOccam = -log(log(1e4))

> logOccam

[1] -2.220327

> logB = logB1 + logB2 + logOccam

> logB

[1] 60.20983

> exp(logB)

[1] 1.408627e+26

So we see the Bayes factor favoring the two-rate model is enor-
mous, and the Occam factor is irrelevant.

Thursday 9 March 2017

4 Example: Linear Model

As another example where examination of data can lead us to
refine a model, consider the census data extracted from https:

//tspace.library.utoronto.ca/handle/1807/10395 and in-
cluded in the rethinking R package. We can load the weights
in kg of n = 352 adults using

> library(rethinking)

> data(Howell1)

> y = Howell1[Howell1$age >= 18,’weight’]

If our model M0 is that these weights, which we’ll call {yi},
are normally distributed with some unknown mean µ and vari-
ance σ2 with non-informative priors, we can repeat the inference
from a few weeks ago and see that e.g., the marginal posterior
p(µ|y,M0.I) for µ will be given by a scaled t distribution, so that
(µ− y)/

√
s2/n will be Student-t distributed with n− 1 degrees

of freedom, where y = 1
n

∑n
i=1 yi and s2 = 1

n−1
∑n

i=1(yi − y)2.
Since n− 1 = 351 is so large, we can also just approximate this
as a N(y, s2/n) distribution.

> ybar = mean(y)

> ybar

[1] 44.99049

> sy = sd(y)

> sy

[1] 6.456708

> n = length(y)

> mu = seq(ybar-5*sy/sqrt(n),ybar+5*sy/sqrt(n),

+ length.out=1000)

> t = (mu-ybar)/(sy/sqrt(n))

> pmu = (sqrt(n)/sy) * dt(t,n-1)
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> pgauss = dnorm(mu,mean=ybar,sd=sy/sqrt(n))

> plot(mu,pmu,’l’,col=’black’)

> lines(mu,pgauss,col=’blue’)
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We can also see that the data do look roughly Gaussian

> hist(y,breaks=sqrt(length(y)))
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4.1 Bayesian Regression Model

However, this is not the whole story. The data also include the
heights in cm of the same adults, and if we just scatter-plot the
two quantities relative to each other, we see that the {yi} are
not drawn from the same distribution if the {xi} are taken into
account:

> x = Howell1[Howell1$age >= 18,’height’]

> plot(x,y,’p’,pch=20)
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There seems to be a rough linear relationship. For simplicity,
we’ll take the {xi} as given, and propose a new model in which
the {yi} are independently distributed, and yi ∼ N(α + β[xi −
x], σ2) where now α, β, and σ are unknown. We write the joint
likelihood as

p(y|x, α, β, σ,M1, I) = (2πσ2)−n/2 exp

(
− 1

2σ2

n∑
i=1

(yi − µi)2
)

(4.1)
where µi = α + β(xi − x). The sum can be reorganized as

n∑
i=1

(yi − µi)2 =
n∑
i=1

([yi − y]− [α− y]− β[xi − x])2

= Syy − 2βSxy + β2Sxx + n(y − α)2
(4.2)

(two of the three cross terms vanish) where

Sxx =
n∑
i=1

(xi−x)2 ; Sxy =
n∑
i=1

(xi−x)(yi−y) ; Syy =
n∑
i=1

(yi−y)2

(4.3)

Then, if we complete the square in β, we have

n∑
i=1

(yi− µi)2 = Syy −
S2
xy

Sxx
+ Sxx

(
β − Sxy

Sxx

)2

+ n(y−α)2 (4.4)

We could treat σ as an unknown along with α and β and assume
a non-informative prior uniform in α, β and lnσ. But with
the present data set, marginalizing over σ will give a Student
t distribution with ∼ 350 degrees of freedom, which looks very
nearly normal. So for the time being, let’s treat σ as known and
construct the posterior on α and β assuming uniform priors.
Then we get

p(α, β|x,y, σ,M1, I) ∝ exp

(
−Sxx

2σ2

[
β − Sxy

Sxx

]2)
exp

(
− n

2σ2
(α− y)2

)
(4.5)

So the posteriors factor into a N(y, σ2/n) for α and a
N(Sxy/Sxx, σ

2/Sxx) for β. To plot this for this data set, we
need to be a little careful about one thing: the estimate for σ2

is not

s2y =
1

n− 1
Syy (4.6)

but rather

s2 =
1

n− 2

(
Syy −

S2
xy

Sxx

)
(4.7)

> xbar = mean(x)

> Sxx = sum((x-xbar)^2)

> Sxy = sum((x-xbar)*(y-ybar))

> Syy = sum((y-ybar)^2)

> s = sqrt((Syy-Sxy^2/Sxx)/(n-2))

> print(s)

[1] 4.241744

> print(sy)
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[1] 6.456708

> alpha = mu

> palpha = dnorm(alpha,mean=ybar,sd=s/sqrt(n))

> plot(alpha,palpha,’l’,col=’brown’)

> lines(mu,pmu,col=’blue’)

The posterior on α is narrower than the one we had for µ:
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> betahat = Sxy/Sxx

> print(betahat)

[1] 0.629421

> sigbeta = s / sqrt(Sxx)

> print(sigbeta)

[1] 0.02924281

> betavals = seq(0,betahat+5*sigbeta,length.out=1000)

> pbeta = dnorm(betavals,mean=betahat,sd=sigbeta)

> plot(betavals,pbeta,’l’)

We see that the posterior pretty convincingly excludes β = 0:
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4.2 Evidence Calculation

We can perform a Bayesian model comparison to gain another
perspective on the preference of the data for a model with an
additional parameter. To do this, we need to calculate the ev-
idence for each model. We’ll do M0 here in class, and you’ll
do M1 on the homework. First, we need to make proper pri-
ors on µ and σ. We’ll proceed as on Tuesday and cut off the
non-informative priors at some maximum and minimum values:

p(µ, lnσ|M0, I) =


1

(µmax−µmin) ln(σmax/σmin)
µmin < µ < µmax;

σmin < σ < σmax

0 otherwise

(4.8)
Looking at the scatter plot, reasonable choices for conserva-
tive priors might be µmin = 0 kg, µmax = 100 kg, σmin = 1 kg,
σmax = 100 kg. Assuming these are big enough to capture the
full support of the likelihood function for the given data, the
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evidence will be

p(y|x,M0, I) =

∫ σ−2
min

σ−2
max

∫ µmax

µmin
p(y|x, µ, σ, I) dµ dσ−2

σ−2

(µmax − µmin)2 ln(σmax/σmin)

≈

∫∞
0

(
σ−2

2π

)n/2 ∫∞
−∞ exp

(
−σ−2

2

[
n(µ− y)2 + (n− 1)s2y

])
dµ dσ−2

σ−2

(µmax − µmin)2 ln(σmax/σmin)

=

∫∞
0

(
σ−2

2π

)n−1
2
e−σ

−2(n−1)s2y/2 dσ−2

σ−2

√
n(µmax − µmin)2 ln(σmax/σmin)

=

(
π(n− 1)s2y

)−n−1
2
∫∞
0
u

n−1
2 e−u du

u√
n(µmax − µmin)2 ln(σmax/σmin)

=

(
π(n− 1)s2y

)−n−1
2 Γ

(
n−1
2

)
√
n(µmax − µmin)2 ln

(
σmax

σmin

)
(4.9)

You’ll do the analogous calculation for M1 on the homework,
but the key source of improvement will be the reduction of the
variance estimate when the linear trend is included. The con-
stant model M0 includes in its evidence a factor of s−n−1y ; the
linear model M1 will include an analogous factor with s replac-
ing sy; since s < sy and n is a large number, the factor of
(s/sy)

−n appearing in B10 will make the Bayes factor very large,
and overcome the Occam factor from the additional parameter
β.
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