
Generalized Linear Models

STAT 489-01: Bayesian Methods of Data Analysis ∗

Spring Semester 2017

Contents

1 Multi-Variable Linear Models 1

2 Generalized Linear Models 4
2.1 Illustration: Logistic Regression 5
2.2 Multiple Logistic Regression 9

Tuesday 25 April 2017
– Refer to Chapter 14 Gelman or Chapter 5 of
McElreath or Chapter 15 of Kruschke

1 Multi-Variable Linear Models

Recall the simple linear regression problem where each observed
variable yi is associated with one predictor variable xi and the
sampling distribution is assumed to be

yi ∼ N(µi, σ
2) (1.1a)

µi = α + β(xi − x) (1.1b)

and we perform inference on the parameters α, β and σ. In
the next two weeks we’ll generalize this model to one in which

∗Copyright 2017, John T. Whelan, and all that

the errors need not be normal. But for the time being let’s
generalize slightly to the common situation where there is more
than one predictor variable driving the observations. If we have
k predictor variables, the model becomes

yi ∼ N(µi, σ
2) (1.2a)

µi = α +
k∑
j=1

βj(xij − xj) = α + (xi − x)Tβ (1.2b)

where xj = 1
n

∑n
i=1 xij, and we’ve defined column vectors xi, x

and β. Most of the previous calculations go through, with the
qualification that some quantities are now vectors or matrices.
For example, we have the scalar

Syy =
n∑
i=1

(yi − y)2 (1.3)

the vector

Sxy =
n∑
i=1

(xi − x)(yi − y) (1.4)

and the k × k matrix

Sxx =
n∑
i=1

(xi − x)(xi − x)T (1.5)

1

Completing the square in the likelihood

p({yi}|{xi}, α,β, σ,M1, I) = (2πσ2)−n/2 exp

(
− 1

2σ2

n∑
i=1

(yi − µi)2
)

(1.6)
gives

n∑
i=1

(yi − µi)2 = Syy − 2βT Sxy + βT Sxxβ + n(y − α)2

= Syy − Sxy
T Sxx

−1Sxy + n(y − α)2

+
(
β − Sxx

−1Sxy

)T
Sxx

(
β − Sxx

−1Sxy

) (1.7)

It’s convenient to consider the conditional posterior for α and β,
given σ, and then the marginal posterior for σ−2. We assume as
before that the prior is uniform in the regression coëfficients α
and β, and non-informative in the scale parameter σ. We then
have the conditional posterior

p(α,β|{yi}, {xi}, σ,M1, I) ∝ exp
(
− n

2σ2
(α− y)2

)
× exp

(
− 1

2σ2

(
β − Sxx

−1Sxy

)T
Sxx

(
β − Sxx

−1Sxy

))
(1.8)

Which is a Gaussian in α ∼ N(y, σ2/n) and a multivariate Gaus-
sian in β with mean Sxx

−1Sxy and variance-covariance matrix
σ2Sxx

−1. (If we marginalized over σ rather than conditioning
on it we’d end up with a multivariate t distribution.

On the other hand, if we marginalize over α and β, we get

the posterior for σ−2:

p(σ−2|{yi}, {xi},M1, I)

∝ (σ−2)
n
2
−1 exp

(
σ−2

2
(Syy − Sxy

T Sxx
−1Sxy)

)
×
∫ ∞
−∞

exp
(n

2σ2
(α− y)2

)
dα∫

exp

(
1

2σ2

(
β − Sxx

−1Sxy

)T
Sxx

(
β − Sxx

−1Sxy

))
dkβ (1.9)

Now, all we care about for the marginalization integrals is
how many factors of σ they introduce; it’s not hard to see
that the α integral is σ times a constant, and each of the k
β integrals introduces another factor of σ (since the result is√

det(2πσ2Sxx
−1) ∝ σk, so the marginal posterior is

p(σ−2|{yi}, {xi},M1, I)

∝ (σ−2)
n−k−1

2
−1 exp

(
σ−2

2
(Syy − Sxy

T Sxx
−1Sxy)

)
(1.10)

which says that

σ−2(Syy − Sxy
T Sxx

−1Sxy) ∼ χ2(n− k − 1) (1.11)

This means it’s appropriate to define the estimator of σ2 as

s2 =
1

n− k − 1
(Syy − Sxy

T Sxx
−1Sxy) (1.12)

Note that when doing computations, it’s convenient to write {yi}
as a column vector (n × 1 matrix) y. The tricky thing though
is what to call the matrix object corresponding to {xi} ≡ {xij.
We’ll call it a n×k matrix X. Then for example we can combine

2

{µi} into µ = αen×1 + Xβ where en×1 is a column vector of all
1s. Then we can construct for example

Sxx = (XT − xTe1×n)(X− en×1x) (1.13a)

To illustrate some of these calculations, consider the Howell1

dataset, but now limit attention to children, so that we expect
weight to be correlated with age as well as height:

> library(rethinking)

> data(Howell1)

> y = Howell1[Howell1$age < 18,’weight’]

> ybar = mean(y)

> n = length(y)

> # x1 = Howell1[Howell1$age < 18,’height’]

> # x2 = Howell1[Howell1$age < 18,’age’]

> # x3 = Howell1[Howell1$age < 18,’male’]

> X = Howell1[Howell1$age < 18,c(’height’,’age’,’male’)]

> xbar = colMeans(X)

> k = length(xbar)

> Sxx = t(X - xbar) %*% as.matrix(X - xbar)

> Sxx

height age male

height 1578264.93 111863.7 -16223.93

age 111863.70 670768.8 701807.50

male -16223.93 701807.5 748472.62

> Sxxinv = solve(Sxx)

> Sxxinv

height age male

height 3.245861e-06 -3.243479e-05 3.048293e-05

age -3.243479e-05 4.027451e-04 -3.783382e-04

male 3.048293e-05 -3.783382e-04 3.567467e-04

> Sxy = t(X - xbar) %*% (y-ybar)

> Syy = sum((y-ybar)^2)

> s2 = (Syy - t(Sxy) %*% Sxxinv %*% Sxy)/(n-k-1)

> s2 = s2[1,1]

> s = sqrt(s2)

> s

[1] 4.684493

> betahat = Sxxinv %*% Sxy

> s2beta = s2 * Sxxinv

> s2beta

height age male

height 7.122871e-05 -0.0007117644 0.0006689319

age -7.117644e-04 0.0088380300 -0.0083024324

male 6.689319e-04 -0.0083024324 0.0078286183

Thursday 27 April 2017

library(rethinking)

data(Howell1)

y = Howell1[Howell1$age < 18,’weight’]

ybar = mean(y)

n = length(y)

X = Howell1[Howell1$age < 18,c(’height’,’age’,’male’)]

xbar = colMeans(X)

k = length(xbar)

X_xbar = t(t(X)-xbar)

s2x = colSums(X_xbar^2)/(n-1)

zX = t(t(X_xbar)/sqrt(s2x))

zX[1:10,]

or just zX = scale(X)

Sxx = t(zX) %*% as.matrix(zX)

Sxx

Sxxinv = solve(Sxx)

Sxxinv

Sxy = t(zX) %*% (y-ybar)

Syy = sum((y-ybar)^2)

3

s2 = (Syy - t(Sxy) %*% Sxxinv %*% Sxy)/(n-k-1)

s2 = s2[1,1]

s = sqrt(s2)

s

betahat = Sxxinv %*% Sxy

betahat

covbeta = s2 * Sxxinv

covbeta

varbeta = diag(covbeta)

sdbeta = sqrt(varbeta)

corrbeta = covbeta/outer(sdbeta,sdbeta)

corrbeta

cov(zX[,’height’],zX[,’age’])

plot(zX[,’height’],zX[,’age’])

cov(zX[,’height’],zX[,’male’])

plot(zX[,’height’],zX[,’male’])

Tuesday 2 May 2017
– Refer to Chapter 9 and 10 of McElreath or
Chapter 16 of Gelman

2 Generalized Linear Models

Sometimes the linear model yi ∼ N(α + βT(xi − x), σ2) is not
likely to even be a good approximation. For instance if the data
{yi} represent discrete quantities like event counts, it doesn’t
make sense to model them with a normal distribution unless the
numbers are large. Suppose for example that they represent the
results of Bernoulli trials at a series of predictor variable values
{xi}, with numbers of trials given by {ni}. Then a reasonable

model is1

yi ∼ Bin(ni, pi) (2.1)

and the parameter which must be fit is not the mean µi, but
the probability pi. Since by definition the model has to give us
0 ≤ pi ≤ 1, we can’t use a linear model for pi. But we know
a convenient transformation that changes pi into an unbounded
parameter: the log-odds-ratio

λi = ln
pi

1− pi
(2.2)

This is also known as the logit function or the inverse logistic
function. The logistic function is its inverse:

pi =
eλi

1 + eλi
= (1 + e−λi)−1 (2.3)

we can then complete the model in terms of parameters α and
β such that

ln
pi

1− pi
= α + βT(xi − x) (2.4)

or
pi =

[
1 + exp

(
−α− βT(xi − x)

)]−1
(2.5)

This is an example of a generalized linear model (GLM). We
can write it as

yi ∼ Dist(µi) (2.6a)

g(µi) = α + βT(xi − x) (2.6b)

the inputs are the parametrized sampling distribution Dist(µi)
(in this case a Bernoulli distribution, if we specialize to ni = 1)
and the link function g(µi) (in this case the logit function).

1Note that we can also treat each trial separately, in which case ni = 1,
and we allow for the possibility that the same x value may appear more
than once on the list of {xi}.

4

Another example would be where yi represents a number of
counts with effectively no upper limit. Then we might want to
define the sampling distribution as Poisson y ∼ Pois(µi). Now
µi is a continuous parameter which can be between 0 and∞. A
convenient way to map that onto the real line would be to use
a logarithmic link function

lnµi = α + βT(xi − x) (2.7)

2.1 Illustration: Logistic Regression

Return to the Bernoulli trials model where

yi ∼ Bin(1, pi) (2.8a)

pi = [1 + exp (−α− β(xi − x))]−1 =
eα+β(xi−x)

1 + eα+β(xi−x)
(2.8b)

The sampling distribution is then

p({yi}|{xi}, α, β, I) =
n∏
i=1

pyii (1− pi)1−yi =
n∏
i=1

e[α+β(xi−x)]yi

1 + eα+β(xi−x)

(2.9)
Since there are only two parameters, we could in principle just
plot the likelihood or posterior. It’s tempting to start with the
MAP solution, but although it’s simple to get the analytical
form of the maximum likelihood equations, they don’t have a
closed form solution for α and β. A little bit of differentiation
and algebra shows them to be

ny =
n∑
i=1

1

1 + e−α−β(xi−x)
=

n∑
i=1

pi (2.10a)

Sxy =
n∑
i=1

xi − x
1 + e−α−β(xi−x)

=
n∑
i=1

(xi − x)pi (2.10b)

In practice, it’ll be easier just to run an MCMC to get a sample
from the joint posterior.

We illustrate this using a specific example taken from Mes-
senger et al, Physical Review D 92, 023006 (2015). Fifty sim-
ulated gravitational wave signals were added to simulated de-
tector noise, and five different pipelines performed searches and
reported a detection or non-detection for each signal. These re-
sults are available at https://dcc.ligo.org/LIGO-G1500977/
public, and I’ve converted them slightly for our purposes
in http://ccrg.rit.edu/~whelan/courses/2017_1sp_STAT_

489/data/. In particular, I’ve taken the signal amplitude h0
and converted it to a logarithmic scale via x = log10(1025h0).
The idea is to take the 50 found/missed results and use them to
interpolate an efficiency curve as a function of signal strength.
Here’s what the found/missed results look like:

> data = read.table(’found_rm.dat’)

> x_rm = data[,1]

> y_rm = data[,2]

> n_rm = length(y_rm)

> xbar_rm = mean(x_rm)

> plot(x_rm,y_rm)

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x_rm

y_
rm

5

https://dcc.ligo.org/LIGO-G1500977/public
https://dcc.ligo.org/LIGO-G1500977/public
https://dcc.ligo.org/LIGO-G1500977/public
https://dcc.ligo.org/LIGO-G1500977/public
http://ccrg.rit.edu/~whelan/courses/2017_1sp_STAT_489/data/
http://ccrg.rit.edu/~whelan/courses/2017_1sp_STAT_489/data/
http://ccrg.rit.edu/~whelan/courses/2017_1sp_STAT_489/data/
http://ccrg.rit.edu/~whelan/courses/2017_1sp_STAT_489/data/

We can use Stan to sample from the posterior. You might think
we’d have to define each probability pi as a separate parameter,
but it turns out that Stan has a bernoulli logit distribution
defined which takes as its parameter the log odds ratio:

> library(rstan)

> rstan_options(auto_write = TRUE)

> options(mc.cores = parallel::detectCores())

> modelString = "

+ data {

+ int<lower=0> n;

+ int<lower=0,upper=1> y[n];

+ vector[n] x;

+ real xbar;

+ }

+ parameters {

+ real alpha;

+ real beta;

+ }

+ model {

+ y ~ bernoulli_logit(alpha + beta*(x-xbar));

+ }"

> DSO = stan_model(model_code=modelString)

In principle xbar and n should be calculable from the data, but
we pass them in because we already know how to calculate them
in R. Now run the chains:

> rmFit = sampling(object=DSO,

+ data=list(y=y_rm,x=x_rm,

+ n=n_rm,xbar=xbar_rm),

+ chains=3, warmup=500, iter=4000,

+ seed=20170502)

> rm_alpha = extract(rmFit,’alpha’)$alpha

> rm_beta = extract(rmFit,’beta’)$beta

We want to plot our analytically-calculated posterior for com-
parison, so we extract the range of alphas and betas from the
posterior samples. (Otherwise we could do this by trial and
error.)

> alphamin = min(rm_alpha)

> alphamax = max(rm_alpha)

> betamin = min(rm_beta)

> betamax = max(rm_beta)

> Ngrid = 101

> ones = rep(1,Ngrid)

> alphas = seq(from=alphamin,to=alphamax,length.out=Ngrid)

> betas = seq(from=betamin,to=betamax,length.out=Ngrid)

> alphagrid = outer(alphas,ones,’*’)

> betagrid = outer(ones,betas,’*’)

> loglike = matrix(rep(0,Ngrid*Ngrid),ncol=Ngrid)

> for (i in 1:n_rm){

+ lami = alphagrid + betagrid * (x_rm[i]-xbar_rm)

+ loglike = loglike + y_rm[i] * lami

+ loglike = loglike - log(1+exp(lami))

+ }

> likelihood = exp(loglike)

> contour(alphas,betas,likelihood)

> points(rm_alpha,rm_beta,pch=’.’,col=’blue’)

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

5
10

15
20

6

We see that the sample drawn with Stan does agree with the
analytic posterior for these data.

Of course, α and β are not so easy to interpret; what we really
want to learn about is the function

p(x;α, β) = logistic(α + β[x− x]) (2.11)

where as usual

logistic(λ) =
eλ

1 + eλ
= (1 + e−λ)−1 (2.12)

For instance, an interesting quantity is x50(α, β), the x value at
which the probability drops to one-half:

0.5 = p(x50;α, β) = logistic(α + β[x50 − x]) (2.13)

Since 0.5 = logistic(0), we can solve for

x50 = x− α

β
(2.14)

Since we have a sample from the multimensional posterior,
there’s no difficulty in converting the α, β sample into an x50
sample:

> rm_x50 = xbar_rm - rm_alpha/rm_beta

> library(rethinking)

> dens(rm_x50)

0.3 0.4 0.5 0.6 0.7

0
2

4
6

8

N = 10500 Bandwidth = 0.003329

D
en

si
ty

or even an x50, β sample:

> plot(rm_x50,rm_beta,type=’p’,pch=’.’)

0.3 0.4 0.5 0.6 0.7

5
10

15
20

rm_x50

rm
_b

et
a

This x50 is arguably a better parameter than α. In terms of x50
and β, the model is

p(x;x50, β) = logistic(β[x− x50]) (2.15)

x50 determines where the efficiency curve turns over, and β de-
termines how steeply it does so. That also makes sense in light

7

of the posterior on these quantities; the higher β, the steeper
the curve is, and the better-constrained x50 is.

Note that changing these parameters could cause us to make
different choices about the prior on the parameters. Rather than
p(α, β|I) = const we might choose p(x50, β|I ′) = const or even
p(x50, β|I ′) ∝ β−1.

We can also extract from the search the efficiency at specified
x values:

> rm_p0_45 = logistic(rm_beta*(0.45-rm_x50))

> hist(rm_p0_45,breaks=seq(0,1,length.out=100),freq=FALSE)

Histogram of rm_p0_45

rm_p0_45

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

> rm_p0_50 = logistic(rm_beta*(0.50-rm_x50))

> hist(rm_p0_50,breaks=seq(0,1,length.out=100),freq=FALSE)

Histogram of rm_p0_50

rm_p0_50

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

> rm_p0_55 = logistic(rm_beta*(0.55-rm_x50))

> hist(rm_p0_55,breaks=seq(0,1,length.out=100),freq=FALSE)

Histogram of rm_p0_55

rm_p0_55
D

en
si

ty
0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

One “deliverable”, which appears in the paper and presentation
cited, is to take a series of x values, calculate percentiles of the
p(x;x50, β) posterior at each x, and then plot those:

8

> xlist = seq(from=0,to=15,length.out=Nx)

> px_25 = rep(0/0,Nx)

> px_50 = rep(0/0,Nx)

> px_75 = rep(0/0,Nx)

> for (l in 1:Nx) {

+ px = logistic(rm_beta*(xlist[l]-rm_x50))

+ px_25[l] = quantile(px,.25)

+ px_50[l] = quantile(px,.50)

+ px_75[l] = quantile(px,.75)

+ }

> plot(x_rm,y_rm)

> lines(xlist,px_25,col=’blue’)

> lines(xlist,px_50,col=’green’)

> lines(xlist,px_75,col=’blue’)

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x_rm

y_
rm

Thursday 4 May 2017
– Refer to Chapter 6 of McElreath

2.2 Multiple Logistic Regression

data = read.table(’found2_rm.dat’)

x1_rm = data[,1]

x2_rm = data[,2]

y_rm = data[,3]

n_rm = length(y_rm)

x1bar_rm = mean(x1_rm)

x2bar_rm = mean(x2_rm)

plot(x1_rm,x2_rm)

library(rstan)

rstan_options(auto_write = TRUE)

options(mc.cores = parallel::detectCores())

modelString = "

data {

int<lower=0> n;

int<lower=0,upper=1> y[n];

vector[n] x1;

vector[n] x2;

}

parameters {

real x50;

real beta1;

real beta2;

}

model {

y ~ bernoulli_logit(beta1*(x1-x50) + beta2*x2);

}"

DSO = stan_model(model_code=modelString)

rmFit = sampling(object=DSO,

data=list(y=y_rm,n=n_rm,

x1=x1_rm,x2=x2_rm),

chains=3, warmup=500, iter=4000,

seed=20170504)

rm_x50 = extract(rmFit,’x50’)$x50

rm_beta1 = extract(rmFit,’beta1’)$beta1

9

rm_beta2 = extract(rmFit,’beta2’)$beta2

plot(rm_x50,rm_beta1,type=’p’,pch=’.’)

plot(rm_x50,rm_beta2,type=’p’,pch=’.’)

plot(rm_beta1,rm_beta2,type=’p’,pch=’.’)

cor(rm_beta1,rm_beta2)

effmodelString = "

data {

int<lower=0> n;

int<lower=0,upper=1> y[n];

vector[n] x1;

vector[n] xeff;

}

parameters {

real xeff50;

real beff;

real gamma;

}

model {

gamma ~ normal(0,1);

y ~ bernoulli_logit(beff*(xeff-xeff50) + gamma*x1);

}"

effDSO = stan_model(model_code=effmodelString)

effrmFit = sampling(object=effDSO,

data=list(y=y_rm,n=n_rm,

x1=x1_rm,xeff=(x1_rm+x2_rm)),

chains=3, warmup=500, iter=4000,

seed=201705041)

effrm_xeff50 = extract(effrmFit,’xeff50’)$xeff50

effrm_beff = extract(effrmFit,’beff’)$beff

effrm_gamma = extract(effrmFit,’gamma’)$gamma

Nx = 100

xlist = seq(from=-0.2,to=1.2,length.out=Nx)

px_25 = rep(0/0,Nx)

px_50 = rep(0/0,Nx)

px_75 = rep(0/0,Nx)

for (l in 1:Nx) {

px = logistic(effrm_beff*(xlist[l]-effrm_xeff50))

px_25[l] = quantile(px,.25)

px_50[l] = quantile(px,.50)

px_75[l] = quantile(px,.75)

}

plot(x1_rm+x2_rm,y_rm)

lines(xlist,px_25,col=’blue’)

lines(xlist,px_50,col=’green’)

lines(xlist,px_75,col=’blue’)

10

	Multi-Variable Linear Models
	Generalized Linear Models
	Illustration: Logistic Regression
	Multiple Logistic Regression

