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1 Most Powerful Tests

We turn now to another application of likelihood methods: as
tests for hypotheses. First, a reminder of some of the notation
and definitions associated with classical (frequentist) hypothesis
testing.

1.1 Review of Hypothesis Testing

In the classical framework, we define a test to reject or not reject
a null hypothesis H0 in the context of an alternative hypothesis
H1, based on a realization x of the n-dimensional random vector
X (which is often but not always a sample drawn from a univari-
ate distribution). We refer to the support space for the whole
sample as S, i.e., X ∈ S. We can define the test as partitioning
the sample space into a critical region C and its compelement.
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If x ∈ C ⊂ S we reject H0, while if x /∈ C (i.e., x ∈ Cc) we
do not reject H0. (Strictly speaking, we should not refer to the
outcome of the test as accepting one hypothesis or the other.)
We often think of this in terms of a parametrized distribution
fX(x; θ) and define H0 to specify a value θ = θ0 (Hogg calls this
θ′) for the parameter and H1 to specify some other value θ = θ1
(which Hogg calls θ′′). Since each hypothesis only specifies a sin-
gle value for θ, we call these point hypotheses, and the parameter
formalism is actually unneccessary; fX(x; θ0) = fX(x|H0) and
fX(x; θ1) = fX(x|H1) can just be thought of as two different
probsbility distributions relevant to H0 and H1, respectively.

We define the size α of the critical region, also known as the
significance or false-alarm probability of the test as the proba-
bility that we will reject H0 if it is true:

α = P (X ∈ C|H0) =

∫
C

fX(x|H0) d
nx (1.1)

The power of the test is the probability that we’ll reject H0 if
H1 is true:

γ = P (X ∈ C|H1) =

∫
C

fX(x|H1) d
nx (1.2)

We can also write this in terms of β = 1− γ, which is known as
the false dismissal probability.

Given different tests with the same false-alarm probability α,
we’d naturally rather use the one with the lowest false-dismissal
probability β = 1 − γ, i.e., the highest power γ. This is known
as the most powerful test.

1.2 The Neyman-Pearson Lemma

There is a theorem, usually known as the Neyman-Pearson
lemma, that shows how the most powerful test to of one point

hypothesis H0 against another H1 can be constructed from the
likelihood ratio

Λ(x) =
fX(x|H0)

fX(x|H1)
=
L(θ0; x)

L(θ1; x)
(1.3)

We define C so that x ∈ C if and only if Λ(x) ≤ k where k is
defined by

P (Λ(X)≤ k|H0) =

∫
C

fX(x|H0) d
nx = α (1.4)

which ensures that the critical region C is of size α. I.e., we
reject H0 if and only if Λ(x) ≤ k.

The Neyman-Pearson lemma states that the power of this test

γ = P (Λ(X)≤ k|H1) =

∫
C

fX(x|H1) d
nx (1.5)

is greater than or equal to the power of any other test with the
same significance. I.e., if A is some other critical region with
size α, so that ∫

A

fX(x|H0) d
nx = α (1.6)

the Neyman-Pearson lemma says that

γ(C) =

∫
C

fX(x|H1) d
nx ≥

∫
A

fX(x|H1) d
nx (1.7)

The demonstration of the Neyman-Pearson lemma involves
breaking up the regions C and A in terms of their overlap C∩A.
Evidentally, we can write

C = (C ∩ Ac) ∪ (C ∩ A) (1.8a)

A = (Cc ∩ A) ∪ (C ∩ A) (1.8b)
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The contribution to both α and γ from C ∩A cancel out of any
comparison between C and A. So the Neyman-Pearson lemma
is equivalent to the condition that

γ(C)−
∫

C∩A

fX(x|H1) d
nx

=

∫
C∩Ac

fX(x|H1) d
nx ≥

∫
Cc∩A

fX(x|H1) d
nx (1.9)

If we can prove that, we’ve proved the lemma
Now, by definition

fX(x|H0)

fX(x|H1)
≤ k for x ∈ C (1.10)

so ∫
C∩Ac

fX(x|H1) d
nx ≥ 1

k

∫
C∩Ac

fX(x|H0) d
nx (1.11)

while
fX(x|H0)

fX(x|H1)
≥ k for x ∈ Cc (1.12)

so ∫
Cc∩A

fX(x|H1) d
nx ≤ 1

k

∫
Cc∩A

fX(x|H0) d
nx (1.13)

But since the tests defined by C and A both have the same sig-
nificance α, the integrals of fX(x|H0) over the non-overlapping
regions must be the same:

α−
∫

C∩A

fX(x|H0) d
nx

=

∫
C∩Ac

fX(x|H0) d
nx =

∫
Cc∩A

fX(x|H0) d
nx (1.14)

so the right-hand sides of (1.13) and (1.11) must be equal, which
means ∫

C∩Ac

fX(x|H1) d
nx ≥

∫
Cc∩A

fX(x|H1) d
nx (1.15)

which, as we’ve argued above, means that the power of the like-
lihood ratio test defined by C is greater than or equal to that
defined by A.

1.3 Example: Gamma Distribution

f(x; θ) = x5−1

θ5
e−x/θ, 0 < x <∞. Let H0 : θ = 1 and H1 : θ = 2.

Likelihood is

L(θ; x) =
(
∏n

i=1 xi)
4

θ5n
exp

(
−

n∑
i=1

xi/θ

)
(1.16)

so likelihood ratio is

Λ =
L(1; x)

L(2; x)
= 25n exp

(
−
[
1− 1

2

] n∑
i=1

xi

)
= 25ne−y/2 (1.17)

where y =
∑n

i=1 xi. Note that the likelihood ratio depends only
on the sufficient statistic y. A moment’s thought will show that
this will be true in general. If there are one or more sufficient
statistics for the parameter(s) which distinguish H0 from H1,
the likelihood ratio must be a function of those alone.

Note that in this case, Y is Gamma(n,1) of H0 is true and
Gamma(n,2) of H1 is true, so we can figure out the significance
and power of the test by using the percentiles of the Gamma (or
equivalently chi-square) distribution.
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1.4 Uniformly Most Powerful Tests

The Neyman-Pearson Lemma shows that when comparing point
hypotheses H0 and H1, a test based on the likelihood ra-
tio fX(x|H0)/fX(x|H1) gives the most powerful test (highest
γ = P (X ∈ C|H1)) at a given significance α = P (X ∈ C|H0).
We often wish to compare composite hypotheses, in which H1

and/or H0 can correspond to parametrized families of distribu-
tions. In particular, if X is a sample drawn from a distribution
f(x; θ), we may have hypotheses H0 : θ ∈ ω and H1 : θ ∈ Ω.

If we first consider the case where H0 is a point hypothesis
θ = θ0 and H1 is a composite hypothesis parametrized by θ, the
power of a given test will depend on θ:

γ(θ) = P (X ∈ C; θ) =

∫
C

fX(x; θ)dnx (1.18)

If the same test is most powerful at a given α for every choice
of θ, we say it is uniformly most powerful (UMP). For example,
recall the example from the last class, where X is a sample of
size n from a Gamma(5, θ) distribution and H0 is θ = θ0 = 1.
Now let H1 be the composite hypothesis θ > 1. We know from
the Neyman-Pearson lemma that at each θ the most powerful
test will be the one given by the likelihood ratio:

C : Λ(x; θ) =
L(θ0; x)

L(θ; x)
≤ k(θ) (1.19)

where the constant k(θ) is defined by

P (Λ(X; θ)≤ k(θ)|H0) = α (1.20)

1.4.1 Example: One-Sided Hypothesis

We saw last time that

L(θ; x) =

∏n
i=1 x

4
i

θ5n
e−y/θ (1.21)

where y is the sufficient statistic y =
∑n

i=1 xi, and Y is a
Gamma(5n, θ) random variable. The likelihood ratio is

Λ(θ; x) =
L(θ0; x)

L(θ; x)
=

(
θ

θ0

)5n

exp

(
−
[

1

θ0
− 1

θ

]
y

)
= θ5n exp

(
−θ − 1

θ
y

) (1.22)

As long as θ > 1, this is a decreasing function of y, so a test
which rejects H0 if Λ ≤ k(θ) will be equivalent to one which
does so if Y ≥ a for some corresponding a. This can be defined
so that the critical region is of size α:

α = P (Y ≥ a|H0) = γ(θ0) =

∫ ∞
a

y5n−1

Γ(5n)θ5n0
e−y/θ0 dy =

Γ(5n, a)

Γ(5)
(1.23)

where

Γ(s, x) =

∫ ∞
x

ts−1 e−t dt (1.24)

is the upper incomplete Gamma function. In any event, the
value of a doesn’t depend on θ, as long as θ > 1, so Y ≥ a is
the UMP test of H0 in light of the composite hypothesis H1.

1.4.2 Example: Two-Sided Hypothesis

Note that there does not always exist a UMP test. Suppose
instead the hypothesis H1 is θ 6= θ0 = 1. For θ > 1, the most
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powerful test is to reject H0 if Y ≥ a as defined above. For
0 < θ < 1, the likelihood ratio

Λ(θ; x) = θ5n exp

(
1− θ
θ

y

)
(1.25)

is a monotonically increasing function of y, so Λ ≤ k(θ) is equiv-
alent to Y ≤ b, where b is defined by

α = P (Y≤b|H0) = γ(θ0) =

∫ b

−∞

y5n−1

Γ(5n)θ5n0
e−y/θ0 dy =

Γ(5n)− Γ(5n, b)

Γ(5n)
(1.26)

where

Γ(s)− Γ(s, x) =

∫ x

−∞
ts−1 e−t dt (1.27)

is the lower incomplete Gamma function. Thus the most pow-
erful test depends on the value of θ: rejecting H0 when Y ≥ a is
most powerful if θ > θ0, while rejecting H1 when Y ≤ b is most
powerful if θ < θ0,

To illustrate, we’ll plot the power function for the two tests
assuming α = 0.10 and n = 4. We’ll get the percentiles and tail
probabilities for the Gamma distribution using the SciPy stats
package. For any distribution, the method sf() is the survival
function (one minus the cdf), cdf() is the cdf, and isf() and
ppf() are the inverses of these functions.

In [1]: from scipy.stats import gamma as gammadist

In [2]: alpha = 0.10

In [3]: n = 4

In [4]: a = gammadist(5*n).isf(alpha)

In [5]: b = gammadist(5*n).ppf(alpha)

We check that the significance of the two tests is indeed 10%:

In [6]: print gammadist(5*n).sf(a)

0.1

In [7]: print gammadist(5*n).cdf(b)

0.1

In [8]: theta = linspace(0,3,1000)[1:]

The [1:] is to omit the first element in the array, so that we’re
not actually trying to use θ = 0 as a value of the scale parameter.

In [9]: gamma_a = gammadist(5*n,scale=theta).sf(a)

In [10]: gamma_b = gammadist(5*n,scale=theta).cdf(b)

In [11]: figure();

In [12]: plot(theta,gamma_a,'b-',label=r'$Y\geq a$');

In [13]: plot(theta,gamma_b,'r--',lw=2,label=r'$Y\leq b$');

In [14]: legend(loc='center right');

In [15]: xlabel(r'$\theta$');

In [16]: ylabel(r'$\gamma(\theta)$');

In [17]: grid(True)

In [18]: savefig('notes08_power.eps',bbox_inches='tight')

Here are the two power curves:
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Note that they intersect at γ(1) = 0.1, which makes sense since
any test with significance α will satisfy γ(θ0) = α. And as we
can see, the power of the test Y ≥ a (solid blue) is higher for
θ > 1, while the power of the test Y ≤ b (dashed red) is higher
for θ < 1.

1.4.3 Example: Composite Null Hypothesis

Returning to the case where H1 is θ > 1, we can extend the
discussion to comparison between two composite hypotheses by
letting H0 be θ ≤ 1. As a matter of convention, we define the
significance α for a test with a composite null hypothesis as the
worst-case false alarm rate:

α = max
θ∈ω

P (X ∈ C; θ) (1.28)

If we consider the test Y ≥ a,

P (X ∈ C; θ) =

∫ ∞
a

y5n−1

Γ(5n)θ5n
e−y/θ dy =

∫ ∞
a/θ

t5n−1

Γ(5n)
e−t dt

(1.29)
Since the integrand is positive definite and independent of θ, we
see that we can maximize the integral by making θ as large as
possible subject to H0 (so that the lower limit a/θ is as small
as possible and the integral is maximized), i.e., θ = θ0 = 1. So
the sigificance of the test for null hypothesis H0 : θ ≤ θ0 = 1 is
the same as for H0 : θ = θ0 = 1, and the rest of the problem
proceeds as before, i.e., Y ≥ a defines the UMP for H0 : θ ≤ 1
vs H1 : θ > 1.

1.4.4 The Karlin-Rubin Theorem

This is example is an illustration of a result known as the Karlin-
Rubin theorem, which extends the Neyman-Pearson lemma to
tests of one-sided composite hypotheses. If the likelihood func-
tion L(θ; x) can be written in terms of a single sufficient statistic
y = u(x) and has the property that, for any θ0 and θ1 in the
parameter space and satisfying θ0 < θ1, the likelihood ratio

Λ(x; θ0, θ1) =
L(θ0;θ)

L(θ1;θ)
(1.30)

is a monotonically increasing or monotonically decreasing func-
tion of y, then there exists a uniformly most powerful test for
H0 : θ ≤ θ′ versusH1 : θ > θ′. We call this situation a monotone
likelihood ratio (mlr).

1.4.5 Example: Exponential Family

The conditions for a monotone likelihood ratio seem a little re-
strictive, but there is a decent class of models which satisfy them.
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If we consider a distribution which is a member of the regular
exponential family, so

f(x; θ) = exp (η(θ)K(x) +H(x) + q(θ)) (1.31)

then the likelihood for a sample of size n is

L(θ; x) = exp

(
η(θ)

n∑
i=1

K(xi) +
n∑
i=1

H(xi) + nq(θ)

)
(1.32)

and the likelihood ratio is

Λ(x; θ0, θ1) =
L(θ0;θ)

L(θ1;θ)
= exp ([η(θ0)− η(θ1)]y + n[q(θ0)− q(θ1)])

(1.33)
where the dependence on the data is via the sufficient statistic
y =

∑n
i=1K(xi). We see that:

• If η(θ) is a monotonically increasing function of θ, then
η(θ0)− η(θ1) < 0 for θ0 < θ1, and Λ(x; θ0, θ1) is a monoton-
ically decreasing function of y.

• If η(θ) is a monotonically decreasing function of θ, then
η(θ0)− η(θ1) > 0 for θ0 < θ1, and Λ(x; θ0, θ1) is a monoton-
ically increasing function of y.

I.e., if η(θ) is a monotone function of θ, we have a monotone
likelihood ratio, and the Karlin-Rubin theorem tells us there’s
a UMP test to distinguish between one-sided hypotheses.

Tuesday 3 May 2016
– Read Section 8.3 of Hogg

2 Likelihood Ratio Tests and UMP

Unbiased Tests

2.1 Gamma Example Continued

Recall that last time, we saw that, for a sample of size n drawn
from a Gamma(5, θ) distribution, a test which rejected H0 :
θ = θ0 = 1 if

∑n
i=1X i ≥ a was uniformly most powerful for

comparing H0 to the one-sided alternative hypothesis θ > θ0 =
1, while one with rejected H0 if

∑n
i=1X i ≤ b was UMP if the

alternative hypothesis was θ < θ0 = 1, but if the alternative
hypothesis was H1 = θ 6= θ0 = 1, there was no single test which
was most powerful for every θ allowed under H1.

One method we’ve considered before for comparing composite
hypotheses is a likelihood ratio test, where we maximize the
likelihood subject to each hypothesis. In this case, where the
null hypothesis is still the point hypothesis θ = θ0, this becomes

Λ(x) =
L(θ0; x)

L(θ̂(x),x)
(2.1)

specifically in this example,

L(θ; x) =

∏n
i=1 x

4
i

[Γ(5)]nθ5n
e−y/θ (2.2)

and the maximum likelihood solution θ̂ is the solution to

0 =
∂

∂θ

(
−5n ln θ − y

θ

)
= −5n

θ
+
y

θ2
(2.3)
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i.e., θ̂ = y
5n

, which makes the likelihood ratio

Λ(x) =
L(1; x)

L( y
5n
,x)

=
( y

5n

)5n
e−y+5n (2.4)

Since this goes to zero as y goes to zero or infinity, a test which
rejects H0 if Λ(x) ≤ k will be a two-sided test on Y , rejecting if

Y ≤ c1 or Y ≥ c2 (2.5)

where y = c1 and y = c2 correspond to equal values of the
likelihood, i.e.,

c5n1 e
−c1 = c5n2 e

−c2 (2.6)

which, together with the specified significance α determines c1
and c2 via

1− α =

∫ c2

c1

fY (y; 1) dy =
1

Γ(5n)

∫ c2

c1

y5n−1 e−y dy (2.7)

Note that this likelihood ratio test is slightly different from the
equal-tailed test defined by∫ csym1

0

fY (y; 1) dy =
α

2
=

∫ ∞
csym2

fY (y; 1) dy (2.8)

which is slightly easier to construct. (csym1 and csym2 can be
written as the 100αth and 100(1 − α)th percentiles of the
Gamma(5n, 1) distribution which applies to Y under the null
hypothesis H0.) If the distribution function fY (y; 1) and the
likelihood ratio Λ(x) were symmetric functions in y, of course,
the likelihood ratio test would be equal-tailed. This is the case
in several of the examples in Hogg.

We can examine the power functions of the different options
(the two one-sided tests, the equal-tailed test, and the likelihood
ratio test) by continuing our plotting example from last time:

In [19]: c1_sym = gammadist(5*n).isf(0.5*alpha)

In [20]: c2_sym = gammadist(5*n).ppf(0.5*alpha)

In [21]: gamma_sym = (

....: gammadist(5*n,scale=theta).cdf(c2_sym)

....: + gammadist(5*n,scale=theta).sf(c1_sym) )

In [22]: plot(theta,gamma_sym,'k:',lw=2,

....: label=r'$Y\leq c_1^{\rm sym}$ '

....: + r'or $Y\geq c_2^{\rm sym}$');

For the maximum likelihood test, we have to find the test which
satisfies (2.6) from among the choices for which P (Y ≤ c1|H0)+
P (Y ≥ c2|H0) = α:

In [23]: alphaleft = linspace(0,alpha,1000)[1:-1]

In [24]: c1 = gammadist(5*n).ppf(alphaleft)

In [25]: c2 = gammadist(5*n).isf(alpha-alphaleft)

c1 and c2 are both 998-element arrays giving the lower and
uppwe end of the range of y values for which we should not
reject H0. Rather than doing some sophisticated root-finding,
we just brute-force it and pick the pair which has the lowest
value of |c5n1 e−c1 − c5n2 e−c2|:

In [26]: ind_ML = argmin(abs(c1**(5*n)*exp(-c1)

....: -c2**(5*n)*exp(-c2)))

In [27]: c1_ML = c1[ind_ML]

In [28]: c2_ML = c2[ind_ML]
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In [29]: gamma_ML = (

....: gammadist(5*n,scale=theta).cdf(c1_ML)

....: + gammadist(5*n,scale=theta).sf(c2_ML) )

In [30]: plot(theta,gamma_ML,'g-',

....: label=r'$Y\leq c_1^{\rm ML}$ '

....: + r'or $Y\geq c_2^{\rm ML}$');

In [31]: legend(loc='center right');

In [32]: savefig('notes08_ML.eps',bbox_inches='tight')
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We see that the equal-tailed test is slightly different from the
maximum likelihood test, thanks to the asymmetric distribu-
tion, but it’s close. Both have the property of having a power

function that goes to unity as you go away from θ = θ0 − 1 in
either direction, as opposed to the one-sided tests, whose power
function goes to zero on the “wrong” side of θ = θ0.

2.2 Unbiased Tests

One of the unsatisfactory properties of the one-sided hypothesis
tests is that while they are the most powerful tests for some
ranges of the parameter θ, for other ranges, the power is actually
below the false alarm probability α. For instance, the test which
rejects H0 when Y ≥ a has γ(θ) < α when θ < θ0 = 1. This
means the test is more likely to reject H0 when it’s true than
when H1 is true, if it happens that θ < 1. A test with this
undesirable property is called biased. Conversely, an unbiased
test is one for which γ(θ) ≥ α for all θ allowed by H1.

It is often the case that, while no uniformly most powerful
test exists, there is an unbiased test which, at all values of θ,
is more powerful than any other unbiased test. This is known
as the uniformly most powerful unbiased test. It can be shown
that in many cases (specifically the regular exponential family),
the UMPU test is a two-sided test on the sufficient statistic Y ,
which rejects H0 if Y ≤ c1 or Y ≥ c2.

2.2.1 Illustration for Gamma example

Returning to the example of a sample from the Gamma(5, θ)
distribution, consider a test which satisfies γ(θ) ≥ α when
θ 6= θ0 = 1. Since γ(θ0) = α, that means the power func-
tion γ(θ) must have a minimum at θ = θ0. Recalling that
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Y ∼ Gamma(5n, θ), we have

γ(θ) = 1−
∫ c2

c1

fY (y; θ) dy = 1− 1

Γ(5n)

∫ c2

c1

y5n−1 e−y/θ dy

θ5n

= 1− 1

Γ(5n)

∫ c2/θ

c1/θ

t5n−1 e−t dt

(2.9)

where we have made the substitution t = y/θ in the last step.
Requiring this to be a minimum at θ = θ0 gives us

0 = γ′(θ0) =
1

Γ(5n)

(
c2
θ20
c5n−12 e−c2 − c1

θ20
c5n−11 e−c1

)
(2.10)

which gives us, using θ0 = 1,

c5n2 e−c2 = c5n1 e−c1 (2.11)

If we look back, we see this is just the condition (2.6) associated
with the likelihood ratio test, so that test is in fact the UMP
unbiased test for this model.

We can verify this by zooming in on the power function plot
above:

In [33]: xlim([.95,1.05]);

In [34]: ylim([0.08,0.12]);

In [35]: savefig('notes08_MLzoom.eps',bbox_inches='tight')
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We see that the equal-tailed test has a power function which
dips below α = 0.10 for a small range of θ values, so in fact
that test is not unbiased. We see that the likelihood ratio test
is indeed unbiased, and it turns out to tbe the UMPU test.

Thursday 5 May 2016
– See Searle, http://arxiv.org/abs/0804.1161

3 Composite Hypothesis Testing

with Priors

Consider now a slightly different situation. Suppose that the
null hypothesis H0 is a point hypothesis, but the alternative
hypothesisH1 is a composite hypothesis which allows for a range
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of values of the model parameter(s) θ, but comes with a prior
distribution fΘ(θ|H1) on those parameters. (We include the
possibility of a p-dimensional parameter space, but it may also
be that p = 1.) If we define a test which rejects H0 when

fX(x|H0)

fX(x|H1)
=

L(θ0; x)∫
L(θ; x) fΘ(θ|H1) dpθ

≤ k (3.1)

the Neyman-Pearson lemma tells us this is the most powerful
test of H0 versus H1. This is “most powerful” in the sense of
maximizing the power function

γ(H1) = P (X ∈ C|H1) =

∫
C

fX(x|H1) d
nx

=

∫
C

∫
L(θ; x) fΘ(θ|H1) d

pθ dnx =

∫
γ(θ) fΘ(θ|H1) d

pθ

(3.2)

A few points to note:

• The test statistic in (3.1) is just the Bayes factor which
we’ve already motivated using Bayes’s theorem in the form

P (Hi|x) =
fX(x|Hi)P (Hi)

fX(x)
(3.3)

to write
P (H0|x)

P (H1|x)
=
fX(x|H0)

fX(x|H1)

P (H0)

P (H1)
(3.4)

• If there is a uniformly most powerful test which covers any
θ in the support of fΘ(θ|H1), this will also be the most
powerful test of H0 against H1 for any prior distribution.

• A possible objection is that the frequentist hypothesis test-
ing formalism only applies to the outcomes of repeated ex-
periments, and isn’t supposed to know about any prior dis-
tribution. The preprint by Searle referenced above actually

refers to the outcome of a Monte Carlo experiment, where
θ is also randomly generated along with the realization
of X, so the relevant joint distribution is fXΘ(x,θ|H1) =
fX(x;θ) fΘ(θ|H1). In that context, the Bayes factor con-
structed using the same prior as the Monte Carlo simulation
gives the most powerful test, when attention is restricted to
tests which define C using only X and not Θ.

3.1 Example: Mean of a Normal Distribution

Suppose that the data vector is X =

(
X1

X2

)
but rather than

being a sample from a given distribution, they are independent
random variables X1 ∼ N(θ1, 1) and X2 ∼ N(θ2, 1). Let the null
hypothesis be H0 : θ1 = 0 = θ2 and the alternative hypothesis

be H1 :

(
θ1
θ2

)
6=
(

0
0

)
. The likelihood function is

L(θ; x) =
1

2π
exp

(
−(x1 − θ1)2

2
− (x2 − θ2)2

2

)
(3.5)

The maximum likelihood solution is θ̂1 = x1 and θ̂2 = x2, so the
likelihood ratio test would reject H0 if

Λ(x) =
L(0,x)

L(θ̂,x)
= exp

(
−x

2
1 + x22

2

)
≤ k (3.6)

which means, for a test of significance α, rejecting H0 if

X1
2 +X2

2 ≥ χ2
2,α (3.7)

On the other hand, if we have a prior fΘ(θ1, θ2|H1) the
Neyman-Pearson lemma tells us the optimal test statistic is the
Bayes factor

exp
(
−x21+x

2
2

2

)
∫∞
−∞

∫∞
−∞ fΘ(θ1, θ2|H1) exp

(
− (x1−θ1)2

2
− (x2−θ2)2

2

)
dθ1 dθ2

(3.8)
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3.1.1 Case 1: Uniform Prior

Suppose that the prior fΘ(θ1, θ2|H1) is uniform in θ1 and θ2.
1

In that case the denominator is proportional to∫ ∞
−∞

∫ ∞
−∞

exp

(
−(x1 − θ1)2

2
− (x2 − θ2)2

2

)
dθ1 dθ2 = constant

(3.9)
and the Bayes factor is proportional to the maximum-likelihood
ratio

exp

(
−x

2
1 + x22

2

)
(3.10)

so using x21 + x22 as a test statistic does give the optimal test in
light of the prior.

3.1.2 Case 2: Non-Uniform Prior

It could be that the prior on θ1 and θ2 is more complicated.2 For
instance, suppose fΘ(θ1, θ2) ∝ (θ1θ2)

2. Then the denominator
of the Bayes factor is proportional to∫ ∞

−∞

∫ ∞
−∞

θ21θ
2
2 exp

(
−(x1 − θ1)2

2
− (x2 − θ2)2

2

)
dθ1 dθ2

∝ (1 + x21)(1 + x22) (3.11)

1This is an improper prior, so technically the normalization factor will
be zero and Bayes factor will be infinite, but we’re only interested in the x
dependence of the Bayes factor anyway. If we want to be careful, we can
use a prior that is e.g., Gaussian with some large width, much greater than
any of the other values in the problem.

2E.g., for the gravitational wave signal from a rotating or orbiting
system, the amplitudes of the left- and right-circularly polarized parts

of the signal are proportional to
(
1±cos ι

2

)2
where ι is an inclination an-

gle, which is generally unknown with a uniform prior on cos ι ∈ [−1, 1],
which produces a non-trivial prior distribution for the two amplitudes.
See Whelan et al, Classical and Quantum Gravity 31, 065002 (2014);
http://arxiv.org/abs/1311.0065.

which means the Bayes factor is proportional to

exp
(
−x21+x

2
2

2

)
(1 + x21)(1 + x22)

(3.12)

and the optimal test rejects H0 if

X1
2 +X2

2 + 2 ln(1 +X1
2) + 2 ln(1 +X2

2) ≥ c (3.13)

We can show the difference between the two families of critical
regions on a contour plot:

In [1]: x = linspace(-4,4,100)

In [2]: x1grid, x2grid = meshgrid(x,x)

In [3]: Fgrid = x1grid**2 + x2grid**2

In [4]: Bgrid = ( Fgrid

...: + 2*log(1+x1grid**2) + 2*log(1+x2grid**2) )

In [5]: xlevels = arange(6)

In [6]: Blevels = xlevels**2 + 2*log(1+xlevels**2)

In [7]: Flevels = xlevels**2

In [8]: figure(figsize=(5,5));

In [9]: contour(x1grid,x2grid,Fgrid,Flevels,colors='r',

...: linewidths=2,linestyles='dashed');

In [10]: contour(x1grid,x2grid,Bgrid,Blevels,colors='b');

In [11]: grid(True)
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In [12]: xlabel(r'$x_1$');

In [13]: ylabel(r'$x_2$');

In [14]: savefig('notes08_contours.eps',

....: bbox_inches='tight')
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Note that we drew the contours at arbitrary levels; to draw them
at the same significance for the two tests, we’d probably need

to estimate the significance of the Bayes-factor test numerically.
(See figure 3 of Whelan et al 2014 for an example of this.)

Tuesday 10 May 2016
– Review for Final Exam

The exam is comprehensive, but with relatively more emphasis
on chapter eight and the second half of chapter seven. Please
come with questions and topics you’d like to go over.

Thursday 12 May 2016
– Review for Final Exam

The exam is comprehensive, but with relatively more emphasis
on chapter eight and the second half of chapter seven. Please
come with questions and topics you’d like to go over.
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