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Tuesday 15 March 2016
Guest lecture from Prof. James Marengo
– Read Sections 7.1-7.2 of Hogg

1 Sufficiency and the Factorization

Theorem

Thursday 17 March 2016
Guest lecture from Prof. James Marengo
– Read Section 7.3 of Hogg

2 The Rao-Blackwell Theorem

Tuesday 29 March 2016
– Read Section 7.4 of Hogg

3 Recap of Sufficiency

3.1 Comment on the Likelihood Principle

Return to an example Hogg gives at the end of section 7.1: con-
sider an experiment with a series of trials with some unknown
probability of success θ ∈ [0, 1], in which one success is observed
in a set of 10 trials. But consider two different scenarios in which
that can occur:

1. The experiment was designed to carry out 10 trials. The
observable is then the number of successes Y , which is
a binomial random variable Bin(10, θ) with pmf pY (y) =(

10
y

)
θy(1− θ)10−y

2. The experiment was designed to stop at the first success.
The observable then the number of trials Z, which is a

geometric random variable with pmf pZ(z) = θ(1 − θ)z−1,
z = 1, 2, 3, . . ..

In classical statistics, the inference problem is related to the
probabilities for outcomes of repeated experiments of the same
sort, so it depends not just on what was actually observed, but
what the “rules” of the experiment were, and so we might draw
different inferences from the same observation under the two
scenarios described above. In particular, as Hogg shows, if we
define an estimator of θ to be (# of successes)/(# of trials), this
is Y /n under the first scenario and 1/Z under the second. But
while E (Y /n) = θ, E (1/Z) 6= θ, so this estimator would be un-
biased under the first description but biased under the second.
So if we required our estimator to be unbiased, we would con-
struct a different estimator if we’d decided to stop at the first
success rather than to do 10 trials, even though in either case
we’d seen the exact same thing.

In this example, the likelihood functions for the two sce-
narios, evaluated at the actual observed values, are the same
up to a constant, i.e., L(a)(θ; y = 1) = 10 θ (1 − θ)9 and
L(b)(θ; z = 10) = θ (1 − θ)9. Hogg states something called the
likelihood principle, which “many statisticians” favor, stating
that if two problems have likelihood functions which are the
same up to a constant, we should draw the same inferences in
them. Most Bayesians go a step further and point out that the
posterior pdf f(θ|D) should depend only on what actually hap-
pened, and not on the hypothetical outcomes of imaginary repe-
titions of the experiment. (This situation is known as “optional
stopping” because in frequentist inference, the conclusions can
depend on why the experimenter chose to stop the experiment.)
Jaynes1 makes this point by stating that the information about
the rules of the experiment is redundant, If we already know

1Probability Theory: The Logic of Science section 6.9.1
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that we’ve seen 9 failures followed by 1 success, the information
that we conducted 10 trials (in the binomial case) or that we
stopped at the first success (in the geometric case) tells us noth-
ing we don’t already know from the data. He claims that any
inference which treats the two situations differently violates the
basic principles of logic: the sample space): “Of course, that vi-
olates the principle AA = A of elementary logic; it is astonishing
that such a thing could be controversial in the 20th century.”

3.2 Sufficiency

Definition of sufficiency: Y1 = u(X) is a sufficient statistic for
a parameter θ iff the likelihood for the whole sample is a θ-
independent multiple of the likelihood for Y1:

fX(x; θ)

fY1(y1; θ)
= H(x) (3.1)

Factorization theorem: under the usual regularity conditions,
this is equivalent to the likelihood factoring into a θ-dependent
part involving only u(x) and a θ-independent part:

fX(x; θ) = k1(u(x); θ) k2(x) (3.2)

Of course, we’ve seen this in a Bayesian context; it means the
posterior for θ depends only on u(x), since

fΘ|X(θ|x) ∝ fX|Θ(x|θ) fΘ(θ) ∝ k1(u(x); θ) fΘ(θ) (3.3)

3.3 Minimum-Variance Unbiased Estimators

We considered the variance of an unbiased (E (Y ) = θ) estimator

Var(Y ) = E
(
[Y − θ]2

)
(3.4)

when we studied the Cramér-Rao bound. Thinking of (Y −
θ)2 as a loss function, the variance is seen as a measure of the
risk of making a poor estimate, so choosing an estimator which
minimizes it is desirable.

Rao-Blackwell theorem: if Y1 is a sufficient statistic for θ,
and Y2 is an unbiased estimator of θ based on some other com-
bination of the data, we can make another unbiased estimator
ϕ(Y1) = E (Y2|Y1) which has an equal or lesser variance, so when
looking for the MVUE, we can confine our attention to sufficient
statistics.

3.4 Uniqueness and Completeness

The Rao-Blackwell theorem tells us that if there is a sufficient
statistic, one function of it is a MVUE. But we could imagine
a case where, even though we’ve constructed an unbiased esti-
mator ϕ(Y1), there might be another unbiased estimator ψ(Y1)
which could have a lower variance. One thing we do know about
such a pair of unbiased estimators is that

E (ϕ(Y1)− ψ(Y1)) = θ − θ = 0 (3.5)

In general, just because E (ϕ(Y1)− ψ(Y1)) = 0, it doesn’t nec-
essarily mean that E (ϕ(Y1)− ψ(Y1)) = 0. But suppose that
the distribution function fY1(y1; θ) has the property that any
function u(Y1) which satisfies E (u(Y1)) = 0 for all θ also satis-
fies u(Y1 = 0. Then we know the function ϕ(Y1) is unique, and
there’s only one unbiased estimator that can be constructed from
the sufficient statistic, and this unique estimator is therefore the
MVUE.

This property is known as completeness. We say that f(x; θ),
θ ∈ Ω is a complete family of distributions if, for any u(x)
satisfying E (u(X)) = 0 for all θ, P (u(X) = 0) = 1. This
seems like a very specialized sort of distribution, but it’s more
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common than you’d imagine. For example, consider a Poisson
distribution

p(x; θ) =

{
e−θθx

x!
x = 0, 1, 2, . . .

0 otherwise
(3.6)

where 0 ≤ θ < ∞. If we have a function u(x) such that
E (u(X)) = 0 for all θ, that means

0 =
∞∑
x=0

u(x)
e−θθx

x!
= e−θ

(
u(0) + u(1) θ +

u(2)

2
θ2 +

u(3)

3!
θ3 + · · ·

)
(3.7)

The prefactor e−θ is a positive number, so the series in paren-
theses has to vanish. The only way that can be the case for all
θ is if each of the coefficients vanishes separately, i.e.,

0 = u(0) = u(1) = u(2) = · · · (3.8)

i.e.,

u(x) = 0, x = 0, 1, 2, . . . (3.9)

but this is precisely the set of values for which P (X = x) is
non-zero, so p(x; θ) is a complete family of distributions.

Thursday 31 March 2016
– Read Section 7.4 of Hogg

4 The Exponential Class of Distribu-

tions

We consider now a class of distributions for which we can read
off a complete sufficient statistic, as well as several other useful

properties. This is known as the regular exponential class, for
which the pdf (or pmf) has the form

f(x; θ) = exp [η(θ)K(x) +H(x) + q(θ)] x ∈ S, γ < θ < δ
(4.1)

for which

1. The support space S doesn’t depend on θ

2. η(θ) is a nontrivial (not necessarily monotonic) function of
θ

3. K(x) is a non-trivial function of x, and if X is a continuous
random variable, K ′(x) 6= 0 and both K ′(x) and H(x) are
continuous.

Many families of distributions have this form, a number of which
are given as examples in Hogg. To pick one which isn’t, consider
the Beta distribution

f(x; θ) =
Γ(2θ)

[Γ(θ)]2
xθ−1(1− x)θ−1 0 < x < 1, 0 < θ <∞

(4.2)
On the support space, we can write the pdf as

f(x; θ) = exp

[
θ ln(x[1− x])− ln(x[1− x]) + ln

Γ(2θ)

[Γ(θ)]2

]
(4.3)

This is of the exponential form with γ = 0, δ = ∞, S = (0, 1),
η(θ) = θ, K(x) = lnx + ln(1 − x), H(x) = − lnx − ln(1 − x),
and q(θ) = ln Γ(2θ)− 2 ln Γ(θ).
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Returning to the generic exponential class, we see that the
likelihood for a sample of size n can be written as

L(θ; x) =
n∏
i=1

f(xi; θ) = exp

[
η(θ)

n∑
i=1

K(x) +
n∑
i=1

H(x) + nq(θ)

]

= exp

[
η(θ)

n∑
i=1

K(x) + nq(θ)

]
exp

[
n∑
i=1

H(x)

]
(4.4)

We can see by the factorization theorem that Y1 ≡
∑n

i=1K(Xi)
is a sufficient statistic for the parameter θ, and it’s not hard to
convince ourselves that the pdf for Y1 has the form

fY1(y1; θ) ∝ exp [η(θ)y1 + nq(θ)] (4.5)

where the proportionality “constant” can depend on y1 but not
θ. We write this more precisely as

fY1(y1; θ) = R(y1) exp [η(θ)y1 + nq(θ)] (4.6)

You’ll show on the homework that

E (Y1) = −nq
′(θ)

η′(θ)
(4.7)

and it can also be shown that

var(Y1) =
n

[p′(θ)]3
[p′′(θ)q′(θ)− q′′(θ)p′(θ)] (4.8)

So, for the Beta distribution example, we have a sufficient statis-
tic

Y1 =
n∑
i=1

ln[Xi(1−Xi)] = ln
n∏
i=1

Xi(1−Xi) (4.9)

It turns out that the statistic Y1 is a complete sufficient statis-
tic, i.e., that the family of distributions fY1(y1; θ) is complete in

the sense we defined last time, i.e., the only function u(y1) which
has E (u(Y1)) = 0 is equal to zero (except possibly at points cor-
responding to zero probability). The demonstration of this takes

E (u(Y1)) = enq(θ)
∫
SY1

u(y1)R(y1)eη(θ)y1 dy1 (4.10)

Since enq(θ) > 0, the only way this can vanish is if the integral
does. There is a result from the theory of Laplace transforms
that the only way this can vanish for all η(θ) is if u(y1)R(y1) = 0
for all y1 ∈ SY1 , and since R(y1) > 0 on SY1 , we must have
u(y1) = 0 everywhere.

The consequences of this completeness are that, if we find a
function ϕ(Y1) which is an unbiased estimator, it will be unique
and therefore (by the Rao-Blackwell theorem) the minimum-
variance unbiased estimator.

4.1 Example: Exponential Distribution

Consider the exponential distribution with rate parameter θ,
which has pdf

f(x; θ) = θe−θx 0 < x <∞; 0 < θ <∞ (4.11)

(Note that this is also a Gamma(1, 1
θ
) distribution. We can write

this in the exponential form as

f(x; θ) = exp (−θx+ ln θ) (4.12)

which has η(θ) = −θ, K(x) = x, H(x) = 0, and q(θ) = ln θ.
Thus the complete sufficient statistic is

Y1 =
n∑
i=1

Xi (4.13)
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which has expectation value

E (Y1) = −nq
′(θ)

η′(θ)
= −n1/θ

−1
=
n

θ
(4.14)

If we can make an unbiased estimator of θ out of this, we know
it will be the MVUE. It’s not immediately obvious how to get
this from our knowledge of E (Y1), though, which illustrates a
drawback to the formalism. In particular,

E

(
n

Y1

)
= nE

(
1

Y1

)
6= n

E (Y1)
= θ (4.15)

(Note that if we has defined the parameter to be β = 1/θ instead,
we’d have had no such problem, since E (Y1) = nβ so 1

n
Y1 = X

is an unbiased estimator of β.)

Tuesday 5 April 2016
– Read Section 7.6 of Hogg

5 Reparametrization and Other Pit-

falls

5.1 Exponential Example Continued

By construction, we can see that Y1 ∼ Gamma(n, 1
θ
), so

fY1(y1; θ) =
θn yn−1

1

Γ(n)
e−θy1 0 < y1 <∞ (5.1)

Note that for n > 1, we can actually calculate

E

(
1

Y1

)
=

∫ ∞
0

fY1(y1; θ)

y1

dy1 =

∫ ∞
0

θn yn−2
1

Γ(n)
e−θy1 dy1

= θ
Γ(n− 1)

Γ(n)
=

θ

n− 1

(5.2)

so the unbiased estimator constructed from Γ is actually

ϕ(Y1) =
n− 1

Y1

(5.3)

which we then know is the unique minimum variance unbiased
estimator.

5.2 Change of Parameters

For an example that illustrates the pitfalls inherent in seeking an
unbiased estimator, consider the Bernoulli distribution b(1, θ),
with pmf

p(x; θ) = θx(1− θ)1−x = exp (x ln θ + (1− x) ln(1− θ))
= exp (x [ln θ − ln(1− θ)] + ln(1− θ)) x = 0, 1; 0 < θ < 1

(5.4)

which is of the exponential form with η(θ) = ln θ
1−θ , K(x) = x,

H(x) = 0, and q(θ) = ln(1− θ). This means that Y =
∑n

i=1Xi

is a complete sufficient statistic for θ, and it’s easy to see X = Y
n

is a MVUE for θ. But what if we choose the parameter instead
to be

τ =
θ

1− θ
0 < τ <∞ (5.5)

X is still a sufficient statistic, but we run into trouble when we
try to construct an unbiased estimator from it. The maximum
likelihood estimator is

τ̂ =
X

1−X
(5.6)

but we can see that the expectation value of this is divergent,
since there is, for any τ , a non-zero probability θn = (1 + τ)−n

that Y = n and thus X = 1. We can see explicitly that it’s
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impossible to construct an unbiased estimator of τ out of Y by
noting that Y ∼ b(n, 1

1+τ
), i.e.,

p(y; τ) =

(
n

y

)
τn−y

(1 + τ)n
(5.7)

so

E (ϕ(Y )) =
n∑
y=0

(
n

y

)
τn−y

(1 + τ)n
ϕ(y) (5.8)

Since the numerator and denominator are both polynomials in
τ of order n, there’s no set of ϕ(y) values which can make the
sum equal to τ .

Thursday 7 April 2016
– Review for Prelim Exam Two

The exam covers materials from the weeks 5-9 of the term, i.e.,
Hogg sections 6.3-6.5 and 7.1-7.5 (and associated topics covered
in class through April 5), and problem sets 5-8.

Tuesday 12 April 2016 – Second Prelim Exam

Thursday 14 April 2016
– Read Section 7.7 of Hogg

6 Generalizations to Multiple Pa-

rameters

Most of our results and definitions carry over to the case where
the single parameter θ is replaced by a vector of parameters

θ =


θ1

θ2
...
θp

 (6.1)

It can also happen that the θ dependence of the likelihood is
described not by a single statistic but a vector of statistics

Y =


Y1

Y1
...
Ym

 =


u1(X)
u2(X)

...
um(X)

 (6.2)

where m may or may not be equal to p.

6.1 Joint Sufficient Statistics

We say that Y = u(X) are joint sufficient statistics for θ if and
only if the ratio

fX(x;θ)

fY(y;θ)
= H(x) (6.3)

is independent of θ. There is a corresponding factorization the-
orem that says that an equivalent condition is that the joint pdf
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can be written

fX(x;θ) = k1(u(x);θ) k2(x) (6.4)

The dataset need not be a sample drawn from a univariate
distribution f(x;θ) either. One simple generalization is to work
with a probability distribution for a k-dimensional random vec-
tor

X =


X1

X2
...
Xk

 (6.5)

,and then we could draw a sample of size n from fX(x;θ), which
would have a joint distribution function of

f{Xi}(x1, . . . ,xn;θ) = fX(x1;θ) fX(x2;θ) · · · fX(xn;θ) (6.6)

Of course, if you wanted to, you could expand the notation and
let X refer to the whole data set again:

X =
(
X1 X2 · · · Xn

)
=


X11 X21 · · · Xn1

X12 X22 · · · Xn2
...

...
. . .

...
X1k X2k · · · Xnk

 (6.7)

In general, X refers to our data set, whatever indices we find it
convenient to label it with.

6.2 Example: Bradley-Terry Model

There are numerous examples of joint sufficient statistics in
Hogg, so we look at a slightly more involved one. Consider
again the Bradley-Terry model2, which we looked at back in

2Zermelo, Mathematische Zeitschrift 29, 436 (1929); Bradley and Terry
Biometrika 39, 324 (1952)

February when considering maximum likelihood estimation. As
a reminder, this model describes “paired comparisons” between
objects. (E.g., games between teams or players, taste tests be-
tween foods, etc.) Each object has a strength θi, and the prob-
ability of object i “winning” a given comparison with object j
is θi

θi+θj
. Since the probabilities are unchanged if we multiply

all of the strengths by a constant, if we have p + 1 objects, we
specify that θp+1 = 1 and then have p free parameters θ1, θ2,
. . . , θp. We suppose that there are nij = nji comparisons con-
ducted between teams i and j and let the observed quantities
be the number Xij of comparisons won by object i over object
j where i = 1, 2, . . . , p and j = i + 1, i + 2, . . . , p + 1. (We
assume that there are no comparisons of an object with itself,
and we avoid double-counting by restricting attention to com-
parisons with i < j.) We basically have a binomial experiment
for each pair of objects, where Xij ∼ b(nij,

θi
θi+θj

). The sampling

distribution is then3

fX(x;θ) =

p∏
i=1

p+1∏
j=i+1

nij!

xij!(nij − xij)!

(
θi

θi + θj

)xij ( θj
θi + θj

)nij−xij
=

(
p∏
i=1

p+1∏
j=i+1

nij!

xij!(nij − xij)!

) ∏p
i=1

∏p+1
j=i+1 θ

xij
i θ

nij−xij
j∏p

i=1

∏p+1
j=i+1(θi + θj)nij

(6.8)

The factor in parentheses is independent of the parameters, and
will become the k2(x) in the factorization of the likelihood. The
factor in the denominator is independent of the data x, and will
become part of the k1(y;θ), but won’t affect the identification

3We could define things so that the observed data were the exact se-
quence of comparison results rather than the numbers of comparison wins
between pairs of objects, which would remove the combinatorical factor,
but it would have no effect on the inference since it would multiply the
likelihood by a θ-independent factor.
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of the joint sufficient statistics y. The numerator is thus “where
all the action is”. If we define xji = nij − xij we can write it as

p∏
i=1

p+1∏
j=i+1

θ
xij
i θ

xji
j =

p+1∏
i=1

p+1∏
j=1

θ
xij
i =

p+1∏
i=1

θ
∑p+1
j=1 xij

i (6.9)

where we can see the first equality most easily by writing it out,
e.g., for p+ 1 = 4 (keeping in mind that xii = 0):

([θx121 θx212 ][θx131 θx313 ][θx141 θx414 ]) ([θx232 θx323 ][θx242 θx424 ]) ([θx343 θx434 ])

= θx12+x13+x14
1 θx21+x23+x24

2 θx31+x32+x34
3 θx41+x42+x43

4 (6.10)

and in the second step we have used the fact that θp+1 = 1.
We can thus write the θ-dependent part of the likelihood as a
function only of the p joint sufficient statistics m

yi =

p+1∑
j=1

xij i = 1, . . . , p (6.11)

which are the total number of comparisons won by each object.
Note that even if we defined yp+1 it could be determined from
the other statistics by

p+1∑
i=1

yp+1 =

p∑
i=1

p+1∑
j=i+1

nij (6.12)

I.e., if you add up the total number of wins for each object, you
have to get the total number of comparisons.

These joint sufficient statistics4 illustrate that any likelihood-
based inference of θ, be it frequentist or f f,Bayesian, will depend
only on the total number of comparisons won by each object
(and the numbers of comparisons performed for each pair). This

4Davidson and Solomon Biometrika 60, 477 (1973)

seems pretty straightforward, but when applied to rating sports
teams, it means that some principles often applied will be irrel-
evant. From the model (which assumes one constant strength
for each team), it’s apparent that the order of the results can’t
matter, but this sufficient statistic also makes it clear that the
concept of “quality wins” doesn’t have independent meaning.
Consider the following two scenarios:

1. RIT defeats Air Force (a strong team based on their other
results) and loses to Bentley (a weak team); Air Force de-
feats Bentley as well.

2. RIT loses to Air Force and beats Bentley. Bentley (while
still being much weaker overall based on their other game
results) upsets Air Force in a game that Air Force won in
the other scenario.

Some rating systems might explicitly reward RIT for their “good
win” over Air Force in the first scenario, more than they penalize
RIT for their “bad loss” against Bentley. But we know that any
likelihood-based inference using the Bradley-Terry model would
produce identical results in the two scenarios above, assuming
that all of the other results besides the three specified were the
same.

6.3 Other Extensions

The definition of completeness is extended in the obvious way.
We’re usually thinking of it for the vector Y of sufficient statis-
tics, but we can write it more generally for a random vector

V =


V1

V1
...
Vm

. The joint pdf fV(v;θ) is said to be a com-

plete family if the only function u(v) whose expectation value
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is E (u(V)) = 0 for all θ ∈ Ω is u(v) = 0.
Similarly, the Rao-Blackwell and Lehmann-Scheffé theorems

still hold. In particular, if Y is a set of complete sufficient
statistics, then a function ϕα(Y) which is an unbiased estimator
of a parameter θα is the minimum variance unbiased estimator
of θα.

And finally, the concept and properties of the regular expo-
nential class of distributions carries through. If we can write the
pdf (or pmf) for X as

fX(x;θ) = exp

(
m∑
j=1

ηj(θ)Kj(x) +H(x) + q(θ)

)
(6.13)

Then

Yj =
n∑
i=1

Kj(Xi) j = 1, . . . ,m (6.14)

are complete joint sufficient statistics for the parameters θ.

Tuesday 19 April 2016
– Read Section 7.8 of Hogg

7 Minimal Sufficiency and Ancillary

Statistics

Useful additional reading for this topic is Chapter Eight of
Jaynes’s Probability Theory – The Logic of Science, entitled
“Sufficiency, Ancillarity and All That”. In addition to an in-
teresting perspective, it has lots of wonderfully Jaynesian snark,
such as “From his failure to attack it when he was attacking
almost every other principle of inference, we may infer that
R. A. Fisher probably accepted the likelihood principle, al-
though his own procedures did not respect it.”

7.1 Minimal Sufficient Statistics

In our generalization to joint sufficient statistics, we allowed
for the possibility that m statistics would provide the necessary
information about the dependence of the likelihood on the k
parameters, where m need not be equal to k. This can be taken
to a trivial extreme, since one can always use the entire sample
X1, X2, . . . , Xn as the set of joint sufficient statistics. What
we’re really interested in is the least information necessary, so
basically the smallest set of sufficient statistics. Note, though,
that there’s more to it than just counting, since a slightly less
trivial set of joint sufficient statistics for a sample is the order
statistics Y1 < Y2 < · · · < Yn, since the likelihood can be written
as

L(θ; x) = f(x1;θ) · · · f(xn;θ) = f(y1;θ) · · · f(yn;θ) ; (7.1)

since each value in the sample appears in the argument of one
distribution function, each order statistic also appears once. Al-
though either set has n statistics in it, information about the
sequence of values is lost in going from the full sample to the n
order statistics.

Hogg tries to provide some principles for deciding when we’ve
found the minimal sufficient set, but unfortunately most of them
are tautologies. For instance, if the maximum likelihood estima-
tor θ̂ is a sufficient statistic, it is minimal. But that’s basically
trivially true, since if one single statistic is sufficient, it’s auto-
matically the minimal set. The only way around this is if we
can use a non-invertable function of the sufficient statistic and
still have the result be sufficient. For instance, |Y | might be
just as good a sufficient statistic as Y . In any event, there is an
important property of the mle: it has to be constructed from
the sufficient statistics. (That’s sort of the point of sufficient
statistics in the first place.)
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7.2 Sufficiency and Ancillarity

7.2.1 Example: Uniform Sampling Distribution

Hogg has an extended example that’s actually really useful for
illustrating an important point not illustrated in the text. Con-
sider a sample of size n drawn from a uniform distribution

f(x; θ) =

{
1 θ − 1

2
< x < θ + 1

2

0 otherwise
(7.2)

The likelihood function is 1 if all of the {xi} lie in (θ− 1
2
, θ+ 1

2
),

and 0 if any of them lie outside it. This is easily summarized in
terms of the order statistics y1 < y2 < · · · < yn for the sample:

L(θ; x) =

{
1 θ − 1

2
< y1 < yn < θ + 1

2

0 otherwise
(7.3)

Since all of the other order statistics fall in between y1 and yn
by construction, the restrictions on θ in the likelihood are just
yn − 1

2
< θ < y1 + 1

2
, and Y1 and Yn are joint sufficient statistics

for θ. They turn out to also be minimal sufficient statistics, so
in this case the number of sufficient statistics is greater than the
number of parameters.

One option for a single estimator of θ is the maximum likeli-
hood estimator, but in this case the likelihood is constant when
it’s not zero, so any θ between yn − 1

2
and y1 + 1

2
would work.

We can take the midpoint of that interval, though, and define

T1 =
Y1 + Yn

2
(7.4)

It’s natural to describe the “other” degree of freedom in the
sufficient statistics by

T2 = Yn − Y1 (7.5)

i.e., the range over which the sample is spread. As we’ll confirm
in a moment, the marginal distribution for T2 doesn’t depend on
the parameter θ. Such a statistic is called an ancillary statistic.

It’s enlightening to examine the joint distribution for T1 and
T2. The distribution for the order statistics Y1 and Yn is

fY1Yn(y1, yn; θ) = n(n− 1)f(y1)[F (yn)− F (y1)]n−2f(yn)

= n(n− 1)(yn − y1)n−2 , θ − 1

2
< y1 < yn < θ +

1

2
(7.6)

Since the Jacobian transforming between (y1, yn) and (t1, t2) has
unit determinant, the joint distribution function is

fT1T2(t1, t2; θ) = n(n− 1)tn−2
2 ,

0 < t2 < 1; θ − 1− t2
2

< t1 < θ +
1− t2

2
(7.7)

The support space comes from enforcing the conditions

θ − 1

2
< y1 = t1 −

t2
2

(7.8a)

t1 +
t2
2

= yn < θ +
1

2
(7.8b)

If we marginalize over t1, we can get the distribution for T2:

fT2(t2) = n(n− 1)tn−2
2

∫ θ+
1−t2

2

θ− 1−t2
2

dt1

= n(n− 1)tn−2
2 (1− t2) 0 < t2 < 1

(7.9)

which we see is indeed independent of θ. Although {T2} is an
ancillary statistic, it is important for inferences about θ, which
we see if we write the likelihood function as

L(θ; x) =

{
1 t1 − 1−t2

2
< θ < t1 + 1−t2

2

0 otherwise
(7.10)
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So we have T1 as an estimator of θ, and T2 as an ancillary statis-
tic which together with T1 make up the joint sufficient statistics
for θ. We say that T2 is the ancillary complement to T1. In
this case t2 tells us how good an estimate t1 is for θ. If we con-
structed a confidence interval at confidence level 1−α, it would
be centered at T1 and have a width of (1− α)(1− T2). Qualita-
tively, the more spread out the sample is, the more it constrains
the possible value of θ.

7.2.2 Location Models

This example is a case of what are in general known as location
models where the random variables in the sample can be written
as

Xi = θ +Wi (7.11)

and the offsets {Wi} are drawn from a distribution which doesn’t
depend on θ. The behavior of sufficient statistics is different
depending on this distribution. For example:

• As we’ve seen, if the distribution for Wi is uniform with a
known width, the sufficient statistics are the order statistics
Y1 and Yn.

• If the distribution is N(0, 1) (or in general normal with a
known variance), we know that the mle X is a sufficient
statistic by itself.

• It turns out that if the offsets are drawn from a Cauchy dis-
tribution, you need the whole sample, or at least all n order
statistics, to describe the shape of the likelihood function.

7.2.3 Example: Bernoulli Trials

As another example of ancillary statistics, consider the case of
Bernoulli trials with a probability of success of θ, where 0 <

θ < 1. If we have observed a sequence of n trials containing k
successes, the likelihood function is

L(θ) ∝ θk(1− θ)n−k (7.12)

where there may be a factor depending on k and/or n depend-
ing on whether the observable is the sequence of successes and
failures, the number of successes in a fixed number of trials (bi-
nomial), the number of trials needed to obtain a fixed number of
successes (negative binomial), etc. We’ve said that the number
of successes K =

∑n
i=1Xi is a sufficient statistic in the context of

n being a fixed property of the experiment. And the maximum
likelihood estimate of θ is

θ̂ =
k

n
(7.13)

But in general, both k and n can be thought of as properties of
the data, and if we want to characterize our inference of θ, we
need to know the number of trials and not just the fraction which
were successful. To cast this in a frequentist framework, suppose
that we draw a random variable N from any distribution which
doesn’t depend on θ (it can be Poisson with a fixed mean, but
we really don’t care about the specifics) and then perform N
trials, of which K are successes. The likelihood is

L(θ;n, k) = fN(n)

(
n

k

)
θk(1− θ)n−k (7.14)

and we see that K and N (or θ̂ and N) are minimal joint suf-

ficient statistics for θ. The MLE θ̂ is an estimator for θ, but
we need to know N to know the associated uncertainty, even
though the distribution of N doesn’t depend on θ. N is the
ancillary complement to the maximum likelihood estimator θ̂.

12



Thursday 21 April 2016
– Read Section 7.9 of Hogg

7.3 Ancillarity and Independence

Suppose Y ≡ {Y1, Y2, . . . , Ym} is a the vector of m joint sufficient
statistics for the parameters θ. We can show that if Z is some
other statistic constructed from the data, then the conditional
distribution

fZ|Y(z|y) (7.15)

is independent of θ. Note that the Bayesian equivalent of this
would be

f(z|y,θ) = f(z|y) , (7.16)

i.e., y gives you all of the information about the parameters
θ which is contained in the data. This is trivial if z = u(y)
is some function of the sufficient statistics, since that means
the distribution for Z is degenerate, with 100% probability that
Z = u(Y). If z is not a function of y, we can consider a trans-
formation from x1, . . .xn to v1 = y1, . . . vm = ym, vm+1 = z,
vm+2, . . . vn. Since the transformation is independent of θ, the
Jacobian determinant will not contain θ, and we can write

fU(u;θ) = |J(x)| fX(x;θ) (7.17)

The conditional distribution fZ|Y(z|y) is

fZ|Y(z|y) =
fYZ(y, z;θ)

fY(y;θ)
=

∫∞
−∞ · · ·

∫∞
−∞ fU(u;θ) dum+2 · · · dun

fY(y;θ)
(7.18)

But
fU(u;θ)

fY(y;θ)
= |J(x)| fX(x;θ)

fY(y;θ)
(7.19)

and the fact that Y are joint sufficient statistics tells us that
fX(x;θ)/fY(y;θ) is a function of x independent of θ, so
fZ|Y(z|y) is indeed independent of θ.

Note that Z is independent of Y, in the sense of independent
random variables, fZ(z) = fZ|Y(z|y), which means that Z is an
ancillary statistic, since fZ(z) doesn’t depend on θ.

7.3.1 Basu’s Theorem

We can consider basically the converse. If Z is an ancillary
statistic for θ and Y the joint sufficient statistics for θ, un-
der what circumstances does that imply Z and Y are indepen-
dent? So we want to compare fZ(z) to fZ|Y(z|y). Note that, by
marginalization,

fZ(z) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

fZ|Y(z|y)fY(y; θ) dmy (7.20)

On the other hand,

fZ(z) = fZ(z)

∫ ∞
−∞
· · ·
∫ ∞
−∞

fY(y; θ) dmy (7.21)

since the second factor is just the normalization integral for
fY(y; θ). If we subtract these two expressions, we get

0 =

∫ ∞
−∞
· · ·
∫ ∞
−∞

[fZ|Y(z|y)− fZ(z)] fY(y; θ) dmy (7.22)

Now, if fY(y; θ) is a complete family of distributions, the only
function which integrates to zero when weighted by fY(y; θ) is
identically zero, and thus fZ|Y(z|y) = fZ(z). This is known as
Basu’s Theorem:

If Y is are joint complete sufficient statistics for θ, any an-
cillary statistic Z is independent of Y.

7.3.2 Example: Mean of a Normal Distribution

As an example, consider a sample of size n from a N(θ, σ2) dis-
tribution. We know the sample mean X is a complete sufficient
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statistic for θ. If we construct the sample variance

S2 =
1

n− 1

n∑
i=1

(Xi −X)2 (7.23)

we know by Student’s theorem that this is independent of X,
and is equal to σ2/(n−1) times a χ2(n−1) random variable. But
even if we didn’t already know about the independence, it would
follow from Basu’s theorem, since S2 is an ancillary statistic for
θ (its distribution function doesn’t depend on θ). In fact, we
see that any ancillary statistic for θ will be independent of X.
In particular, any location-invariant statistic like Yn − Y1 (the
spread of the dataset) is an auxiliary statistic for the mean θ
and therefore independent of X.

7.4 Location and Scale Models Revisited

Recall the concept of a location model, where the random vari-
ables in the sample can be written

Xi = θ +Wi (7.24)

where the probability distribution fW (w) from which the {Wi}
are drawn doesn’t depend on θ. A statistic Z = u(X1, . . . , Xn)
is called location-invariant if the function u(x1, . . . , xn) is un-
changed by adding the same constant d to each of its arguments:

u(x1 + d, x2 + d, . . . , xn + d) = u(x1, x2, . . . , xn) (7.25)

A location-invariant statistic can be written

Z = u(X1, . . . , Xn) = u(X1 − θ, . . . , Xn − θ) = u(W1, . . . ,Wn) ;
(7.26)

since Z is a function only of the {Wi}, its probability distribution
cannot depend on θ, so it is an ancillary statistic.

You could imagine exponentiating the whole picture, so that
addition turns into multiplication. We say that we have a scale
model when the random variables can be written

Xi = θWi (7.27)

where again the distribution fW (w) is independent of the scale
parameter θ. In that case, a scale-invariant statistic

Z = u(X1, . . . , Xn) u(cx1, . . . , cxn) = u(x1, . . . , xn) (7.28)

is an ancillary statistic for θ.
Similarly, a location and scale family is one where

Xi = θ1 + θ2Wi (7.29)

with {Wi} drawn from a distribution which doesn’t depend on
θ1 or θ2. For example. if Xi ∼ N(θ1, θ

2
2), then any statistic

constructed from

Wi =
Xi − θ1

θ2

(7.30)

is location- and scale-invariant, and therefore ancillary for θ1

and θ2.
Finally, there are of course some parameters which are neither

location parameters nor scale parameters. If {Xi} is drawn from
a distribution with pdf

f(x; θ1, θ2, θ3) =
(x− θ1)θ3−1

θθ32

e−(x−θ1)/θ2) θ1 < x <∞

(7.31)
then we can construct

Wi =
Xi − θ1

θ2

∼ Gamma(θ3, 1) (7.32)

we say θ1 is a location parameter, θ2 is a scale parameter, and
θ3 is a shape parameter.
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