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back to normal after Spring Break.

1 Maximum Likelihood Estimation

1.1 Maximum Likelihood Estimates

We now return to methods of classical, or frequentist statistics,
which are phrased not in terms of probabilities which quantify
our confidence in general propositions with unknown truth val-
ues, but exclusively in terms of the frequency of outcomes in
hypothetical repetitions of experiments. One of the fundamen-
tal tools is the sampling distribution, which we’ll write as a
joint pdf for a random vector X: fX(x). If the model has a
parameter θ, we’ll write this as fX(x; θ), and when we consider
this as a function of θ, we’ll write it L(θ; x) or sometimes L(θ).
And we will often find it convenient to work with the logarithm
`(θ) = lnL(θ).

Recall from last semester that one possible choice of an es-
timate for θ given an observed data vector x is the maximum
likelihood estimate

θ̂(x) = argmaxθ L(θ; x) = argmaxθ `(θ; x) (1.1)

If we take the functional form of θ̂(x) and insert the random

vector X into the function, we get a statistic θ̂ = θ̂(X) which
is known as the maximum likelihood estimator. Note that this
is a random variable not in the formal sense which we invoked
to assign a Bayesian probability distribution to an unknown pa-
rameter Θ, but rather a function of the random vector X whose
value will be different in different random trials, even with a
fixed value for the parameter θ. (Of course, if we’re using θ̂
as an estimator, the true value of the parameter θ will be un-
known.)

A useful special case is where the random vector X is a sam-
ple of size n drawn from some distribution f(x; θ). Then the
likelihood function will be

L(θ; x) =
n∏
i=1

f(xi; θ) (1.2)

and the log-likelihood will be

`(θ; x) =
n∑
i=1

ln f(xi; θ) (1.3)

1.1.1 Motivation

Since we know that in the Bayesian framework, the posterior
pdf for the parameter θ given the observed data x is

fΘ|X(θ|x) ∝ fΘ(θ) fX|Θ(x|θ) , (1.4)

we see that if the prior pdf fΘ(θ) is a constant, the posterior will

be proportional to fX|Θ(x|θ) = L(θ; x), and therefore the θ̂(x)
which maximizes the likelihood will also maxmize the posterior
psd fΘ|X(θ|x).

Hogg also invokes two theorems which indicate that the MLE
matches up with the true unknown value of the parameter in
the limit that the size n of a sample goes to infinity:

• Theorem 6.1.1: Suppose θ0 is the true value of a param-
eter θ, and X is a sample of size n from a distribution
f(x; θ). Given certain regularity conditions, most impor-
tantly1 that θ0 is not at the boundary of the parameter
space for θ, the true parameter maximizes the likelihood in
the limit n→∞, i.e.,

lim
n→∞

P (L(θ0; X)> L(θ0; X)) for θ 6= θ0 (1.5)

1We also need different θ values to give different pdfs for X, and that
the support space for X is the same for all θ.
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• Theorem 6.1.3: Under the same regularity conditions,
the maximum likelihood estimator, if it exists, converges in
probability to θ0:

θ̂n
P→ θ0 (1.6)

The first theorem says that the true value becomes the maximum
likelihood value in the limit of an infinitely large sample, while
the second says that the mle becomes the true value in that
limit.

1.1.2 Example: Signal Amplitude

See Hogg for several examples of maximum-likelihood solutions
associated with random samples. To complement those, we’re
going to consider a couple of cases where the random vector is
not quite a random sample, but still drawn from a distribution
with a parameter θ.

First, consider a simplified example from signal processing.
Suppose you have a set of data points {xi} which represent a
signal with a known shape, described by {hi} and an unknown
amplitude θ, on top of which there is some Gaussian noise with
variances {σ2

i }. I.e., the distribution associated with each data
value is Xi ∼ N(θh1, σ

2
i ). This means the likelihood function is

L(θ; x) =
n∏
i=1

1√
2πσ2

i

exp

(
−(xi − θhi)2

2σ2
i

)
(1.7)

and the log-likelihood is

`(θ) = −
n∑
i=1

(xi − θhi)2

2σ2
i

+ const (1.8)

The derivative is

`(θ) =
n∑
i=1

hi(xi − θhi)
σ2
i

=
n∑
i=1

hixi
σ2
i

− θ
n∑
i=1

h2
i

σ2
i

(1.9)

so the maximum likelihood estimate is

θ̂ =

∑n
i=1 hixi/σ

2
i∑n

j=1 h
2
j/σ

2
j

(1.10)

We can also write this in matrix form (which would allow gener-
alization to covariances between data points via a non-diagonal
variance-covariance matrix Σ)

θ̂ =
(
hTΣ−1h

)−1
hTΣ−1x (1.11)

This makes the signal model, with maximum-likelihood ampli-
tude,

hθ̂ = h
(
hTΣ−1h

)−1
hTΣ−1x = Σ1/2PΣ−1/2x (1.12)

where
P = Σ−1/2h

(
hTΣ−1h

)−1
hTΣ−1/2 (1.13)

is a projection matrix.
Note that in a more complicated problem, we might have a su-

perposition of different templates, each with its own amplitude2,

so the signal would be X ∼ Nn

(∑k
i=1 θihi,Σ

)
1.1.3 Example: Bradley-Terry Model

The Bradley-Terry model3 is designed to model “paired com-
parisons” between objects (teams or players in games, foods in
taste tests, etc). Each object has a strength πi, 0 < πi < ∞,
and in a comparison between two objects, object i will be cho-
sen over object j with a probability πi

πi+πj
. Consider a restricted

2E.g., for continuous gravitational waves, you have two polarizations,
each with amplitude and phase, so four parameters.

3Zermelo, Mathematische Zeitschrift 29, 436 (1929); Bradley and Terry
Biometrika 39, 324 (1952)
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version of the model where an object with unknown strength θ
is compared to a series of n objects4 with known strengths π1,
π2, . . . , πn. Let Xi be a Bernoulli random variable which is 1 if
the object wins the ith comparison and 0 if it loses, so that

Xi ∼ b

(
1,

θ

θ + πi

)
(1.14)

Then the likelihood is

L(θ; x) = fX|Θ(x|θ) =
n∏
i=1

θxiπ1−xi
i

θ + πi
(1.15)

and the log-likelihood is

`(θ) =
n∑
i=1

[xi ln θ + (1− xi) lnπi − ln(θ + πi)] (1.16)

and

`′(θ) =

∑n
i=1 xi
θ

−
n∑
i=1

1

θ + πi
(1.17)

If we define y =
∑n

i=1 xi to be the total number of comparisons
won, the mle for θ satisfies

y =
n∑
i=1

xi =
n∑
i=1

θ̂

θ̂ + πi
(1.18)

The right hand side is the average number of comparison wins
you’d predict, and the mle is just the strength which makes this
equal to the actual number observed.

(1.18) can’t be solved in closed form, one can find the mle
numerically by iterating5

θ̂ =
y∑n

i=1(θ̂ + πi)−1
(1.19)

4Note that, since the strengths are assumed to be known, some of these
comparisons may actually be repeated comparisons with the same object.

5Ford, American Mathematical Monthly 64, 28 (1957)

1.1.4 Reparameterization

A key property of maximum-likelihood estimates is captured in
Hogg’s

• Theorem 6.1.2: If you change variables in the likelihood
from θ to some other η = g(θ), and work out the mle for η,

it is η̂ = g(θ̂).

The proof is almost trivial, so rather than repeat it, we’ll demon-
strate the property in our Bradley-Terry example. Let λ = ln θ
so that −∞ < λ < ∞. The calculation of the log likelihood
proceeds as before, and we can substitute θ = eλ into (1.16) to
get

`(λ) =
n∑
i=1

[
xiλ+ (1− xi) lnπi − ln(eλ + πi)

]
(1.20)

The derivative is

`′(λ) =
n∑
i=1

(
xi −

eλ

eλ + πi

)
(1.21)

so the maximum-likelihood equation is

y =
n∑
i=1

xi =
n∑
i=1

eλ̂

eλ̂ + πi
(1.22)

which is just the same as (1.18) with θ̂ replaced by eλ̂.

Tuesday 23 February 2016
– Read Section 6.2 of Hogg

1.2 Fisher Information and The Cramér-Rao
Bound

We now turn to a consideration of the properties of estimators
and other statistics. Suppose we have a random vector X which
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is a random sample from a distribution f(x; θ) which includes a
parameter θ. We know the joint sampling distribution is

fX|θ(x1, . . . , xn|θ) =
n∏
i=1

f(xi; θ) (1.23)

If we have a statistic Y = u(X), this is a random variable. The
mean and variance of Y are not random variables, but they
depend on θ because the sampling distribution does:

µY (θ) = E (Y |θ) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

u(x1, . . . , xn)
n∏
i=1

f(xi; θ) dxi

(1.24)
and

Var(Y |θ) = E
(
(Y − µY (θ))2 |θ

)
=

∫ ∞
−∞
· · ·
∫ ∞
−∞

[u(x)− µY (θ)]2 fX|θ(x|θ) dnx
(1.25)

1.2.1 Fisher Information

The first such function we want to consider is the derivative with
respect to the parameter θ of the log-likelihood `(θ;x) = f(x; θ).
We will focus first on the case of a single random variable before
considering a random sample. We will also assume an even
broader set of regularity conditions than last time, specifically
that we’re allowed to interchange derivatives and integrals.

The quantity of interest is

u(x) = `′(θ, x) =
∂

∂θ
ln f(x; θ) =

1

f(x; θ)

∂f(x; θ)

∂θ
(1.26)

and is one measure of how much the probability distribution
changes when we change the parameter. Note in this case the
function u(x) depends explicitly on the parameter, in addition

to the θ dependence of the distribution for the random variable
X. u(X) = `′(θ,X) is a statistic whose expectation value is

E (`′(θ,X)) =

∫
S

1

f(x; θ)

∂f(x; θ)

∂θ
f(x; θ) dx =

∫
S

∂f(x; θ)

∂θ
dx

(1.27)
where we explicitly restrict the integral to the support space x ∈
S so that f(x; θ) > 0. Now the regularity conditions (especially
the fact that S is the same for any allowed value of θ) allow us
to pull the derivative outside the integral so we have

E (`′(θ,X)) =
d

dθ

∫
S
f(x; θ) dx =

d

dθ
(1) = 0 (1.28)

where we have used the fact that f(x; θ) is a normalized pdf in

x. So note that while `′(θ̂(x), x) = 0, i.e., the derivative of the
log-likelihood is zero at the maximum-likelihood value of θ for
a given x, the expectation value E (`′(θ,X)) vanishes for any θ.
This allows us to write the variance as

Var (`′(θ,X)) = E
(

[`′(θ,X)]
2
)

=

∫
S

(
∂ ln f(x; θ)

∂θ

)2

f(x; θ) dx ≡ I(θ)
(1.29)

I(θ) is a property of the distribution known as the Fisher infor-
mation. You’ve encountered it on the homework in the context
of the Jeffreys prior fΘ(θ) ∝

√
I(θ).

Note that if we go back and differentiate (1.28) we get

0 =
d

dθ
E (`′(θ,X)) =

d

dθ

∫
S

∂ ln f(x; θ)

∂θ
f(x; θ) dx

=

∫
S

(
∂2 ln f(x; θ)

∂θ2
f(x; θ) +

∂ ln f(x; θ)

∂θ

∂f(x; θ)

∂θ
dx

)
dx

=

∫
S

∂2 ln f(x; θ)

∂θ2
f(x; θ) dx+

∫
S

(
∂ ln f(x; θ)

∂θ

)2

f(x; θ) dx

(1.30)
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This means there’s an equivalent (and sometimes easier to cal-
culate way to write the Fisher information as

I(θ) = −
∫
S

∂2 ln f(x; θ)

∂θ2
f(x; θ) dx = −E (`′′(θ;X)) (1.31)

Example: Fisher information for the mean of a normal
distribution To give a very simple example, consider the nor-
mal distribution N(θ, σ2). The likelihood is

f(x; θ) =
1

σ
√

2π
exp

(
−(x− θ))

2σ2

)
(1.32)

so the log-likelihood is

ln f(x; θ) = −(x− θ)2

2σ2
− 1

2
ln(2πσ2) (1.33)

whose derivatives are

∂

∂θ
ln f(x; θ) =

x− θ
σ2

(1.34a)

∂2

∂θ2
ln f(x; θ) = − 1

σ2
(1.34b)

So the Fisher information is I(θ) = 1
σ2 . (Note in passing that

the expectation of the first derviative is 1
σ2 (X − θ), whose ex-

pectation value is indeed zero.)

Fisher information for a sample of size n We can now
consider the Fisher information associated with a random sam-
ple of size n, given that

I(θ) = −E
(
∂2 ln f(X; θ)

∂θ2

∣∣∣∣ θ) (1.35)

In fact, since the joint sampling distribution, and therefore the
likelihood for the sample, is

fX|Θ(x|θ) =
n∏
i=1

f(xi; θ) , (1.36)

the log likelihood will be

ln fX|Θ(x|θ) =
n∑
i=1

ln f(xi; θ) , (1.37)

and therefore the Fisher information is

−E
(
∂2 ln fX|Θ(x|θ)

∂θ2

∣∣∣∣ θ) = −
n∑
i=1

E

(
∂2 ln f(Xi; θ)

∂θ2

∣∣∣∣ θ) = nI(θ)

(1.38)
where we’ve used the fact that both the derivative and the expec-
tation value are linear operations, and that the random variables
{Xi} are iid.

Note that the Fisher information for a sample of size n from a
normal distribution is n

σ2 , which is one over the variance of the
sample mean.

1.2.2 The Cramér-Rao Bound

Now we return to consideration of a general statistic Y = u(X),
with a special eye towards one being used as an estimator of the
parameter θ. Recalling the definition of the expectation value

µY (θ) = E (Y ) =

∫
S
· · ·
∫
S
u(x1, . . . , xn) fX|Θ(x, θ) dnx (1.39)

and variance

Var(Y |θ) = E
(
[Y − µY (θ)]2|θ

)
=

∫
S
· · ·
∫
S
[u(x)− µY (θ)]2 fX|θ(x|θ) dnx

(1.40)
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we notice a similarity to the Fisher information for the sample

nI(θ) = E

((
∂ ln fX|Θ(X|θ)

∂θ

)2
∣∣∣∣∣ θ
)

(1.41)

Both are of the form E ([a(X)]2|θ) = 〈a|a〉 where we have defined
the inner product

〈a|b〉 = E (a(X) b(X)|θ) =

∫
S
a(x) b(x) f(x; θ) dx (1.42)

This behaves in many ways like a dot product ~a · ~b, and in
particular satisfies the Cauchy-Schwarz inequality6

〈a|a〉 〈b|b〉 ≥ |〈a|b〉|2 (1.43)

This means that

Var(Y |θ)nI(θ) ≥ E

(
(Y − µY (θ))

∂ ln fX|Θ(X|θ)
∂θ

∣∣∣∣ θ)

= E

(
u(X)

(
∂ ln fX|Θ(X|θ)

∂θ

)∣∣∣∣ θ)−µY (θ)
��

���
���

���
��:0

E

(
∂ ln fX|Θ(X|θ)

∂θ

∣∣∣∣ θ)
=

∫
S
· · ·
∫
S
u(x1, . . . , xn)

1

���
���fX|Θ(x, θ)

∂fX|Θ(X|θ)
∂θ ���

���fX|Θ(x, θ) dnx

=
d

dθ

∫
S
· · ·
∫
S
u(x1, . . . , xn) fX|Θ(x, θ) dnx =

d

dθ
µY (θ) (1.44)

where the last step holds as long as u(x) doesn’t depend explic-
itly on θ. The inequality can be solved for the variance of the
statistic Y to give the Cramér-Rao bound :

Var(Y |θ) ≥ µY (θ)

nI(θ)
(1.45)

6In vector algebra, this is a consequence of the law of cosines ~a · ~b =

|~a|
∣∣∣~b∣∣∣ cosφ(~a,~b)

In the special case where Y is an unbiased estimator of θ, so
that µY (θ), it simplifies to

Var(Y |θ) ≥ 1

nI(θ)
if E (Y |θ) = θ (1.46)

I.e., the variance of an unbiased estimator can be no less than
the reciprocal of the Fisher information of the sample.

To return to our simple example of a Gaussian sampling dis-
tribution N(θ, σ2), let Y = X, the sample mean, which we know
is an unbiased estimator of the distribution mean θ. Then the
Cramér-Rao bound tells us

Var(X|θ) ≥ 1

nI(θ)
=
σ2

n
(1.47)

Of course, we know that the variance of the sample mean is
σ2/n, which means that in this case the bound is saturated,
and the sample mean is the lowest-variance unbiased estimator
of the distribution mean for a normal distribution with known
variance.

When the Cramér-Rao bound is saturated, i.e., Var(Y |θ) =
1

nI(θ)
for an unbiased estimator, we say that Y is an efficient es-

timator of θ. Otherwise, we can define the ratio of the Cramér-
Rao bound to the actual variance as the efficiency of the esti-
mator.

Another selling point of maximum likelihood estimates is their
relationship to efficiency. A MLE is not always an efficient es-
timator, but one can prove using Taylor series that it becomes
so in the limit that the sample size goes to infinity. Another
important theorem (the proof of which we omit for now) is that,
subject to the usual regularity conditions, the distribution for
the MLE converges to a Gaussian:

√
n
(
θ̂(X)− θ

)
D→ N

(
0,

1

I(θ)

)
(1.48)
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Tuesday 1 March 2016
– Read Section 6.3 of Hogg

2 Maximum-Likelihood Tests

So far we’ve used maximum likelihood methods to consider ways
to estimate the parameter θ of a distribution f(x; θ). We now
consider tests designed to compare a null hypothesis H0 which
specifies θ = θ0 and H1, which allows for arbitrary θ within the
allowed parameter space. (Note that since these are classical
hypothesis tests, we don’t require H1 to specify a prior proba-
bility distribution for θ.) In each case, we will construct a test
statistic from a sample of size n, drawn from f(x; θ), which is
asymptotically chi-square distributed in the limit n→∞.

2.1 Likelihood Ratio Test

Define as usual the likelihood

L(θ; x) = fX|Θ(x|θ) =
n∏
i=1

f(xi; θ) (2.1)

and its logarithm

`(θ; x) = ln fX|Θ(x|θ) =
n∑
i=1

ln f(xi; θ) (2.2)

Recall that for Bayesian hypothesis testing, the natural quantity
to construct was the Bayes Factor

B01 =
fX(x|H0)

fX(x|H1)
=

L(θ0; x)∫
θ∈Ω

L(θ; x) fΘ(θ|H1) dθ
(2.3)

in the frequentist case we don’t define a prior fΘ(θ|H1), so in-
stead, of all the θ values at which to evaluate the likelihood, we

choose the one which maximizes it7, and look at the likelihood
ratio

Λ(x) =
L(θ0; x)

L(θ̂(x); x)
(2.4)

Note that in the frequentist picture L(θ; X) and Λ(X) are
statistics, i.e., random variables constructed from the sample
X.

2.1.1 Example: Gaussian Distribution

Consider a sample of size n drawn from a N(θ, σ2) distribution,
for which we know the mle is x = 1

n

∑n
i=1 and the likelihood is

L(θ;x) =
1

(σ
√

2π)n
exp

(
− 1

2σ2

n∑
i=1

(xi − θ)2

)
∝ exp

(
− n

2σ2
(θ − x)2

) (2.5)

and the likelihood ratio is

Λ(x) = exp
(
− n

2σ2
(θ0 − x)2

)
(2.6)

Since X ∼ N(θ, σ2/n), we have

−2 ln Λ(X) =
(X − θ0)2

σ2/n
∼ χ2(1) assuming H0 (2.7)

Now, this won’t be exactly true in general, but the various
asymptotic theorems show that in general, for a regular under-
lying distribution, it’s true in the asymptotic sense:

χ2
L = −2 ln Λ(X)

D→ χ2(1) assuming H0 (2.8)

7There are various arguments which make this a reasonable choice, most
revolving around the fact that for large samples, the likelihood function is
approximately Gaussian with a peak value of L(θ̂(x);x).
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For finite n, we assume this is approximately true, and compare
−2 ln Λ(X) to the 100×(1−α)th percentile of χ2(1) distribution
to get a test with false alarm probability α.

2.2 Wald Test

The statistic −2 ln Λ(X) constructed from the likelihood ratio
is only one of several statistics which are asymptotically χ2.
Another possibility is to consider the result that

√
n
(
θ̂(X)− θ0

)
D→ N

(
0,

1

I(θ0)

)
(2.9)

and construct the statistic

χ2
W =

n
(
θ̂(X)− θ0

)2

1/I(θ̂(X))
= nI(θ̂(X))

(
θ̂(X)− θ0

)2

(2.10)

Comparing this to the percentiles of a χ2(1) is known as the
Wald test.

2.2.1 Example: Gaussian Distribution

The distribution of the statistic χ2
W should converge to χ2(1) as

n → ∞. We can see what the exact distribution is for a given
choice of the underlying sampling distribution. Assuming again
a N(θ, σ2) distribution for f(x; θ), we have Fisher information

I(θ) = 1
σ

2
, maximum likelihood estimator θ̂(X) = X, and Wald

test statistic

χ2
W =

n
(
X − θ0

)2

σ2
(2.11)

which is of the same form as (2.7), which we know to be exactly
χ2(1) for any n.

2.3 Rao Scores Test

The final likelihood-based test involves the “score”

∂ ln f(Xi; θ)

∂θ
(2.12)

associated with each random variable in the sample, whose sum
is the derivative of the log-likelihood

`′(θ; X) =
∂ ln f(Xi; θ)

∂θ
(2.13)

We know the expectation value is

E (`′(θ; X)) =
n∑
i=1

E

(
∂ ln f(Xi; θ)

∂θ

)
=

n∑
i=1

0 = 0 (2.14)

and the variance is

Var (`′(θ; X)) =
n∑
i=1

Var

(
∂ ln f(Xi; θ)

∂θ

)
=

n∑
i=1

I(θ) = nI(θ)

(2.15)
so we construct a test statistic which, in the limit that the sum
of the scores is normally distributed, becomes a χ2(1):

χ2
R =

(`′(θ0; X))2

nI(θ0)
(2.16)

Comparing this to the percentiles of a χ2(1) is known as the Rao
scores test. It has the advantage over the other two tests that
we don’t need to work out the maximum likelihood estimator to
apply it.

2.3.1 Example: Gaussian Distribution

If the underlying distribution is N(θ, σ2), so that

ln f(x; θ) = −1

2
ln 2πσ2 − (x− θ)2

2σ2
(2.17)
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and
∂ ln f(x; θ)

∂θ
=
x− θ
σ2

(2.18)

which makes the derivative of the log-likeihood

`′(θ; X) =
n∑
i=1

Xi − θ
σ2

= n
X − θ
σ2

(2.19)

which makes the Rao scores statistic

χ2
R = n2 (X − θ0)2

σ4

σ2

n
=

(X − θ0)2

σ2/n
(2.20)

which is, again, exactly χ2(1) distributed in this case.

Wednesday 2 March 2016
– Review for Prelim Exam One

The exam covers materials from the first four class-weeks of the
term, i.e., Hogg sections 11.1-11.3 and 6.1-6.2 (and associated
topics covered in class through February 23), and problem sets
1-4.

Thursday 3 March 2016 – First Prelim Exam

Tuesday 8 March 2016
– Read Section 6.4 of Hogg

3 Multi-Parameter Methods

We now consider the case where the probability distribution
f(x;θ) depends not just on a single parameter, but p parameters

{θ1, θ2, . . . , θp} = {θα} ≡ θ. The likelihood for a sample of size
n is then

L(θ; x) =
n∏
i=1

f(xi;θ) (3.1)

and the log-likelihood is

`(θ; x) =
n∑
i=1

ln f(xi;θ) (3.2)

3.1 Maximum Likelihood Estimation

We’re still interested in the set of parameter values {θ̂1, . . . , θ̂p}
which maximize the likelihood (or, equivalently, its logarithm).
But to maximize a function of p parameters, we need to set all
of the partial derivatives to zero, which means there are now p
maximum likelihood equations

∂`(θ; x)

∂θα
= 0 α = 1, 2, . . . , p (3.3)

We can in principle solve these p equations for the p unknowns
{θ̂α}.

For example, consider a sample of size n drawn from a
N(θ1, θ2) distribution with pdf

f(x; θ1, θ2) =
1√

2πθ2

exp

(
−(x− θ1)2

2θ2

)
(3.4)

so that

ln f(x; θ1, θ2) = −1

2
ln(2π)− 1

2
ln θ2 −

(x− θ1)2

2θ2

(3.5)

The partial derivatives are

∂ ln f(x; θ1, θ2)

∂θ1

=
x− θ1

θ2

(3.6a)

∂ ln f(x; θ1, θ2)

∂θ2

= − 1

2θ2

+
(x− θ1)2

2θ2
2

(3.6b)
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Taking the partial derivatives of (3.2) and using linearity then
gives us

∂`(x; θ1, θ2)

∂θ1

=
(
∑n

i=1 xi)− nθ1

θ2

(3.7a)

∂`(x; θ1, θ2)

∂θ2

= − n

2θ2

+

∑n
i=1(xi − θ1)2

2θ2
2

(3.7b)

We need to set both of these to zero to find θ̂1 and θ̂2, i.e., the
coupled maximum-likelihood equations are

(
∑n

i=1 xi)− nθ̂1

θ̂2

= 0 (3.8a)

− n

2θ̂2

+

∑n
i=1(xi − θ̂1)2

2θ̂2
2

= 0 (3.8b)

We can solve the first equation for

θ̂1 =
1

n

n∑
i=1

xi = x (3.9)

and then substitute that into the second to get

n

2θ̂2

=

∑n
i=1(xi − x)2

2θ̂2
2

(3.10)

i.e.,

θ̂2 =
1

n

n∑
i=1

(xi − x)2 =
n− 1

n
s (3.11)

where s = 1
n−1

∑n
i=1(xi − x)2 is the usual (unbiased) sample

variance.

3.2 Fisher Information Matrix

If we consider the “score” statistic for a single observation

∂ ln f(X;θ)

∂θα
(3.12)

we see that it’s now actually a random vector with one compo-
nent per parameter. It is still true that

E

(
∂ ln f(X;θ)

∂θα

)
=

∫
S

1

���
�f(x;θ)

∂f(x;θ)

∂θα
��
��f(x;θ) dx = 0 (3.13)

(You can show this by taking ∂
∂θα

of the normalization integral
for f(x;θ).) Since this is a random vector, we can construct its
variance-covariance matrix I(θ) with elements

Iαβ(θ) = E

([
∂ ln f(X;θ)

∂θα

] [
∂ ln f(X;θ)

∂θβ

])
(3.14)

As before, we can differentiate (3.13) with respect to θβ to get
the identity

0 =
∂

∂θβ

∫
S

∂ ln f(x;θ)

∂θα
f(x;θ) dx

=

∫
S

∂2 ln f(x;θ)

∂θα ∂θβ
f(x;θ) dx+

∫
S

∂ ln f(x;θ)

∂θα

∂f(x;θ)

∂θβ
dx

= E

(
∂2 ln f(X;θ)

∂θα ∂θβ

)
+

∫
S

∂ ln f(x;θ)

∂θα

∂ ln f(x;θ)

∂θβ
f(x;θ) dx

(3.15)

i.e., an equivalent way of writing the Fisher information matrix
is

Iαβ(θ) = −E
(
∂2 ln f(X;θ)

∂θα ∂θβ

)
(3.16)

Note that by definition and construction, the Fisher matrix is
symmetric.
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3.2.1 Example: normal distribution

If we return to the case of a N(θ1, θ2) distribution, taking deriva-
tives of (3.6) gives us

∂2 ln f(x; θ1, θ2)

∂θ2
1

= − 1

θ2

(3.17a)

∂2 ln f(x; θ1, θ2)

∂θ2
2

=
1

2θ2
2

− (x− θ1)2

θ3
2

(3.17b)

∂2 ln f(x; θ1, θ2)

∂θ2 ∂θ1

=
∂2 ln f(x; θ1, θ2)

∂θ1 ∂θ2

= −x− θ1

2θ2
2

(3.17c)

If we recall E (X) = θ1 and Var(X) = E ((X − θ1)2) =
θ2, we get the Fisher information matrix elements Iαβ(θ) =

−E
(
∂2 ln f(X;θ1,θ2)

∂θα ∂θβ

)
:

I11(θ) =
1

θ2

(3.18a)

I22(θ) = − 1

2θ2
2

+
θ

θ3
2

=
1

2θ2
2

(3.18b)

I12(θ) = I21 = 0 (3.18c)

i.e.,

I(θ) =

(
1
θ2

0

0 1
2θ22

)
(3.19)

3.2.2 Fisher Information Matrix for a Random Sample

As in the single-parameter case, linearity means that the Fisher
information matrix for a sample of size n is just n times the FIM
for the distribution:

−E
(
∂2`(θ; X)

∂θα ∂θβ

)
= −

n∑
i=1

E

(
∂2 ln f(X;θ)

∂θα ∂θβ

)
= nIαβ(θ)

(3.20)

3.2.3 Error Estimation

Recall that for a model with a single parameter θ, the Cramér-
Rao bound stated that an unbiased estimator of θ had mini-
mum variance of 1

nI(θ)
. Also, the maximum-likelihood estimator

θ̂ from a sample of size n saturated that bound in the limit
n → ∞, and in fact its distribution converged to a Gaussian
with the minimum variance specified by the bound:

√
n
(
θ̂ − θ

)
D→ N

(
0,

1

I(θ)

)
(3.21)

In the multi-parameter case, we have a maximum-likelihood es-
timator θ̂ which is a random vector with p components {θ̂α|α =
1, . . . , p}. The corresponding limiting distribution is a multi-
variate normal:

√
n
(
θ̂ − θ

)
D→ Np

(
0, I(θ)−1

)
(3.22)

The matrix inverse I(θ)−1 of the Fisher information matrix is
the variance-covariance matrix of the limiting distribution.

It is also this inverse matrix which provides the multiparam-
eter version of the Cramér-Rao bound. If Tα(X) is an unbiased
estimator of one parameter θα, the lower bound on its variance
is

Var (Tα(X)) ≥ 1

n

[
I−1(θ)

]
αα

(3.23)

I.e., the diagonal elements of the inverse Fisher matrix provide
lower bounds on the variance of unbiased estimators of the pa-
rameters. In cases like (3.19), where the Fisher matrix is diag-
onal, its inverse is also diagoal, with [I−1(θ)]αα being the same
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as 1/I(θ)αα. But in general,8

[
I−1(θ)

]
αα
≥ 1/I(θ)αα =

1

I(θα)
(3.24)

This is thus a stronger bound than one would get by assuming
all of the “nuisance” parameters to be known and applying the
usual Cramér-Rao bound to the parameter of interest.

Thursday 10 March 2016
– Read Section 6.5 of Hogg

3.3 Maximum Likelihood Tests

We return now to the question of hypothesis testing when
the parameter space associated with the distribution is multi-
dimensional. Hogg considers this in a somewhat limited context
where the null hypothesis H0 involves picking values for one or
more parameters or combinations of parameters and leaving the
rest unspecified. Formally this is written as H0 : θ ∈ ω where
ω is some lower-dimensional subspace of the parameter space Ω.
The alternative hypothesis is H1 : [θ ∈ Ω]∧ [θ /∈ ω] The number
of parameters in the full parameter space is p, while ω is defined
by specifing values for q independent functions of the parame-
ters, where 0 < q ≤ p. This means that ω is a p− q-dimensional
space. The case considered before was p = q = 1 so that ω was a
zero-dimensional point in the one-dimensional parameter space
Ω.

Since H0 is also a composite hypothesis with different possible
parameter values, if we were constructing a Bayes factor, we’d

8This is easy to see in the case p = 2, where I =

(
I11 I12
I12 I22

)
and

I−1 = 1
I11I22−I2

12

(
I22 −I12
−I12 I11

)
so that 1

[I−1]11
= I11 − I2

12

I22
≤ I11.

also need to specify a prior distribution for θ ∈ ω associated
with H0:

B01 =
fX(x|H0)

fX(x|H1)
=

∫
θ∈ω L(θ; x) fΘ(θ|H0) dp−qθ∫
θ∈Ω

L(θ; x) fΘ(θ|H1) dpθ
(3.25)

In classical statistics we don’t have a prior distribution associ-
ated with either hypothesis, so we let them each “put their best
foot forward” by picking the parameter values which maximize
the likelihood, which we refer to as θ̂(x) = argmaxθ∈Ω L(θ; x)

and θ̂0(x) = argmaxθ∈ω L(θ; x). The likelihood ratio for use in
tests is thus

Λ(x) =
L(θ̂0(x); x)

L(θ̂(x); x)
=

maxθ∈ω L(θ; x)

maxθ∈Ω L(θ; x)
(3.26)

3.3.1 Example: Mean of Normal Distribution with
Unknown Variance

As an example of the method, consider a sample of size n drawn
from a N(θ1, θ2) i.e., a normal distribution where the mean and
the variance are both unknown parameters. The likelihood is

L(θ,x) = (2πθ2)−n/2 exp

(
−
∑n

i=1(xi − θ1)2

2θ2

)
(3.27)

H0 is θ1 = µ0, 0 < θ2 < ∞, while H1 is −∞ < θ1 < ∞,
0 < θ2 <∞. H0 is effectively a one-parameter model which has
mles of

θ̂01 = µ0 (3.28a)

θ̂02 =
1

n

n∑
i=0

(xi − µ0) = σ̂2
0 (3.28b)
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while the MLE for H1 was found last time to be

θ̂1 =
1

n

n∑
i=1

xi = x (3.29a)

θ̂2 =
1

n

n∑
i=1

(xi − x)2 = σ̂2 (3.29b)

We see that the maximized likelihoods are

L(θ̂(x); x) = (2πσ̂2)−n/2e−n/2 (3.30a)

L(θ̂0(x); x) = (2πσ̂2
0)−n/2e−n/2 (3.30b)

So the likelihood ratio is

Λ(X) =

(
σ̂2

σ̂2
0

)n/2
=

(∑n
i=1(Xi −X)2∑n
i=1(Xi − µ0)2

)n/2
(3.31)

If we write

(Xi − µ0)2 = [(Xi −X) + (X − µ0)]2

= (Xi −X)2 + (X − µ0)2 + 2(Xi −X)(X − µ0)

(3.32)

we can see that

n∑
i=1

(Xi−µ0)2 =
n∑
i=1

(Xi−X)2+n(X−µ0)2+2

��
��

�
��

��*
0(

n∑
i=1

Xi − nX

)
(X−µ0)

(3.33)
so

Λ(X) =

(
1 +

n(X − µ0)2∑n
i=1(Xi −X)2

)−n/2
(3.34)

This means that thresholding on the value of Λ(X) is the same as
thresholding on the second term in parentheses, or equivalently

on

T =
X − µ0√

1
n−1

∑n
i=1(Xi −X)2/n

(3.35)

But we’ve constructed this last statistic so that, if H0 holds and
the {Xi} are independent N(µ0, θ2) random variables, Student’s
theorem tells is this is t-distributed with n−1 degrees of freedom.
So for a test at significance level α we reject H0 if T > tn−1,α

2
or

T < −tn−1,α
2
, since

Λ(X) =

(
1 +

T 2

n− 1

)−n/2
(3.36)

So we reject H0 if

Λ(X) <

(
1 +

t2n−1,α
2

n− 1

)−n/2
(3.37)

3.3.2 Example: Mean of Multivariate Normal Distri-
bution with Unit Variance

We know that the behavior of maximum likelihood tests is sim-
plest when the sample is drawn from a normal distribution with
known variance whose mean is the parameter in question. Now
we have multiple parameters, so the straightforward extension
is to have the sample drawn from a multivariate normal distri-
bution whose means are the parameters. So the sample now
consists of n independent random vectors X1, X2,. . . , Xn, each
with p elements and drawn from a multivariate normal distribu-
tion. For simplicity, we’ll use the identity matrix as the variance-
covariance matrix, so Xi ∼ Np(θ,1p×p). We’ll define the null
hypothesis H0 to be that the first q of the {θα} are zero. The
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likelihood function is

L(θ; x) = (2π)−n/2 exp

(
h− 1

2

n∑
i=1

(xi − θ)T(xi − θ)

)

= (2π)−n/2 exp

(
−1

2

n∑
i=1

p∑
α=1

([xi]α − θα)2

)

∝ exp

(
−n

2

p∑
α=1

(θα − xα)2

) (3.38)

where

xα =
1

n

n∑
i=1

[xi]α (3.39)

Thus the maximum likelihood solution under H1 is θ̂α = xα,
whike under H0 it is

[θ̂0]α =

{
0 α = 1, . . . , q

xα α = q + 1, . . . , p
(3.40)

and the likelihood ratio is

Λ({xi}) =
L(θ̂0; x)

L(θ̂; x)
= exp

(
−n

2

q∑
α=1

x2
α

)
(3.41)

Under H0, the {Xα} are independent and Xα ∼ N(0, 1
n
) for

α = 1, . . . , q. Thus, if the null hypothesis is true,

−2 ln Λ({Xi}) =

q∑
α=1

Xα
2

1/n
∼ χ2(q) (3.42)

3.3.3 Large-Sample Limit

This last result also holds generically as a limiting distribution
for large samples n→∞:

−2 ln Λ({Xi})
D→ χ2(q) (3.43)
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