1016-345-01
 Probability and Statistics for Engineers

Problem Set 6

Assigned 2013 April 16
Due 2013 April 23

Show your work on all problems! If you use a computer to assist with numerical computations, turn in your source code as well.

1 Devore Chapter 4, Problem 88

Note that problem 4.88 is different in the seventh and eighth editions of Devore. Be sure to do the problem from the eighth edition.

Also: Verify that the given z percentile values are correct to two decimal places by looking up their Φ values and comparing them to the required percentiles for a sample of size 15 .

2 Devore Chapter 5, Problem 12

3 Devore Chapter 5, Problem 22

4 Devore Chapter 5, Problem 30

5 Computational Exercise (Extra Credit)

Download the two data sets for this problem from
http://ccrg.rit.edu/~whelan/courses/2013_1sp_1016_345/data/ps06_prob5_set1.dat and
http://ccrg.rit.edu/~whelan/courses/2013_1sp_1016_345/data/ps06_prob5_set2.dat using username bayes, password normal

For each dataset, construct a normal probability plot by sorting the data into ascending order and plotting $z_{1-(i-.5) / n}$ vs x_{i}, where n is the number of points in the dataset, $i=1 \ldots n, x_{i}$ is the i th datapoint in the sorted set, and z_{α} is defined as usual by $\Phi\left(z_{\alpha}\right)=1-\alpha$. You may find it useful to construct a function which calculates z_{α} for a given α; e.g., in scipy/matplotlib, you can use
from scipy.special import ndtri as zscore

