1016-345-01
 Probability and Statistics for Engineers

In-class exercise
2012 September 25

Consider a continuous random variable X with the uniform probability density function

$$
f(x)= \begin{cases}\frac{1}{B-A} & A<x<B \\ 0 & \text { otherwise }\end{cases}
$$

a. Verify that $f(x)$ is normalized, i.e., that

$$
\int_{-\infty}^{\infty} f(x) d x=1
$$

b. Sketch the graph of $f(x)$. Label the axes.

Consider a continuous random variable with the uniform probability density function

$$
f(x)= \begin{cases}\frac{1}{B-A} & A<x<B \\ 0 & \text { otherwise }\end{cases}
$$

c. Find the cumulative distribution $F(x)$.
d. Sketch the graph of $F(x)$. Label the axes.

e. Calculate the expected value $E(X)$ in terms of A and B.
f. Calculate the variance $V(X)$ in terms of A and B.

