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Tuesday 30 October 2012

0 Introduction

0.1 Motivation

Having spent the quarter thus far learning about probability and descriptive statistics, we
are now ready to turn to the field of inferential statistics. Descriptive statistics give us ways
of summarizing a particular data set numerically or pictorially. Probability allows us to make
predictions about e.g., random samples drawn from a distribution with known parameters.
Inferential statistics allow us to define procedures where the content of a random sample
tells us something about the unknown parameters of the underlying probability distribution.
For example, if we know that a random sample is drawn from a normal distribution with a
known standard deviation σ and an unknown mean µ, we can make a rule that says for this
random sample, construct an interval of a specified width centered on the sample mean, and
this interval will have a 95% probability of containing the true population mean µ. This is
known as a confidence interval for µ.

As a specific example where this might be useful, when GPS was introduced back in
the 20th century, the government added some random errors into the reported position, for
national security purposes. So for example, if you put a GPS receiver on top of your house
and attempted to measure the elevation above sea level, the GPS would return the true
value plus a random error with a standard deviation of about 50 meters. This random error
varied from day to day, so you could get a more accurate measurement by averaging together
multiple measurements. If you took, say, 25 measurements, and used their sample mean to
construct a 95% confidence interval on your elevation, there would be a 95% chance your
interval included the true elevation, a 2.5% chance the whole interval was above the true
elevation, and a 2.5% chance that it was below.

0.2 Reminder of Notation

If Z is a standard normal random variable,

P (Z > zα) = α (0.1)

so
1− α = P (Z ≤ zα) = Φ(zα) (0.2)

Note that because the standard normal distribution is symmetric,

Φ(−zα) = 1− Φ(zα) = α (0.3)
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1 Confidence Intervals Using Standard Normal Per-

centiles

1.1 Confidence Interval for the Mean of a Normal Population with
Known Variance

Suppose {Xi} is a random sample of size n drawn from a distribution of mean µ and standard
deviation σ. (I.e., for each i, E(Xi) = µ and V (Xi) = σ2.) We showed last week that the
sample mean

X =
1

n

n∑
i=1

Xi (1.1)

has mean E(X) = µ and variance V (X) = σ2/n. We also saw that it is normally distributed
under the following conditions:

1. Exactly, if the underlying probability distribution from which each Xi is drawn is a
normal distribution.

2. Approximately, for large n, by the Central Limit Theorem.

If one of those conditions holds, we can define the (approximately, in the latter case) standard
normal random variable

Z =
X − µ
σ/
√
n

(1.2)
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Given a value α between 0 and 1, we can construct an interval that Z has a probability 1−α
of landing in. If we put the boundaries of the interval at ±zα/2 we find

P (Z < −zα/2) = Φ(−zα/2) = α/2 (1.3a)

P (−zα/2 < Z < zα/2) = Φ(zα/2)− Φ(−zα/2) =
(

1− α

2

)
− α

2
= 1− α (1.3b)

P (zα/2 < Z) = 1− Φ(zα/2) = 1−
(

1− α

2

)
= α/2 (1.3c)

For example, taking α = 0.05, since Φ(1.96) ≈ 0.9750 ≈ 0.975 and therefore z0.025 ≈ 1.96,

• Z has a 2.5% chance of lying below −1.96

• Z has a 95% chance of lying between −1.96 and 1.96

• Z has a 2.5% chance of lying above 1.96

This has an interesting application to the situation where we know σ but not µ. We already
know that X can be used to estimate µ, but now we can construct an interval which has a
good chance of containing µ as follows:

1− α = P (−zα/2 < Z < zα/2) = P

(
−zα/2 <

X − µ
σ/
√
n
< zα/2

)
= P

(
−zα/2

σ√
n
< X − µ < zα/2

σ√
n

)
= P

(
−X − zα/2

σ√
n
< −µ < −X + zα/2

σ√
n

)
= P

(
X + zα/2

σ√
n
> µ > X − zα/2

σ√
n

)
= P

(
X − zα/2

σ√
n
< µ < X + zα/2

σ√
n

)
(1.4)
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The interpretation of this is a bit tricky: it’s tempting to look at

P

(
X − zα/2

σ√
n
< µ < X + zα/2

σ√
n

)
= 1− α (1.5)

or, specifically

P

(
X − 1.96

σ√
n
< µ < X + 1.96

σ√
n

)
≈ 0.95 (1.6)

and think that if I take a sample, find x, and construct the interval (x−1.96 σ√
n
, x+1.96 σ√

n
),

that I can say there’s a 95% probability that µ lies in that interval. This is wrong, though,
since we constructed the interval in a frequentist picture in which X is a random variable,
not µ. From this perspective, the value of µ, while it may not be known to us, is not random,
and we’re really not talking about the probability for µ to take on a particular value. Rather,
we’re saying that whatever the true, unknown value of µ is, if we collect a sample {xi} of
size n and construct an interval (x− 1.96 σ√

n
, x+ 1.96 σ√

n
), it has a 95% chance of bracketing

that true value.

1.2 Aside: Bayesian Statistics and Probability Theory

As an aside, this is not the only possible way to do things. There are situations (e.g., obser-
vational rather than experimental sciences) where you can’t necessarily repeat the collection
of a sample and take another shot at your confidence interval. In that case, there really is
one set of values {xi} and you would like to state something about your degree of belief in
different possible values of µ. We can still cast all of this in the language of random variables
if we want, as follows. Suppose we can assign a probability distribution to the value of µ,
and represent it by a random variable M (M is an uppercase µ.) Given a value µ for M, we
construct a random sample {Xi} of size n using a normal distribution with that µ, and then
construct X from that sample (so it’s doubly-random in that case). We’ve seen that

P

(
X − zα/2

σ√
n
< µ < X + zα/2

σ√
n

∣∣∣∣M = µ

)
= 1− α (1.7)

We could ask instead, suppose we do the whole experiment and find that X equals some
specific value x. We could then ask for an interval I(x) such that

P
(
M ∈ I(x)|X = x

)
= 1− α (1.8)

The details are beyond the scope of this course, but you can get a flavor of it by thinking about
a simpler case where X and M are discrete random variables. Then, the usual frequentist
probabilities are written in terms of some specific value µ and correspond to

P (X = x|M = µ) (1.9)

but if we’ve done the experiment and have a specific x, we’d really like to talk about

P (M = µ|X = x) (1.10)

5



But this is just the sort of situation that Bayes’s theorem was meant to handle. We can
write

P (M = µ|X = x) =
P (X = x|M = µ)P (M = µ)

P (X = x)
(1.11)

This is the bread and butter of Bayesian probability (which Devore rather dismissively refers
to as “subjective probability”). There are complications, notably in deciding what to assign
as the prior probability distribution P (M = µ), but it does allow you to actually talk about
the probabilities of things you’re interested in.

1.3 Sample Size Determination

Given a sample of size n, we see that the width of the interval we construct at confidence
level (1− α) will be

w = 2zα/2
σ√
n

(1.12)

Often, though, we’ll be in a position of being able to collect a bigger sample (possibly at
greater expense) and therefore we’d like to know how big the sample should be to correspond
to a certain width. If we know σ, and our desired confidence level, we require

σ√
n

=
w

2zα/2
(1.13)

i.e., √
n = 2zα/2

σ

w
(1.14)

or

n =
(

2zα/2
σ

w

)2
(1.15)

1.4 One-sided Intervals

The confidence interval

P

(
X − zα/2

σ√
n
< µ < X + zα/2

σ√
n

)
= 1− α (1.16)

is called a two-sided interval because the probability α for µ to lie inside the interval is split
up, with a probability of α/2 that it lies below and α/2 that it lies above. It’s also possible
to define a one-sided interval with all of the probability on one side. For example,

P

(
µ < X + zα

σ√
n

)
= 1− α (1.17)

is an upper limit at confidence level 1− α and

P

(
X − zα

σ√
n
< µ

)
= 1− α (1.18)

is a lower limit at confidence level 1− α.
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1.5 General Formalism

A bit of notation is needed to generalize this prescription. We said that X could be used to
estimate µ. It is sometimes called an estimator µ̂ where the hat means “estimator” and we
write it in blue to emphasize that it’s a random variable.

If we want to talk about a general parameter, the convention is to call that parameter θ.
(In this case θ is just µ).

Given a random sample {Xi}, we construct a random variable (statistic) h({Xi}; θ) whose

probability distribution doesn’t depend on µ. (In this case h({Xi}; θ) is h({Xi};µ) = X−µ
σ/
√
n
,

which obeys a standard normal distribution independent of the value of µ.)
The ends of the confidence interval on h({Xi}; θ) are defined by

P
(
h({Xi}; θ) < a

)
= α/2 (1.19a)

P
(
b < h({Xi}; θ)

)
= α/2 (1.19b)

so that
P
(
a < h({Xi}; θ) < b

)
= 1− α (1.20)

(In this case, a is −zα/2 and b is zα/2.)
The next step is to convert (if possible) the bounds on h({Xi}; θ) to bounds on θ itself,

P
(
θ < l({Xi})

)
= α/2 (1.21a)

P
(
u({Xi}) < θ

)
= α/2 (1.21b)

so that the lower and upper bounds l({Xi}) and u({Xi}) have a probability α of bracketing
the true parameter value θ. (In this case, l({Xi}) is X−zα/2 σ√

n
and u({Xi}) is X+zα/2

σ√
n
.)

1.6 Confidence Interval for the Population Proportion

We can apply this method to estimation of the proportion of a large population satisfying
some property, i.e., the parameter p of a binomial distribution. If X ∼ Bin(n, p), we can also
think of X as being the sum X =

∑n
i=1Bi of n Bernoulli random variables {Bi} obeying

P (Bi = 1) = p; P (Bi = 0) = 1−p ≡ q. We know that X has mean E(X) = np and variance
V (X) = npq and that for np & 10 and nq & 10, the binomial distribution associated with X
is reasonably approximated by a normal distribution. This means that if we construct the
random variable

X − np
√
npq

(1.22)

then

1− α ≈ P

(
−zα/2 <

X − np
√
npq

< zα/2

)
= P

(
−zα/2 <

p̂− p√
p(1− p)/n

< zα/2

)
(1.23)
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where we’ve defined the estimator p̂ = X/n. To get an interval for the parameter p, we want
to solve for p at the endpoints. Squaring the relation at either end of the interval gives

(p̂− p)2

p(1− p)/n
= z2α/2 (1.24)

which can be converted into the quadratic equation(
1−

z2α/2
n

)
p2 − 2

(
p̂+

z2α/2
n

)
+
p̂2

n
= 0 (1.25)

Using the quadratic formula and a bit of algebra, we can find the roots

p± =
p̂+

z2
α/2

2n
± zα/2

√
p̂(1−p̂)
n

+
z2
α/2

4n2

1 +
z2
α/2

n

(1.26)

which gives the confidence interval on the parameter p (the population proportion)

P (p− < p < p+) ≈ 1− α . (1.27)

You might have asked, if we’re approximating the binomial distribution by a normal distri-
bution anyway, why can’t we just take p̂±zα/2

√
p̂(1− p̂)/n as the CI limits? Unfortunately,

that requires n to be rather large, and so it’s best to use the more complicated limits given
in (1.26). (You don’t need to memorize the form of this, but you should write it on your
formula sheet for the exams.)

Practice Problems

7.1, 7.5, 7.7, 7.15, 7.19, 7.23, 7.26

Thursday 1 November 2012

2 Confidence Intervals When the Variance is Estimated

2.1 Large-Sample Intervals

Recall that last time we saw that given a random sample {Xi} with known variance σ2 =
V (Xi), we could construct the random variable

Z =
X − µ
σ/
√
n

; (2.1)

If we can state that this is a standard normal random variable, either because the underlying
{Xi} are known to be normally-distributed random variables, or approximately by virtue of
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the Central Limit Theorem, we can use it to set a confidence interval on the unknown value
of µ:

1− α = P (−zα/2 < Z < zα/2) = P

(
X − zα/2

σ√
n
< µ < X + zα/2

σ√
n

)
(2.2)

What do we do if σ is also unknown? Well, we know that the sample variance

S2 =
1

n− 1

n∑
i=1

(Xi −X)2 (2.3)

is an estimator for the variance σ2, so what if we construct

X − µ
S/
√
n

? (2.4)

If we’re relying on the central limit theorem to make this approximately Gaussian for large n,
it all basically works as before, and you can set a confidence interval (X−zα/2 S√

n
, X+zα/2

S√
n
)

which has a 1−α chance of containing µ. The catch is that, since we’re adding randomness
by using S instead of σ, we require n & 40 rather than 30.

2.2 The t-Distribution

If n is not large, but {Xi} are iid normally-distributed random variables with unknown µ
and σ, we can construct a random variable

T =
X − µ
S/
√
n

(2.5)

This is not a standard normal random variable; it obeys something called a t-distribution,
also known as a Student’s1 t-distribution, with n − 1 degrees of freedom. Devore never
actually writes down the probability distribution function; you don’t need to memorize it,
but in case you want to play around with plotting it, it’s

fT (t;n− 1) ∝
(

1 +
t2

n− 1

)−n/2
(2.6)

If you really want to know, with the proportionality constant written out it’s

fT (t; ν) =
Γ([ν + 1]/2)√
νπΓ(ν/2)

(
1 +

t2

ν

)−[ν+1]/2

(2.7)

Note that the number of degrees of freedom (df) is ν = n − 1; this sort of makes sense,
because when n = 1, we can’t define S, and the whole thing goes haywire. Note also that

1“Student” was the pen name of statistician William Sealy Gosset.
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as ν or equivalently n becomes large, the distribution does tend towards a standard normal
distribution:

lim
n→∞

fT (t;n− 1) ∝ lim
n→∞

(
1 +

t2

n− 1

)−n/2
= lim

n→∞

[(
1 +

t2

n

)n]−1/2
=
(
et

2
)−1/2

= e−t
2/2

(2.8)
Here’s what the t distribution looks like for various values of ν = n− 1:

By analogy to the definition of zα, we define tα,ν (known as the t critical value) by

P (T > tα,ν) = 1− FT (tα,ν ; ν) = α (2.9)
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This means that

1− α = P (−tα/2,n−1 < T < tα/2,n−1) = P

(
−tα/2,n−1 <

X − µ
S/
√
n
< tα/2,n−1

)
(2.10)
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and by the same manipulation as before

P

(
X − tα/2,n−1

S√
n
< µ < X + tα/2,n−1

S√
n

)
= 1− α (2.11)

2.3 Prediction Intervals

So far we’ve used confidence intervals to make statements about the parameters of the
underlying distribution, given properties of a sample drawn from that distribution. Instead,
we could try to construct an interval with, say, a 95% chance of containing another value
drawn from that distribution. Specifically, if X1, . . . , Xn, Xn+1 are iid random variables, we
can try to make predictions about the n + 1st variable based on the first n. Of course, the
best estimator for Xn+1 which we can construct from X1, . . . , Xn is

X =
1

n

n∑
i=1

Xi (2.12)

The error we make with that guess has mean

E(X −Xn+1) = E(X)− E(Xn+1) = µ− µ = 0 (2.13)

and variance

V (X −Xn+1) = V (X) + V (Xn+1) = σ2/n+ σ2 =

(
1 +

1

n

)
σ2 (2.14)

If the underlying distribution for each Xi is normal, then X −Xn+1, being a linear combi-
nation of normal random variables, is normal, and

Z =
X −Xn+1 − 0

σ
√

1 + 1
n

(2.15)

is a standard normal random variable.
If we don’t know σ ahead of time, we can use the sample variance

S2 =
1

n− 1

n∑
i=1

(Xi −X)2 (2.16)

calculated from the first n random variables and construct

T =
X −Xn+1

S
√

1 + 1
n

. (2.17)
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This turns out to once again obey a t distribution with ν = n − 1 degrees of freedom, and
therefore we can say

P

(
X − tα/2,n−1 S

√
1 +

1

n
< Xn+1 < X + tα/2,n−1 S

√
1 +

1

n

)
= 1− α (2.18)

and, given a sample {xi} of size n, construct the prediction interval

x± tα/2,n−1 s
√

1 +
1

n
(2.19)

for xn+1 at “prediction level” (1− α)× 100%.
Note that prediction intervals are wider than confidence intervals in general; in particular

when n becomes large, the width of a confidence interval goes to zero, but the width of the
prediction interval goes to 2zα/2s.

2.4 Tolerance Intervals

One more type of interval to consider is a tolerance interval. This is constructed, based
on a sample with mean x and standard deviation s, to have a (1 − α) × 100% chance of
containing k% of the area of the underlying probability distribution. This is a complicated
construction, and for our purposes, it’s simply treated as a black box with an associated
table in the appendix. It’s mostly a matter of understanding the definition.

3 Confidence Interval for the Variance of a Normal

Population

So far, we’ve considered confidence intervals on the mean (or in one case, the proportion) of
a distribution. Finally, let’s consider how to set a confidence interval on the variance of the
normal distribution from which we’ve drawn a sample. We know that the sample variance

S2 =
1

n− 1

n∑
i=1

(Xi −X)2 (3.1)

can be used to estimate the variance, since

E(S2) = σ2 (3.2)

We can set up a confidence range for σ2 by considering the ratio

S2

σ2
=

1

n− 1

n∑
i=1

(Xi −X)2

σ2
(3.3)
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Now, since
Xi − µ
σ

(3.4)

is a standard normal random variable, we know
n∑
i=1

(Xi − µ)2

σ2
(3.5)

obeys a chi-square distribution with n degrees of freedom (df). If we use the sample mean
X instead of the population mean µ, we get

n∑
i=1

(Xi −X)2

σ2
=

(n− 1)S2

σ2
(3.6)

which turns out to obey a chi-square distribution with ν = n− 1 df.

So we need to set intervals for a chi-square random variable. Just as we defined zα and tα,ν
as the left edge of an area α under the pdf for a standard normal rv and a t-distribution with
ν df, respectively, we define χ2

α,ν as the corresponding quantity for a chi-square distribution
with ν degrees of freedom:

1√
2π

∫ ∞
zα

e−z
2/2 dz = 1− Φ(zα) = α (3.7a)

Γ([ν + 1]/2)√
νπΓ(ν/2)

∫ ∞
tα,ν

(
1 +

t2

ν

)−[ν+1]/2

dt = 1− FT (tα,ν ; ν) = α (3.7b)

1

2ν/2Γ(ν/2)

∫ ∞
χ2
α,ν

x(ν/2)−1e−x/2 dx = 1− F
(
χ2
α,ν

2
;
ν

2

)
= α (3.7c)
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where we’ve written the cdf for the chi-square distribution in terms of the standard Gamma
cdf F (x;α). In practice each of these three values–zα, tα,ν , χ

2
α,ν–is tabulated.

So, having defined the chi-squared critical value χ2
α,ν , we want to split up the area under

the chi-squared distribution into the first α/2, the middle 1− α, and the last α/2. The one
complication is that, since the chi-squared distribution is not symmetric like the standard
normal and t distributions were, we have to handle the lower limit more carefully. If we want
a value so that α/2 of the area under the curve lies to the left of it, then 1− α/2 lies to the
right, and we have χ2

1−α/2,ν and χ2
α/2,ν as our α× 100th and (1−α)× 100th and percentiles.

The lack of symmetry means
χ2
1−α/2,ν 6= −χ2

α/2,ν (3.8)

(In fact, both χ2
1−α/2,ν and χ2

α/2,ν must be positive.)
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The interval containing the middle 1− α of probability is thus

1− α = P

(
χ2
1−α/2,n−1 <

n∑
i=1

(Xi −X)2

σ2
< χ2

α/2,n−1

)

= P

(
χ2
1−α/2,n−1 <

(n− 1)S2

σ2
< χ2

α/2,n−1

)
= P

(
(n− 1)S2

χ2
α/2,n−1

< σ2 <
(n− 1)S2

χ2
1−α/2,n−1

)
(3.9)

and, if we prefer to write a confidence interval for the standard deviation,

P

(√
(n− 1)S2

χ2
α/2,n−1

< σ <

√
(n− 1)S2

χ2
1−α/2,n−1

)
= 1− α (3.10)
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4 Summary of Confidence Intervals

4.1 For Normal Random Samples

At confidence level (1− α)× 100%:

known unknown variable lower upper

σ µ x− zα/2 σ√
n

x+ zα/2
σ√
n

σ µ x− zα σ√
n

∞
σ µ −∞ x+ zα

σ√
n

σ µ x− tα/2,n−1 s√
n

x+ tα/2,n−1
s√
n

σ µ x− tα,n−1 s√
n

∞
σ µ −∞ x+ tα,n−1

s√
n

µ σ s

√
(n−1)

χ2
α/2,n−1

s

√
(n−1)

χ2
1−α/2,n−1

µ σ s
√

(n−1)
χ2
α,n−1

∞

µ σ 0 s
√

(n−1)
χ2
1−α,n−1

4.2 Approximate Confidence Intervals for Large Samples

At approximate level (1− α)× 100%:

Distribution variable lower upper

general µ x− zα/2 s√
n

x+ zα/2
s√
n

general µ x− zα s√
n

∞
general µ −∞ x+ zα

s√
n

Bernoulli/Binomial p
p̂+

z2
α/2
2n
−zα/2

√
p̂(1−p̂)
n

+
z2
α/2

4n2

1+
z2
α/2
n

p̂+
z2
α/2
2n

+zα/2

√
p̂(1−p̂)
n

+
z2
α/2

4n2

1+
z2
α/2
n

Practice Problems

7.29, 7.35, 7.37, 7.41, 7.43, 7.45, 7.55
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