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Tuesday 11 September 2012

1 Random Variables

A random variable is a variable whose value is not definitively known, but is described
probabilistically. Different values (or ranges of values) of the random variable are thought of
as different events, with probabilities assigned to them. We use capital letters such as X or
Y to refer to random variables, and lowercase letters to refer to specific values they can take.
For example, we can consider the quantity 2+X and note that if X = x then 2+X = 2+x.

We will usually consider two kinds of random variables:

• Discrete Random Variables take on specific, separated values, and each possible value
has a non-zero probability of occurring. The list of possible values can be finite (e.g.,
{1, 1.5, 2, 1.5, 3}) or “countably infinite”, e.g., the set of all integers. Examples of
discrete rvs are: the average of the numbers rolled on two dice, the number of children
in a randomly selected family, etc.

• Continuous Random Variables can take on values in one or more intervals, with any
value in the interval being possible. However, the probability of a continuous rv taking
on any one specific value is zero. What is non-zero is the probability for the value of a
continuous rv to lie within some range. Examples of continuous rvs are: the distance
of a javelin throw, the height of a randomly selected child, the duration of a plane
flight, etc.

For the time being (in Chapter 3) we will limit our attention to discrete rvs. We will return
to continuous rvs in Chapter 4.

A very simple sort of discrete rv is a Bernoulli random variable. A Bernoulli rv can only
take on the values 0 and 1.

1.1 Probability Mass Function

The behavior of a discrete random variable can be completely specified if we can assign a
probability to each possible value. We can think of X = x, for a given x, as an event, and
that event has a probability. We define something called the Probability Mass Function, or
pmf:

p(x) = P (X = x) (1.1)

For example for a Bernoulli random variable, p(0) = P (X = 0) and p(1) = P (X = 1). Note
that in the case of a Bernoulli rv, the events X = 0 and X = 1 make up an exhaustive set
of mutually exclusive alternatives, so

1 = P (X = 0) + P (X = 1) = p(0) + p(1) for a Bernoulli rv (1.2)

More generally, since the total probability that X takes on any of its possible values is one,∑
x

p(x) = 1 (1.3)
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This is known as a the normalization condition for the pmf of a discrete rv.
As a concrete example, suppose we roll two four-sided dice and define the rv X to be the

sum of the numbers rolled. There are 16 possible outcomes, each of which is equally likely,
and we can work out the pmf by just counting outcomes:

x outcomes p(x)

2 (1, 1) 1/16 = .0625
3 (1, 2); (2, 1) 2/16 = .125
4 (1, 3); (2, 2); (3, 1) 3/16 = .1875
5 (1, 4); (2, 3); (3, 2); (4, 1) 4/16 = .25
6 (2, 4); (3, 3); (4, 2) 3/16 = .1875
7 (3, 4); (4, 3) 2/16 = .125
8 (4, 4) 1/16 = .0625

Note that we can check that this pmf is normalized:∑
x

p(x) = p(2) + p(3) + p(4) + p(5) + p(6) + p(7) + p(8)

= .0625 + .125 + .1875 + .25 + .1875 + .125 + .0625

= 1

(1.4)

We can also plot the pmf, drawing a stem to stress that it is non-zero only at the specified
allowed values:

1.2 Cumulative Distribution Function

We often want to make statements about the probability for a rv to lie within a certain
range. (In fact when we return to continuous rvs, those will be the only sorts of events that
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we can assign probabilities to.) We can do this by adding the probabilities for all of the
possible values that lie within that range. For instance, if we want the probability that X,
the sum of two four-sided die rolls, is not more than 6 and not less than 4, that is

P (4 ≤ X ≤ 6) =
∑

4≤x≤6

p(x) = p(4) + p(5) + p(6) = .1875 + .25 + .1875 = .625 (1.5)

If we’re going to do this a lot, though, the pmf is not so convenient to work with, since
we have to keep adding up pmf values for every event we consider. It’s more convenient to
work with something called the Cumulative Distribution Function, which is just defined as
a function of x, as the probability that X is less than or equal to x:

F (x) = P (X ≤ x) =
∑
y≤x

p(y) (1.6)

For example, in our 2d4 example, we get

F (x) =



0 x < 2

.0625 2 ≤ x < 3

.1875 3 ≤ x < 4

.375 4 ≤ x < 5

.625 5 ≤ x < 6

.8125 6 ≤ x < 7

.9375 7 ≤ x < 8

1 8 ≤ x

(1.7)

Note that we’ll always have F (−∞) = 0 and F (∞) = 1, if the original pmf is normalized.
We can plot this cdf:
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Note that the cdf is defined in between allowed values, and jumps discontinuously at those
allowed values.

Once we’ve got the cdf, we can calculate the probability that X lies within any range by

P (x1 < X ≤ x2) = P (X ≤ x2)− P (X ≤ x1) = F (x2)− F (x1) (1.8)

We might need to be a little careful about our inequalities, though, since x1 ≤ X is not the
same as x1 < X. E.g., returning to our 2d4 example,

P (4 ≤ X ≤ 6) = P (X ≤ 6)− P (X < 4) (1.9)

Now, we could find

P (X < 4) = P (X ≤ 4)− P (X = 4) = F (4)− p(4) (1.10)

but that sort of defeats the purpose of defining the cdf to get around the need to always add
up values from the pmf. So a better strategy is to look at the cdf a little bit below 4, since
there’s no probability that e.g., 3.9 < X < 4:

P (X < 4) = P (X ≤ 3.9) +
��

���
���

�:0
P (3.9 < X < 4) = F (3.9) (1.11)

and so

P (4 ≤ X ≤ 6) = P (X ≤ 6)− P (X < 4) = F (6)− F (3.9) = .8125− .1875 = .625 (1.12)

as before.

2 Expected Values

2.1 Mean of a Random Variable

A number of concepts from descriptive statistics translate into the realm of random variables.
The first of this is the mean value. Consider for simplicity a Bernoulli random variable with
p(0) = .25 and p(1) = .75. Although the simple average of 0 and 1 is .5, the random variable
takes the value 1 75% the time and 0 only 25% of the time, so the appropriate mean value
is .75.

In general, we can write the mean value as the weighted average of the possible values
(weighted by the pmf)

µX =
∑
x

x p(x) (2.1)

This is a special case of something called the expected value

E(X) =
∑
x

x p(x) (2.2)
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Note that “expected value” doesn’t literally mean that we expect the rv to take on exactly
that value. The Bernoulli rv above can only take on the values 0 and 1, but the expected
value is .75

Returning to our 2d4 example, the mean value of that rv is

µX = E(X) = 2 p(2) + 3 p(3) + 4 p(4) + · · ·+ 8 p(8) = 5 (2.3)

Practice Problems

3.7, 3.9, 3.13, 3.21, 3.23, 3.25
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Thursday 13 September 2012

2.2 Expected Value of a Function

For concreteness, let’s consider a discrete rv with the pmf

x .5 2 3
pX(x) .2 .5 .3

where we have written pX(x) rather than p(x) to emphasize this is the pmf for the rv X.
Recall that on Tuesday we defined the mean or expected value as

µX = E(X) =
∑
x

x pX(x) (2.4)

so in this case,
E(X) = (.2)(.5) + (.5)(2) + (.3)(3) = .1 + 1 + .9 = 2 (2.5)

We can extend our definition of expected value to apply to functions of X, e.g., we can
define E(X2) by considering Y = X2 to be a new random variable, whose pmf we know:

y .25 4 9
pY (y) = P (X2 = y) .2 .5 .3

so

E(X2) = E(Y )
∑
y

y pY (y) = (.2)(.25) + (.5)(4) + (.3)(9) = .05 + 2 + 2.7 = 4.75 (2.6)

Of course, we’d also get the same result if we wrote down directly

E(X2) =
∑
x

x2 pX(x) (2.7)

without bothering to define a new rv. The general definition for the expected value of some
function of a random variable is

E(h(X)) =
∑
x

h(x) p(x) (2.8)

(where we’ve now suppressed the subscript X and written pX(x) as p(x) because there’s only
one rv to worry about.)

If the function is linear (or linear plus a constant), there’s a result that simplifies the
expected value a bit:

E(aX + b) =
∑
x

(ax+ b) p(x) = a
∑
x

x p(x) + b
∑
x

p(x) = aE(X) + b (2.9)

Note that this only works for linear functions. For example, in general

E(X2) 6= [E(X)]2 (2.10)
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2.3 Variance of a Random Variable

Recall that the mean value µX of a random variable X is defined by analogy to a population
mean, replacing the average over the population with a weighted average over the probability
distribution, i.e., an expected value. Similarly, there is a quantity analogous to the population
variance, which we define as

σ2
X = V (X) = E([X − µX ]2) =

∑
x

(x− µX)2p(x) (2.11)

In our simple example random variable, for which µX = 2, we have

x .5 2 3
p(x) .2 .5 .3
x− µX −1.5 0 1

(x− µX)2 2.25 0 1

so

σ2
X = V (X) =

∑
x

(x− µX)2p(x) = (2.25)(.2) + (0)(.5) + (1)(.3)

= .45 + 0 + .3 = .75

(2.12)

2.3.1 Standard Deviation

Of course, having written the variance V (X) as σ2
X , the natural extension is to call σX =√

V (X) the standard deviation of the rv. (In this case, σX =
√
.75 ≈ .866)

2.3.2 Shortcut Formula

If we apply the linearity property to the definition of the variance, we find

V (X) = E([X − µX ]2) = E(X2 − 2µXX + µ2
X) = E(X2) + E(−2µXX + µ2

X)

= E(X2)− 2µXE(X) + µ2
X = E(X2)− 2µ2

X + µ2
X

= E(X2)− [E(X)]2
(2.13)

This is just analogous to the shortcut formula we used to calculate the population (or sample)
variance from the average (or sum) of the squares of the data values.

We can see this in action in our example, where we’ve already found E(X) = 2 and
E(X2) = 4.75, so the shortcut formula tells us

V (X) = E(X2)− [E(X)]2 = 4.75− 22 = .75 (2.14)

which is indeed just what we got by direct calculation.
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3 The Binomial Distribution

We often think about an experiment with a binary outcome: success or failure. (In the
language of random variables, the corresponding entity is a Bernoulli rv.) Suppose the
probability of success is p. One of the definitions of probability is that if we could perform
the experiment a large number of times under identical circumstances, the fraction of those
trials which would give a successful result should tend towards p as the number of trials
becomes large. But for a finite number of trials, the fraction will not be exactly p with
complete certainty. If we flip a fair coin four times, there is a decent probability that we’ll
get something other than two heads and two tails. The Binomial Distribution gives the
probability of getting some total number x of successes given a finite number n of trials,
each of which has a probability p of success.

Example: suppose we are flipping an unbalanced coin with a probability of .6 to land
on heads and .4 to land on tails, and we flip it twice. The different outcomes and their
probabilities are:

Outcome probability
HH (.6)(.6) = .36
HT (.6)(.4) = .24
TH (.4)(.6) = .24
TT (.4)(.4) = .16

Notice that the probability of getting a total of one head is not .24 but .48 because there are
two different ways to do it:

# of heads # of ways prob of each way total probability
2 1 .36 .36
1 2 .24 .48
0 1 .16 .16

In a general binomial experiment, the probability of getting a total of x successes and
n− x failures in n trials, with a probability of p for success and 1− p for failure in each trial
is

b(x;n, p) = (# of ways)(prob of each way) =

(
n

x

)
px(1− p)n−x (3.1)

The probability for any particular sequence of x successes and n− x failures is

px(1− p)n−x (3.2)

The number of distinct ways of getting x successes out of n trials is just “n choose x”, which
we learned last week: (

n

x

)
=

n!

(n− x)!x!
(3.3)
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So, putting it all together, with a bit of notation: if X is a binomial random variable,
the total number of successes in n trials with a probability of success for each trial equal to
p, we write

X ∼ Bin(n, p) (3.4)

and the pmf of X follows a binomial distribution

P (X = x) = p(x) = b(x;n, p) =

(
n

x

)
px(1− p)n−x x = 0, 1, . . . , n (3.5)

The cumulative distribution function is

P (X ≤ x) = F (x) = B(x;n, p) =
x∑
y=0

b(y;n, p) (3.6)

The mean and variance of a binomial distribution are

E(X) = np (3.7a)

V (X) = np(1− p) (3.7b)

It is possible to show both of these by manipulating the sums, but we prefer to argue that
they make sense. Since p is the average long-term fraction of successes, it makes sense that
E(X/n) = E(X)/n should be equal to p. The variance is a little more complicated, but we
can see that it’s got some sensible features, e.g., it’s zero if p = 0 (in which case every trial
is a failure) or p = 1 (in which case every trial is a success). Also, note that the standard
deviation σX =

√
np(1− p) only grows like

√
n, so the expected standard deviation in the

fraction of successes, σX/n, goes down as n gets large.

3.1 More on the Binomial Distribution

Recall: if we have a fixed number n of trials, each of which has a chance p of success, then if
X is the random variable representing the total number of successes, X is called a binomial
random variable, and we write

X ∼ Bin(n, p) (3.8)

and the pmf of X follows a binomial distribution

p(x) = b(x;n, p) =

(
n

x

)
px(1− p)n−x x = 0, 1, . . . , n (3.9)

because (
n

x

)
=

n!

x!(n− x)!
(3.10)

(“n choose x”) is the number of possible sequences of x successes and n − x failures, and
px(1− p)n−x is the probability of any one such sequence.
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Also, the cdf of X is written

F (x) = B(x;n, p) =
x∑
y=0

b(y;n, p) (3.11)

Now, b(x;n, p) and B(x;n, p) are explicitly defined, and you could in principle work them
out by hand every time you need one. However, for all but the smallest values of x and n−x,
that becomes tedious rather quickly. So this is the first of unfortunately many examples in
probability and statistics where the standard approach is to look up the distribution in
a statistical table. This is something of an anachronism, since these things can be easily
calculated on a computer these days. But there is some middle ground between relying
entirely on brute force and tables, and letting a statistical software package do your entire
analysis for you. It’s sort of like trigonometry: before the advent of calculators, you had
to interpolate sines and cosines from values in a table. Now you can punch them into your
calculator or call a function in a computer program. But you don’t rely on a trigonometry
package to work out all of your triangles for you. (And you hopefully remember the sines
and cosines of a few simple angles like 0◦, 30◦, 45◦ and 90◦.) So you shouldn’t be ashamed to
leave the calculating of something like B(15; 35, .7) to a computer, but you should remember
where it came from. (And also be able to write a little script in the language of your choice
to calculate it.)

Note that we are skipping Section 2.5, on the negative binomial and hypergeometric dis-
tributions.

Practice Problems

3.29, 3.33, 3.43, 3.47 (use formula first, then verify w/table), 3.55, 3.59
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4 Poisson Distribution

Devore introduces the Poisson distribution starting with its pmf and then delving into the
situations where it’s relevant. Let’s come at it from the other side. Consider the numerous
statistical statements1 you get like:

1. On average 118.3 people per day are killed in traffic accidents in the US

2. On average there are 367.2 gamma-ray bursts detected per year by orbiting satellites

3. During a rainstorm, an average of 929.4 raindrops falls on a square foot of ground each
minute

In each of these cases, the number of events, X, occurring in one representative interval
is a discrete random variable with a probability mass function. The average number of
events occurring is a parameter of this distribution, which we sensibly write as µ.2 From the
information given above, we only know the mean value of the distribution, E(X) = µ. The
extra piece of information that defines a Poisson random variable is that each of the discrete
events to be counted is independent of the others.

4.1 Aside: Simulating a Poisson Process

To underline what this independence of events means, and to further to illustrate the kind
of situation described by a Poisson distribution, consider the following thought experiment.
Suppose there’s a field divided into a million square-foot patches, and I’m told that there is
an average of 4.5 beetles per square foot patch, with the location of each beetle independent
of the others. If I wanted to simulate that situation, I could distribute 4,500,000 beetles
randomly among the one million patches. I’d do this by placing the beetles one at a time,
randomly choosing a patch (among the million available) for each beetle, without regard to
where any of the other beetles were placed. The number of beetles in any one patch would
then be pretty close to a Poisson random variable. (It wouldn’t be exactly a Poisson rv,
because the requirement of exactly 4,500,000 beetles total would break the independence
of the different patches, but in the limit of infinitely many patches, and a corresponding
total number of beetles, it would become an arbitrarily good approximation.) In fact, the
numbers of beetles in each of the one million patches would make a good statistical ensemble
for approximately describing the probability distribution for the Poisson random variable.

4.2 Poisson Process and Rate

These scenarios described by a Poisson random variable are often associated with some sort
of a rate: 118.3 deaths per day, 367.2 GRBs per year, 929.4 raindrops per square foot per

1I fabricated the last few significant figures in each of these numbers to produce a concrete example.
2Note that in the Seventh Edition of Devore this parameter was called λ, which led to all sorts of confusion

later on. Calling it µ may be the most valuable change incorporated in the Eighth Edition.
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minute, 4.5 beetles per square foot. We talk about a Poisson process with an associated rate
α (e.g., a number of events per unit time), and if we count all the events in a certain interval
of size T (e.g., a specified duration of time), it is a Poisson random variable with parameter
µ = αT . So for example, if the clicks on a Geiger counter are described by a Poisson process
with a rate of 45 clicks per minute, the number of clicks in an arbitrarily chosen one-minute
interval of time will be a Poisson random variable with µ = 45. If the interval of time is 30
seconds (half a minute), the Poisson parameter will be µ = (45/minute)(0.5 minute) = 23.5.
If we count the clicks in four minutes, the number of clicks will be a Poisson random variable
with µ = (45/minute)(4 minutes) = 180. Note that µ will always be a number, and will not
contain a “per minute” or “per square foot”, or anything. (That will be part of the rate α.)

4.3 Connection to Binomial Distribution and Derivation of pmf

The key information that lets us derive the pmf of a Poisson distribution is what happens
if you break the interval up into smaller pieces. If there’s a Poisson process at play, the
number of events in each subinterval will also be a Poisson random variable, and they will
all be independent of each other. So if we divide the day into 100 equal pieces of 14 minutes
24 seconds each, the number of traffic deaths in each is an independent Poisson random
variable with a mean value of 11.83. Now, in practice this assumption will often not quite be
true: the rate of traffic deaths is higher at some times of the day than others, some patches
of ground may be more prone to be rained on because of wind patterns, etc, but we can
imagine an idealized situation in which this subdivision works.

Okay, so how do we get the pmf? Take the interval in question (time interval, area of
ground, or whatever) and divide it into n pieces. Each one of them will have an average of
µ/n events. If we make n really big, so that µ/n� 1, the probability of getting one event in
that little piece will be small, and the probability that two or more of them happen to occur
in the same piece is even smaller, and we can ignore it to a good approximation. (We can
always make the approximation better by making n bigger.) That means that the number
of events in that little piece, call it Y , has a pmf of

p(Y = 0) ≈ 1− p (4.1a)

p(Y = 1) = p (4.1b)

p(Y > 1) ≈ 0 (4.1c)

In order to have E(Y ) = µ/n, the probability of an event occurring in that little piece has
to be p = µ/n.

But we have now described the conditions for a binomial distribution! Each of the n tiny
sub-pieces of the interval is like a trial, a piece with an event is a success, and a piece with
no event is a failure. So the pmf for this Poisson random variable must be the limit of a
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binomial distribution as the number of trials gets large:

p(x;µ) = lim
n→∞

b(x;n, µ/n) = lim
n→∞

n!

x!(n− x)!

(µ
n

)x (
1− µ

n

)n−x
=
µx

x!
lim
n→∞

(
1− µ

n

)n n!

(n− x)!

(
1/n

1− µ/n

)x (4.2)

Now, the ratio of factorials is a product of x things:

n!

(n− x)!
= n(n− 1)(n− 2) · · · (n− x+ 1) (4.3)

The last factor is of course also the product of x things, i.e., x identical copies of

1/n

1− µ/n
=

1

n− µ
. (4.4)

But that means the two of them together give you

n!

(n− x)!

(
1/n

1− µ/n

)x
=

n

n− µ
n− 1

n− µ
n− 2

n− µ
· · · n− x+ 1

n− µ
(4.5)

which is the product of x fractions, each of which goes to 1 as n goes to infinity, so we can
lose that factor in the limit and get

p(x;µ) =
µx

x!
lim
n→∞

(
1− µ

n

)n
=
µx

x!
e−µ . (4.6)

We’ve used the exponential function

eα = lim
n→∞

(
1 +

α

n

)n
; (4.7)

This is the form one usually sees in the context of compound interest. 3 Here e is Euler’s
number, e = 2.718 . . ..

Note that in the pmf for a Poisson random variable X,

p(x;µ) =
µx

x!
e−µ (4.8)

the most daunting part, the exponential, doesn’t actually depend on x. It’s a normalization
constant which depends on the parameter µ. If we only care about the relative probabilities,
we could write

p(x;µ) = N (µ)
µx

x!
; (4.9)

3If the rate times the term is α and we compound the interest at n equally spaced intervals during the
term, the principal grows by a factor of (1 + α/n)

n
; in the limit of continuously compounded interest, the

principal doesn’t grow infinitely, but only by a factor of eα.
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the fact that the constant N (µ) is e−µ is required by the normalization

∞∑
x=0

p(x;µ) = N (µ)
∞∑
x=0

µx

x!
= N (µ) eµ . (4.10)

This uses the Taylor series

eµ =
∞∑
x=0

µx

x!
(4.11)

4.4 Challenge: Simulate a Poisson Process

If you’re good with computers, you might want to try carrying out the “beetle” simulation
described above: randomly generate 4,500,000 integers, each between 0 and 999,999, repre-
senting the locations of the 4,500,000 beetles. Then count up how many beetles are in patch
0, patch 1, patch 3, up to patch 999,999. Generate a histogram of these counts, how many
of the one million patches contain no beetles, how many contain exactly one beetle; how
many contain exactly two, etc. Divide the histogram by 1,000,000 to obtain the fraction of
patches with 0 beetles, with 1 beetle, with 2 beetles, etc. Then compare these fractions to
the probabilities predicted by the corresponding Poisson pmf

p(x) =
4.5x

x!
e−4.5 (4.12)

You should find that they are pretty close. . .
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4.5 Example: Poisson distribution for µ = 2

We can work out the pmf in this case. The normalization constant is e−2 = .135335. The
pmf values are

p(0; 2.) =
20

0!
e−2 = .135 (4.13a)

p(1; 2.) =
21

1!
e−2 = .271 (4.13b)

p(2; 2.) =
22

2!
e−2 = .271 (4.13c)

p(3; 2.) =
23

3!
e−2 = .180 (4.13d)

p(4; 2.) =
24

4!
e−2 = .0902 (4.13e)

p(5; 2.) =
25

5!
e−2 = .0361 (4.13f)

p(6; 2.) =
26

6!
e−2 = .0120 (4.13g)

p(7; 2.) =
27

7!
e−2 = .00344 (4.13h)

p(8; 2.) =
28

8!
e−2 = .000859 (4.13i)

Note that p(x;µ) never goes to zero, but it gets very small. We can also say what the total
probability of being above a certain point is, e.g.,

P (X > 4) = 1− P (X ≤ 4) = 1− e−2
(

1 + 2 + 2 +
4

3
+

2

3

)
= 1− 7e−2

= 1− .947 = .053

(4.14)

Practice Problems

3.79, 3.81, 3.83, 3.85, 3.91, 3.93
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