# 1016-351-01 

Probability
Problem Set 6
Assigned 2012 January 31
Due 2012 February 7

Show your work on all problems! If you use a computer to assist with numerical computations, turn in your source code as well.

## 1 Devore Chapter 4, Problem 60

## 2 Devore Chapter 4, Problem 66

## 3 Devore Chapter 4, Problem 71

## 4 Devore Chapter 4, Problem 80

Note that the parameters of the lognormal distribution in Problem 79 are given in the back of the book as $\mu=9.164$ and $\sigma=.385$.

## 5 Computational Exercise (Extra Credit)

Download the two data sets for this problem from
http://ccrg.rit.edu/~whelan/courses/2011_4wi_1016_351/data/ps06_prob5_set1.dat and
http://ccrg.rit.edu/~whelan/courses/2011_4wi_1016_351/data/ps06_prob5_set2.dat
using the credentials given in class.
For each dataset, construct a normal probability plot by sorting the data into ascending order and plotting $z_{1-(i-.5) / n}$ vs $x_{i}$, where $n$ is the number of points in the dataset, $i=1 \ldots n, x_{i}$ is the $i$ th datapoint in the sorted set, and $z_{\alpha}$ is defined as usual by $\Phi\left(z_{\alpha}\right)=1-\alpha$. You may find it useful to construct a function which uses the inverse of $\Phi(z)$ to calculate $z_{\alpha}$ for a given $\alpha$; e.g., in scipy/matplotlib, you can use

```
from scipy.special import ndtri
def zalpha(alpha):
    return ndtri(1-alpha)
```

