1016-351-01
 Probability

Problem Set 4
Assigned 2012 January 10
Due 2012 January 17

Show your work on all problems! If you use a computer to assist with numerical computations, turn in your source code as well.

1 Devore Chapter 3, Problem 74

2 Devore Chapter 3, Problem 76

3 Devore Chapter 3, Problem 86

4 Devore Chapter 3, Problem 88

5 Computational Exercise (Extra Credit)

The hypergeometric distribution

$$
\begin{equation*}
h(x ; n, M, N)=\frac{\binom{M}{x}\binom{N-M}{n-x}}{\binom{N}{n}} \tag{5.1}
\end{equation*}
$$

can be approximated by a binomial distribution

$$
\begin{equation*}
b(x ; n, p)=\binom{n}{x} p^{x}(1-p)^{n-x} \tag{5.2}
\end{equation*}
$$

with $p=M / N$, when M, N, and $N-M$ are all large.
a. Using a computer, plot the pmfs $h(x ; 10,12,20)$ and $b(x ; 10, .6)$ over the range of possible x values. (Recall that if you use matplotlib, the binomial coëfficient can be imported from scipy with from scipy import comb.)
b. Using a computer, plot the pmfs $h(x ; 10,120,200)$ and $b(x ; 10, .6)$ over the range of possible x values.
c. Another large-number approximation is that the binomial distribution tends towards the Poisson distribution

$$
\begin{equation*}
p(x ; \mu)=\frac{e^{-\mu} \mu^{x}}{x!} . \tag{5.3}
\end{equation*}
$$

On the same set of axes, plot the Poisson pmf $p(x ; 3)$ and the binomial pmfs $b(x ; 12, .25)$ and $b(x ; 300, .01)$, for x between 0 and 12 , inclusive. (If you use matplotlib, you can also import a factorial function from scipy with from scipy import factorial.)

