1016-351-01

Probability

Problem Set 3

Assigned 2011 September 20
Due 2011 September 27

Show your work on all problems! If you use a computer to assist with numerical computations, turn in your source code as well.

1 Devore Chapter 3, Problem 12

2 Devore Chapter 3, Problem 18

3 Devore Chapter 3, Problem 32

4 Devore Chapter 3, Problem 46

5 Computational Exercise (Extra Credit)

Consider the pmf from Chapter 3, Problem 12 for the number Y of ticketed passengers, out of 55, who show up for a flight.

y	45	46	47	48	49	50	51	52	53	54	55
$p_{Y}(y)$.05	.10	.12	.14	.25	.17	.06	.05	.03	.02	.01

A reasonable supposition is that each passenger has an independent probability p of showing up, in which case the number of passengers showing up would be a binomial random variable $X \sim$ $\operatorname{Bin}(55, p)$. (Obviously, that's not exactly the situation described in the problem, since $p_{Y}(y)=0$ for $y<45$, which won't be the case for $p_{X}(x)$.)
a. Calculate $E(Y)$ from the pmf.
b. Find the value of p such that $E(X)=E(Y)$.
c. Using this value for p, make a table of the values of $p_{X}(x)$ for $45 \leq x \leq 55$ to two decimal places (not two significant figures), and compare the results to the table above.
d. Calculate $F_{X}(44)=P(X<45)$ to two decimal places. (Note that $F_{Y}(44)=P(Y<45)=0$.)

