1016-345-01
 Probability and Statistics for Engineers

Problem Set 6
Assigned 2011 January 25
Due 2011 February 1

Show your work on all problems! If you use a computer to assist with numerical computations, turn in your source code as well.

1 Devore Chapter 4, Problem 88

2 Devore Chapter 5, Problem 12

3 Devore Chapter 5, Problem 22

4 Devore Chapter 5, Problem 30

5 Computational Exercise (Extra Credit)

Download the two data sets for this problem from
http://ccrg.rit.edu/~whelan/courses/2010_4wi_1016_345/data/ps06_prob5_set1.dat and
http://ccrg.rit.edu/~whelan/courses/2010_4wi_1016_345/data/ps06_prob5_set2.dat using the credentials given in class.

For each dataset, construct a normal probability plot by sorting the data into ascending order and plotting $z_{1-(i-.5) / n}$ vs x_{i}, where n is the number of points in the dataset, $i=1 \ldots n, x_{i}$ is the i th datapoint in the sorted set, and z_{α} is defined as usual by $\Phi\left(z_{\alpha}\right)=1-\alpha$. You may find it useful to construct a function which uses the inverse error function to calculate z_{α} for a given α; e.g., in scipy/matplotlib, you can use

```
from scipy.special import erfinv
def zscore(Phi):
    return np.sqrt(2) * erfinv( 2.0 * Phi - 1.0 )
```

