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Show your work on all problems! Be sure to give credit to any collaborators, or outside
sources used in solving the problems. Note that if using an outside source to do a calculation, you
should use it as a reference for the method, and actually carry out the calculation yourself; it’s not
sufficient to quote the results of a calculation contained in an outside source.

1 Upper Limits

Consider an experiment designed to measure an unknown physical quantity x, which returns a value
y whose pdf is defined by the likelihood function

f(y|x) =
e−(y−x)

2/2σ2

σ
√

2π
(1.1)

a) Suppose the experiment has been performed and the result ŷ has been found. Calculate the
frequentist upper limit xfreqUL at confidence level α, defined by∫ ∞

ŷ

f(y|xfreqUL ) dy = α . (1.2)

You should be able to write this with the help of the inverse complementary error function
erfc−1(ξ). Note that erfc−1(ξ) is positive if 0 < ξ < 1 and negative if 1 < ξ < 2, and that
erfc−1(2− ξ) = − erfc−1(ξ)

b) Consider a Bayesian analysis with a uniform prior on x, so that by Bayes’s theorem, the
posterior is

f(x|y) =
f(x)

f(y)
f(y|x) = A f(y|x) . (1.3)

Using the explicit form of the likelihood (1.1) and the normalization requirement∫ ∞
−∞

f(x|y) dx = 1 (1.4)

find the value of A and therefore the explicit form of the posterior f(x|y).

c) Supposing again that we’ve performed the experiment and found a result ŷ, find the Bayesian
upper limit xBayes

UL at confidence level α, defined by∫ xBayes
UL

−∞
f(x|ŷ) dx = α (1.5)
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d) For the case where α = 0.9, write xfreqUL and xBayes
UL explicitly in terms of ŷ and σ, with any

constants evaluated to three significant figures. (You’ll need to refer to the explicit value of
erfc−1(ξ) for a particular ξ; in matplotlib you can get access to the inverse complementary
error function via from scipy.special import erfcinv.)

e) Suppose now that x is physically constrained to be positive and let the prior be uniform for
positive x, so that the posterior can be written in terms of the Heaviside step function

Θ(x) =

{
0 x < 0

1 x > 0
(1.6)

as

f(x|y) =
f(x)

f(y)
f(y|x) = BΘ(x) f(y|x) . (1.7)

Use the normalization condition

1 =

∫ ∞
0

f(x|y) dx = B
∫ ∞
0

f(y|x) dx (1.8)

to find the value of B and therefore the explicit form of f(x|y).

f) Supposing again that we’ve performed the experiment and found a result ŷ, calculate the
Bayesian upper limit xBayes+

UL associated with the posterior (1.7), defined by∫ xBayes+
UL

0

f(x|ŷ) dx = α (1.9)

2 Marginalization and the Inverse Fisher Matrix

Consider two variables X1 and X2 whose joint pdf is a Gaussian with zero mean:

f(x) =

√
detF

2π
exp

[
−1

2
xT Fx

]
=

√
F11F22 − F 2

12

2π
exp

[
−F11

2
(x1)

2 − F12x1x2 −
F22

2
(x2)

2

]
(2.1)

where F is some symmetric, positive definite matrix.

a) Show that F is indeed the Fisher matrix.

b) Marginalize over x2 and show that the resulting pdf for x1 is a Gaussian whose variance is
the 1, 1 component of the inverse Fisher matrix F−1:

fX1(x1) =

∫ ∞
−∞

f(x1, x2) dx2 =
1√

2π (F−1)11
exp

(
− x21

2(F−1)11

)
(2.2)
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3 Least Squares and Chi-Squared

Consider measurements {yi} taken at times {ti} = {−1, 0, 1, 2}. We wish to fit these measurements
with a straight-line model with predicted expectation values µi = λ1 + λ2ti. The model predicts
measurments which differ from µi by uncorrelated Gaussian errors with standard deviations {σi} =
{
√

2, 1,
√

2,
√

3}.

a) Find the matrix A describing the linear relationship µ = Aλ, i.e.,
µ1

µ2

µ3

µ4

 = A

(
λ1
λ2

)
(3.1)

b) Since the errors are uncorrelated, the standard deviations are described by a matrix

σ =


σ1 0 0 0
0 σ2 0 0
0 0 σ3 0
0 0 0 σ4

 . (3.2)

Construct the matrix ATσ−2A and find its inverse
[
ATσ−2A

]−1
. (Since it is a 2× 2 matrix,

you should actually be able to invert it by hand.)

c) In class we showed that if the measured values are y, the maximum likelihood estimates of

the parameters will be λ̂(y) =
[
ATσ−2A

]−1
ATσ−2y. Work out the elements of the matrix

appearing for this problem in

(
λ̂1
λ̂2

)
=
[
ATσ−2A

]−1
ATσ−2


y1
y2
y3
y4

 (3.3)

d) Suppose we measure {yi} = {1.07241020, 0.40438919, 2.89906726, 8.98526374}. Calculate, to
three significant figures,

i) The best-fit parameters λ̂1 and λ̂2

ii) The χ2 value relating the data to the best-fit model,

χ2 = (y −Aλ̂)Tσ−2(y −Aλ̂) (3.4)

iii) The p value, i.e., probability that data generated according to the model would have a
χ2 equal to or higher than the one observed.
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