1 Upper Limits

Consider an experiment designed to measure an unknown physical quantity x, which returns a value y whose pdf is defined by the likelihood function

$$f(y|x) = \frac{e^{-(y-x)^2/2\sigma^2}}{\sigma \sqrt{2\pi}} \, \sigma \sqrt{2\pi} (1.1)$$

a) Suppose the experiment has been performed and the result \hat{y} has been found. Calculate the frequentist upper limit x_{UL}^{freq} at confidence level α, defined by

$$\int_{\hat{y}}^{\infty} f(y|x_{UL}^{freq}) \, dy = \alpha \, . \quad (1.2)$$

You should be able to write this with the help of the inverse complementary error function $\text{erfc}^{-1}(\xi)$. Note that $\text{erfc}^{-1}(\xi)$ is positive if $0 < \xi < 1$ and negative if $1 < \xi < 2$, and that $\text{erfc}^{-1}(2-\xi) = -\text{erfc}^{-1}(\xi)$

b) Consider a Bayesian analysis with a uniform prior on x, so that by Bayes’s theorem, the posterior is

$$f(x|y) = \frac{f(x)}{f(y)} f(y|x) = \mathcal{A} f(y|x) \, . \quad (1.3)$$

Using the explicit form of the likelihood (1.1) and the normalization requirement

$$\int_{-\infty}^{\infty} f(x|y) \, dx = 1 \quad (1.4)$$

find the value of \mathcal{A} and therefore the explicit form of the posterior $f(x|y)$.

c) Supposing again that we’ve performed the experiment and found a result \hat{y}, find the Bayesian upper limit x_{UL}^{Bayes} at confidence level α, defined by

$$\int_{-\infty}^{x_{UL}^{Bayes}} f(x|\hat{y}) \, dx = \alpha \quad (1.5)$$
d) For the case where \(\alpha = 0.9 \), write \(x_{\text{UL}}^{\text{freq}} \) and \(x_{\text{UL}}^{\text{Bayes}} \) explicitly in terms of \(\hat{y} \) and \(\sigma \), with any constants evaluated to three significant figures. (You’ll need to refer to the explicit value of \(\text{erfc}^{-1}(\xi) \) for a particular \(\xi \); in matplotlib you can get access to the inverse complementary error function via \texttt{from scipy.special import erfcinv}.)

e) Suppose now that \(x \) is physically constrained to be positive and let the prior be uniform for positive \(x \), so that the posterior can be written in terms of the Heaviside step function

\[
\Theta(x) = \begin{cases}
0 & x < 0 \\
1 & x > 0
\end{cases}
\]

(1.6)

as

\[
f(x|y) = \frac{f(x)}{f(y)} f(y|x) = \mathcal{B} \Theta(x) f(y|x).
\]

(1.7)

Use the normalization condition

\[
1 = \int_{0}^{\infty} f(x|y) \, dx = \mathcal{B} \int_{0}^{\infty} f(y|x) \, dx
\]

(1.8)

to find the value of \(\mathcal{B} \) and therefore the explicit form of \(f(x|y) \).

f) Supposing again that we’ve performed the experiment and found a result \(\hat{y} \), calculate the Bayesian upper limit \(x_{\text{UL}}^{\text{Bayes}+} \) associated with the posterior (1.7), defined by

\[
\int_{0}^{x_{\text{UL}}^{\text{Bayes}+}} f(x|\hat{y}) \, dx = \alpha
\]

(1.9)

2 Marginalization and the Inverse Fisher Matrix

Consider two variables \(X_1 \) and \(X_2 \) whose joint pdf is a Gaussian with zero mean:

\[
f(x) = \frac{\sqrt{\det F}}{2\pi} \exp \left[-\frac{1}{2} x^T F x \right] = \frac{\sqrt{F_{11}F_{22} - F_{12}^2}}{2\pi} \exp \left[-\frac{1}{2} \frac{F_{11}}{2} (x_1)^2 - F_{12} x_1 x_2 - \frac{F_{22}}{2} (x_2)^2 \right]
\]

(2.1)

where \(F \) is some symmetric, positive definite matrix.

a) Show that \(F \) is indeed the Fisher matrix.

b) Marginalize over \(x_2 \) and show that the resulting pdf for \(x_1 \) is a Gaussian whose variance is the \(1,1 \) component of the inverse Fisher matrix \(F^{-1} \):

\[
f_{X_1}(x_1) = \int_{-\infty}^{\infty} f(x_1, x_2) \, dx_2 = \frac{1}{\sqrt{2\pi (F^{-1})_{11}}} \exp \left(-\frac{x_1^2}{2(F^{-1})_{11}} \right)
\]

(2.2)
Consider measurements \(\{y_i\} \) taken at times \(\{t_i\} = \{-1, 0, 1, 2\} \). We wish to fit these measurements with a straight-line model with predicted expectation values \(\mu_i = \lambda_1 + \lambda_2 t_i \). The model predicts measurements which differ from \(\mu_i \) by uncorrelated Gaussian errors with standard deviations \(\{\sigma_i\} = \{\sqrt{2}, 1, \sqrt{2}, \sqrt{3}\} \).

a) Find the matrix \(A \) describing the linear relationship \(\mu = A\lambda \), i.e.,

\[
\begin{pmatrix}
\mu_1 \\
\mu_2 \\
\mu_3 \\
\mu_4
\end{pmatrix} = A \begin{pmatrix}
\lambda_1 \\
\lambda_2
\end{pmatrix}
\]

b) Since the errors are uncorrelated, the standard deviations are described by a matrix

\[
\sigma = \begin{pmatrix}
\sigma_1 & 0 & 0 & 0 \\
0 & \sigma_2 & 0 & 0 \\
0 & 0 & \sigma_3 & 0 \\
0 & 0 & 0 & \sigma_4
\end{pmatrix}
\]

Construct the matrix \(A^T \sigma^{-2} A \) and find its inverse \([A^T \sigma^{-2} A]^{-1} \). (Since it is a \(2 \times 2 \) matrix, you should actually be able to invert it by hand.)

c) In class we showed that if the measured values are \(y \), the maximum likelihood estimates of the parameters will be \(\hat{\lambda}(y) = [A^T \sigma^{-2} A]^{-1} A^T \sigma^{-2} y \). Work out the elements of the matrix appearing for this problem in

\[
\begin{pmatrix}
\hat{\lambda}_1 \\
\hat{\lambda}_2
\end{pmatrix} = [A^T \sigma^{-2} A]^{-1} A^T \sigma^{-2} \begin{pmatrix}
y_1 \\
y_2 \\
y_3 \\
y_4
\end{pmatrix}
\]

d) Suppose we measure \(\{y_i\} = \{1.07241020, 0.40438919, 2.89906726, 8.98526374\} \). Calculate, to three significant figures,

i) The best-fit parameters \(\hat{\lambda}_1 \) and \(\hat{\lambda}_2 \)

ii) The \(\chi^2 \) value relating the data to the best-fit model,

\[
\chi^2 = (y - A\hat{\lambda})^T \sigma^{-2} (y - A\hat{\lambda})
\]

iii) The \(p \) value, i.e., probability that data generated according to the model would have a \(\chi^2 \) equal to or higher than the one observed.