1060-710
 Mathematical and Statistical Methods for Astrophysics

Problem Set 3

Assigned 2010 September 21
Due 2010 September 28

Show your work on all problems! Be sure to give credit to any collaborators, or outside sources used in solving the problems.

1 Chebyshev Polynomials

a) Show that $y=T_{n}(x)$ is a solution to the Chebyshev differential equation

$$
\begin{equation*}
\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+n^{2} y=0 \tag{1.1}
\end{equation*}
$$

b) Show that the Chebyshev polynomials of the second kind satisfy the following continuous orthogonality relation:

$$
\int_{-1}^{1} U_{n}(x) U_{m}(x) \sqrt{1-x^{2}} d x= \begin{cases}0 & n \neq m \tag{1.2}\\ \pi / 2 & n=m\end{cases}
$$

c) One can define a generating function for a set of orthogonal functions as follows: We remark that

$$
\begin{equation*}
\frac{1-t x}{1-2 t x+t^{2}}=\sum_{n=0}^{\infty} T_{n}(x) t^{n}=T_{0}(x)+T_{1}(x) t+T_{2}(x) t^{2}+T_{3}(x) t^{3}+\ldots \tag{1.3}
\end{equation*}
$$

and expand the left hand side as a Taylor series. We then identify terms containing the same power of t on both sides. It might help to remember that $\frac{1}{1-x}=1+x+x^{2}+\ldots$ and thus if $f(x)$ is a polynomial, that $\frac{1}{1-f(x)}=1+f(x)+[f(x)]^{2}+[f(x)]^{3}+\ldots$. Here, we have a polynomial in t and x, but the same rules apply. Use this method to demonstrate that the generating function reproduces the proper values of $T_{0}(x), T_{1}(x), T_{2}(x)$, and $T_{3}(x)$.
d) Show explicitly that if we break down a quadratic $A x^{2}+B x+C$ defined on the domain $[-1,1]$ into T_{0}, T_{1}, and T_{2} modes using the discrete orthogonality relation at the $n=2$ Gauss-Lobatto points, that the resulting polynomial expansion is exactly equal to the
original polynomial, i.e., solve for c_{0}, c_{1}, c_{2} in terms of A, B, C using the discrete orthogonality relation, and then show that

$$
\begin{equation*}
c_{0} T_{0}(x)+c_{1} T_{1}(x)+c_{2} T_{2}(x)=A x^{2}+B x+C \tag{1.4}
\end{equation*}
$$

Bonus: Can you prove that if $f(x)$ is a polynomial of order k that the expansion into modes based on the $n=k$ Gauss-Lobatto points yields the exact polynomial we started with? Needless to say, there is a logical argument to demonstrate this, not a calculational one.

2 Multipoles

If we assume that the Earth is a uniform-density oblate spheroid with equatorial radius 6378 km and polar radius 6356 km , then what is its quadrupole moment

$$
\begin{equation*}
Q_{z z}=\iiint\left(3 z^{2}-r^{2}\right) \rho d^{3} V ? \tag{2.1}
\end{equation*}
$$

What is the approximate magnitude, neglecting the angular terms, of the quadrupole component of the gravitational potential at roughly the moon's distance, $400,000 \mathrm{~km}$, expressed as a fraction of the monopole contribution to the potential?

