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Tuesday, October 5, 2010

1 Fundamentals of Probability and Statistics

See Gregory, Chapters 1 and 2
In science, especially observational science, our state of knowledge is often incomplete.

While a lot of standard models are described in a deterministic way (given these conditions,
this will happen; given this piece of data, this is the underlying physical situation), there
are often cases where it is impractical or impossible to model every element of the problem
deterministically, or where we would like to make useful statements based on incomplete
information. These sorts of statements involve taking a logical proposition (I will roll a six on
this six-sided die, the mass of Jupiter lies in the following range, I will measure a temperature
within 0.1 degrees of the true temperature, etc), and rather than stating definitively true or
false, instead assigning a number between 0 and 1 to that proposition, which can be thought
of as our degree of certainty or belief in that statement, or the probability of it being true.
For statements regarding the outcome of repeatable experiments, the probability can also
be thought of as the expected fraction of trials (in the limit of infinite trials) in which the
statement is true.

Some examples of probabilistic statements:

1. “A card drawn from this deck has a 25% chance of being a spade”

2. “If the true luminosity of this star is L, there is a 67% chance that I will measure a
luminosity between L−∆L and L+ ∆L”

3. “If I measure the position of this electron, there is a 12.5% chance I will find it in this
octant”

4. “There is a 40% chance it will rain tomorrow”

5. “The Hubble constant is 90% likely to lie between 70 and 76 km/sec/Mpc”

There are subtle philosophical distinctions among the different kinds of probability, whether
they describe true quantum mechanical uncertainty, ignorance of the inner workings of a
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physical system, outcomes of hypothetical experiments, or best estimates about unknown
parameters. They all obey the same quantitative rules, however, and it’s often useful to take
the approach used to deal with temperature in elementary thermodynamics: we know more
or less what we mean by probability, and we won’t examine the definition too closely unless
we need to. I encourage you to read Chapter Two of Gregory for a more careful consideration
of probability as a quantitative measure of plausibility.

1.1 Bayesian and Frequentist Interpretations of Probability

A distinction can be made between two kinds of probability:

• In the frequentist approach, probabilities are assigned to the possible outcomes of
random processes. We describe a system according to certain models and parameters,
and then predict the outcome of experiments and measurements, assigning probabilities
to different alternatives. It’s called “frequentist” because if we prepare a large ensemble
of identical systems (with the same parameters), the frequency with which a given
measurement outcome is observed should be approximately equal to the probability
assigned to it.

• In the Bayesian approach, a probability is a number reflecting our degree of certainty in
a proposition. A typical situation of interest is one in which we’ve done a measurement
and observed a specific outcome, and use that information to assign probabilities to
e.g., different parameter values. This approach has been considered philosophically
problematic, because the parameters of a system have specific values, even if those are
unknown. However, it is closer to what one actually does as an observational scientist.

Note that these two approaches are the probabilistic analogues of two procedures that
are used in deterministic situations:

• Deductive reasoning says that if certain models and parameter values hold, a system
will behave in a specific way. E.g., if I know the masses and initial conditions in a
planetary system, I can predict the trajectories.

• Inductive reasoning1 uses measurements, e.g., the trajectory of a system, to determine
the underlying fundamental parameter values.

When things are deterministic, you can use observations to infer parameter values with abso-
lute certainty, or use models and parameters to predict evolution exactly. The difference in a
probabilistic situation is that, instead of a statement about parameter values or trajectories
being true (probability=1) or false (probability=0), it is assigned a “probability” between 0
and 1.

1.2 Rules of Probability

Whatever the interpretation of our “probabilities”, they are numbers assigned to logical
propositions. Logical propositions behave like sets, and you can think of them as being
partitions of the set of all possible arbitrarily-detailed “outcomes”. We formally refer to

1This is not quite the standard definition of inductive reasoning, but it’s useful to give it a name.
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propositions with letters like A and B, so that P (A) is the probability that A is true, P (B)
is the probability that B is true, etc.2

You can combine logical propositions with the same sorts of operations that are used for
combining sets:

• Negation. A is true if A is false, and vice-versa. In words, we can think of A as “not A”.
(Other notations include A′ and ¬A.)

• Intersection. A,B is true if A and B are both true. In words, this is “A and B”.
(Other notations include A ∩B.) The advantage of the comma is that P (A,B) is the
probability that both A and B are true.

• Union A + B is true if either A or B (or both) is true. In words, this is “A or B”.
(Other notations include A ∪ B.) Note the unfortunate aspect of Gregory’s notation
that + is to be read as “or” rather than “and”.

Another important quantity is the conditional probability P (A|B), the probability that A
is true if B is true, often referred to as the probability of A given B. It is defined as

P (A|B) =
P (A,B)

P (B)
(1.1)

The basic rules of probability, which sort of follow from common sense, are

• P (A) +P (A) = 1; A and A are exhaustive, mutually exclusive alternatives, i.e., either
A or A is true, but not both, so the probability is 100% that either one or the other is
true.

• P (A,B) = P (A|B)P (B) = P (B)P (B|A); again, this is sort of self-apparent. If B is
true, for which the odds are P (B), then the odds of A also being true are P (A|B).
Note that if these are independent propositions, i.e., P (A|B) = P (A|B) = P (A), this
means P (A,B) = P (A)P (B).

• P (A+B) = P (A) + P (B)− P (A,B)

Identities like this are easier to see with so-called truth tables, where you make a list of all
of the possible combinations of truth and falsehood for different propositions:

A B A,B A,B A,B A,B A+B
T T T F F F T
T F F T F F T
F T F F T F T
F F F F F T F

You can see that

P (A) = P (A,B) + P (A,B) (1.2a)

P (B) = P (A,B) + P (A,B) (1.2b)

P (A+B) = P (A,B) + P (A,B) + P (A,B) , (1.2c)

2I will, at least in this section, use a capital P to refer to the probability of a proposition, which is slightly
different from Gregory’s convention of using a lowercase p.
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from which P (A+B) = P (A) + P (B)− P (A,B) follows by simple algebra.
Alternatively, we can illustrate (1.2) using Venn diagrams:

The alternative A+B is made up of the disjoint alternatives A,B, A,B, and A,B, i.e.,

A+B = A,B + A,B + A,B (1.3)

so the probability of A+B is the sum of those three probabilities.

1.3 Bayes’s Theorem

Because the intersection operation is symmetric (i.e., A,B is the same as B,A), we can write
P (A,B) two different ways, in terms of two different conditional probabilities:

P (B|A)P (A) = P (A,B) = P (A|B)P (B) (1.4)
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If we divide through by A we find

P (B|A) =
P (A|B)P (B)

P (A)
(1.5)

this seemingly trivial result is known as Bayes’s Theorem, and has remarkably deep con-
sequences. It turns out that we often would like to know one conditional probability and
would like to know the opposite one. Suppose we have a hypothesis H which may be either
true or false, and we have done an experiment which returned a result in a particular range,
which we write as D for “data”. We can model the experiment and write the likelihood
function P (D|H), i.e., the probability that the experiment would turn out a certain way if
our hypothesis were true. But the question we really want to answer as scientists is this:
given that we observed the data D, what is the likelihood that our hypothesis H is true?
I.e., what is P (H|D). Well, Bayes’s theorem tells us that

P (H|D) =
P (D|H)P (H)

P (D)
(1.6)

or, written more descriptively.

P (hypothesis|data) =
P (data|hypothesis)P (hypothesis)

P (data)
. (1.7)

Now, of course, the tricky part is assigning a value to P (H), the prior probability of our
hypothesis being true, without the knowledge gained from our observation. P (H|D) is called
the posterior probability of the hypothesis being true, given the additional information about
the outcome D of the observation. We also have to work out the term in the denominator,
P (D), the overall probability of making the observation we did, whether or not the hypothesis
is true. But this is straightforward, since

P (D) = P (D,H) + P (D,H) = P (D|H)P (H) + P (D,H)P (H) (1.8)

So if we have the experiment modelled so that we know P (D|H) and P (D|H), and we know
the prior P (H), we can calculate P (H) = 1− P (H), and the denominator is no problem.

1.3.1 Example: Disease Testing

The classic example application of Bayes’s theorem is a test for a disease. Suppose that
one one-thousandth of the population has a disease. There is a test that can detect the
disease, but it has a 2% false positive rate (on average one out of fifty healthy people will
test positive) and as 1% false negative rate (on average one out of one hundred sick people
will test negative). The question we ultimately want to answer is: if someone gets a positive
test result, what is the probability that they actually have the disease. Note, it is not 98%!

The statement of the problem tells us the following probabilities for a randomly chosen
individual:

P (sick) = 0.001 (1.9)

P (pos|healthy) = 0.02 (1.10)

P (neg|sick) = 0.01 (1.11)
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and Bayes’s theorem lets us construct the probability we want:

P (sick|pos) =
P (pos|sick)P (sick)

P (pos)
(1.12)

The factor P (pos|sick) in the denominator, the probability that a sick person will test posi-
tive, is

P (pos|sick) = 1− P (neg|sick) = 0.99 (1.13)

(Note that it is NOT 1 − P (pos|healthy).) The denominator is the overall probability of
getting a positive test result, either because you’re sick and get an accurate test result, or
because you’re healthy and get a false positive. This is

P (pos) = P (pos|sick)P (sick) + P (pos|healthy)P (healthy) = (0.99)(0.001) + (0.02)(0.999)
(1.14)

so that

P (sick|pos) =
(0.99)(0.001)

(0.99)(0.001) + (0.02)(0.999)
=

.00099

.00099 + .01998
=

0.0099

0.02097
≈ 0.04721

(1.15)
So only about 4.7% of people who test positive have the disease. It’s a lot more than one in
a thousand, but a lot less than 98% or 99%.

Approach Considering a Hypothetical Population Some of the arguments in this
section are adapted from
http://yudkowsky.net/rational/bayes

which gives a nice explanation of Bayes’s theorem.
The standard treatment of Bayes’s Theorem and the Law of Total Probability can be

sort of abstract, so it’s useful to keep track of what’s going on by considering a hypothetical
population which tracks the various probabilities. So, assume the probabilities arise from
a population of 100,000 individuals. Of those, one one-one-thousandth, or 100, have the
disease. The other 99,900 do not. The 2% false positive rate means that of the 99,900
healthy individuals, 2% of them, or 1,998, will test positive. The other 97,902 will test
negative. The 1% false negative rate means that of the 100 sick individuals, one will test
negative and the other 99 will test positive. So let’s collect this into a table:

Positive Negative Total

Sick 99 1 100
Healthy 1,998 97,902 99,900

Total 2,097 97,903 100,000

(As a reminder, if we choose a sample of 100,000 individuals out of a larger population, we
won’t expect to get exactly this number of results, but the 100,000-member population is a
useful conceptual construct.)

Translating from numbers in this hypothetical population, we can confirm that it captures
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the input information:

P (sick) =
100

100, 000
= .001 (1.16a)

P (positive|healthy) =
1, 998

99, 900
= .02 (1.16b)

P (negative|sick) =
1

100
= .01 (1.16c)

But now we can also calculate what we want, the conditional probability of being sick given
a positive result. That is the fraction of the total number of individuals with positive test
results that are in the “sick and positive” category:

P (sick|positive) =
99

2, 097
≈ .04721 (1.17)

or about 4.7%.

1.4 Probability Distributions

See Gregory, Chapters 5

1.4.1 Discrete Random Variables and Probability Mass Functions

We now return to the concept of a random variable. For simplicity, we look first at a discrete
random variable X. If x is a specific value which that variable could take, the statement
X = x is a logical proposition which can be assigned a probability P (X = x). The probability
distribution or probability mass function (pmf)

pX(x) = P (X = x) (1.18)

gives us all the information we need about the random variable X. We will often write this
as simply p(x) if the random variable in question is clear from the context.

Since there is a complete set of mutually exclusive alternatives in which X takes on each
of its possible values, the pmf p(x) obeys the normalization condition∑

x

p(x) =
∑
x

P (X = x) = 1 . (1.19)

We can use the pmf to define the expectation value (which we used last week)

〈X〉 =
∑
x

x p(x) (1.20)

or more generally for some function g(),

〈g(X)〉 =
∑
x

g(x) p(x) (1.21)

If there are multiple random variables, say X and Y , we can define a joint probability
distribution

p(x, y) = P (X = x, Y = y) (1.22)
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which obeys or more generally for some function g(),

〈g(X,Y )〉 =
∑
x

∑
y

g(x, y) p(x, y) (1.23)

and ∑
x

∑
y

p(x, y) = 1 (1.24)

Sometimes we know the joint pmf p(x, y) but are not interested in the behavior of Y . In
that case, we can marginalize over the possible values of Y to obtain

pX(x) = P (X = x) = P (X = x, [Y = y1] + [Y = y2] + . . .) =
∑
y

P (X = x, Y = y)

=
∑
y

p(x, y)
(1.25)

A parameter over which we wish to marginalize is often called a nuisance parameter.

1.4.2 Continuous Random Variables and Probability Density Functions

In the case of a continuous random variable X, which can take on a range of values, the
probability of having any one value x is vanishingly small. The probability

P (x < X < x+ dx) (1.26)

that X lies in an interval of width dx should be proportional to the width of the interval, so
that

fX(x) = lim
dx→0

P (x < X < x+ dx)

dx
(1.27)

(also known as f(x)) is well-behaved. This is called the probability density function. It’s
sometimes useful to emphasize the density nature by writing f(x) as dP

dx
. This is to be

thought of as a density, not a derivative.
Since

f(x) dx ≈ P (x < X < x+ dx) (1.28)

we can translate the expressions involving discrete random variables into the corresponding
expressions involving continuous random variables by replacing sums with integrals. Specif-
ically

• Expectation value

〈g(X)〉 =

∫ ∞
−∞

g(x) p(x) dx (1.29)

• Normalization ∫ ∞
−∞

p(x) dx = 1 (1.30)

• Joint probability density

f(x, y) ≡ d2P

dx dy
= lim

dx,dy→0

P (x < X < x+ dx, y < Y < y + dy)

dx dy
(1.31)
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• Marginalization

fX(x) =

∫ ∞
−∞

f(x, y) dy (1.32)

Note that a probability density function has the appropriate units for a density. IfX has units
of energy, then f(x) = dP

dx
has units of one over energy, because probability is dimensionless.

Thursday, October 7, 2010

1.4.3 Change of Variables in Probability Distributions

Imagine you have a random variable X and another random variable Y = h(X) whose value
is given by acting on the random value of X with the deterministic function h(). How can
we determine the probability distribution for Y from the probability distribution for X?

Well, if they’re discrete random variables, things are pretty straightforward:

pY (h(x)) = P (Y = h(x)) = P (X = x) = pX(x) (1.33)

The pmf for Y has the same value as the pmf for X; you just have to evaluate it at the
appropriate value.

Things get more interesting, though, for continuous random variables, since the pdf is a
density, and not the probability of a specific value. You can look at section 1.4 of last year’s
notes for a more detailed treatment, but the appropriate transformation is suggested by the
notation:

dP

dy
=

dP
dx∣∣ dy
dx

∣∣ (1.34)

i.e.,

fY (h(x)) =
fX(x)

|h′(x)|
(1.35)

Why the absolute value? Because the probability density for X and Y is defined to be
positive, even if the transformation is such that Y decreases with increasing X. (Basically,
it’s a property of the way densities transform.)

You can also perform this sort of transformation on a joint probability density. Suppose
you have N random variables {Xi} from which you can determine the values of N random
variables {Yi}. Then the transformation uses the Jacobian determinant:

dNP

dNy
=

(
dNP

dNx

)/∣∣∣∣det

{
∂yi
∂xj

}∣∣∣∣ (1.36)

You can see this is the right thing to do because the Jacobian determinant is used to transform
the measure of a multiple integral:

dNy =

∣∣∣∣det

{
∂yi
∂xj

}∣∣∣∣ dNx (1.37)

and these probability densities are meant to be put under multiple integrals. Written in
more standard notation, if we define

x ≡ {xi}, y ≡ {yi} (1.38)
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and

Jyx(x) = det

{
∂yi
∂xj

}
(1.39)

then

fY(h(x)) =
fX(x)

|Jyx(x)|
(1.40)

1.5 Mathematical Interlude: the Error Function and the Gamma
Function

See Arfken & Weber, Chapter 8, especially Section 8.1
When we examine specific probability distributions next week, it’ll be useful to have at

our disposal a couple of definite integrals. The Gamma function is defined for α > 0 as

Γ(α) =

∫ ∞
0

tα−1e−tdt (1.41)

along with the incomplete Gamma functions

γ(α, x) =

∫ x

0

tα−1e−tdt (1.42a)

Γ(α, x) =

∫ ∞
x

tα−1e−tdt (1.42b)

Meanwhile, the error function and complementary error function are defined, respectively,
as

erf(a) =
2√
π

∫ a

0

e−x
2

dx (1.43a)

erfc(a) =
2√
π

∫ ∞
a

e−x
2

dx (1.43b)

You can use integration by parts3 to show that

Γ(α + 1) = αΓ(α) ; (1.44)

This, together with

Γ(1) =

∫ ∞
0

e−tdt = −e−t
∣∣∣∞
0

= −0 + 1 = 1 (1.45)

is enough to imply that for any non-negative integer n,

Γ(n+ 1) = n! (1.46)

In a sense, the integral form (1.41) is an extension of the factorial function to non-integer
values.

Also of some interest is

Γ(1/2) =

∫ ∞
0

e−t√
t
dt (1.47)

3or parametric differentiation; see last year’s math notes
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If we change variables from t to x =
√
t, so that dt = d(x2) = 2x dx, we see that we can also

write

Γ(1/2) = 2

∫ ∞
0

e−x
2

dx =

∫ ∞
−∞

e−x
2

dx =
√
π erf(∞) =

√
π erfc(0) . (1.48)

This is a very famous integral, which can be done by a cool trick, using conversion from
Cartesian to polar coördinates in the plane:(

Γ(1/2)
)2

=

(∫ ∞
−∞

e−x
2

dx

)(∫ ∞
−∞

e−y
2

dy

)
=

∫ ∞
−∞

∫ ∞
−∞

e−x
2−y2dx dy

=

∫ 2π

0

∫ ∞
0

e−r
2

r dr dφ = 2π

∫ ∞
0

e−u
du

2
= π

(1.49)

(where in the last step we’ve used the substitution u = r2; du = 2r dr) so

Γ(1/2) =
√
π (1.50)

and therefore
erf(∞) = erfc(0) = 1 (1.51)

This also means that
erfc(x) = 1− erf(x) (1.52)

Tuesday, October 12, 2010 – Midterm Exam on Mathematical Methods

Thursday, October 14, 2010

1.6 Some Specific Probability Distributions

See Gregory, Chapter 5
Before we delve into frequentist and Bayesian applications of probability distributions,

it’s useful to consider some specific random variables, the sort of physical situations to which
they’re relevant, and what their probability distributions look like.

1.6.1 The Binomial Distribution (discrete)

Consider a random event that has a probability of α of occurring in a given trial (e.g.,
detection of a simulated signal by an analysis pipeline, where α is the efficiency), so that

p(1|α, 1) = P (Y |α) = α (1.53a)

p(0|α, 1) = P (N |α) = 1− α (1.53b)

We define the random variable K as the total number of “yes” events we find in n trials.
We write p(k|α, n) is the probability mass function for this random variable. It’s the that if
we do n trials, we will find a “yes” result in k of them. For n trials, there are 2n possible
sequences of yes and no results. The probability of a particular sequence of k yes and n− k
no results is αk(1−α)n−k, and the number of such sequences for a given k and n is “n choose
k”,

(
n
k

)
= n!

k!(n−k)! , so the probability of exactly k “yes” results in n trials is

p(k|α, n) ≡ b(k|α, n) =

(
n

k

)
αk(1− α)n−k (1.54)
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You are currently exploring the consequences of this distribution in problem set 5. In par-
ticular, you show that the mean is

〈K〉 = nα (1.55)

and the variance is 〈
K2
〉
− 〈K〉2 = nα(1− α) (1.56)

1.6.2 The Poisson Distribution (discrete)

Consider a random process in which a discrete number of events will occur in some interval,
and that number has an expected value of λ. We usually think of this as some process with a
rate r in units of inverse time, and then λ is the rate times the observing time. For example,
popcorn kernels popping, clicks on a Geiger counter, or gamma-ray bursts observed. But
the interval could also be in space, e.g., we could be counting the number of cosmic rays
collected in a detector of a certain area, or the number of galaxies within a certain redshift
range found in a patch of sky of a given solid angle. The number K of events is a random
variable with a probability mass function

P (K = k) = p(k|λ) (1.57)

Such a process is called a Poisson process if we can sub-divide the interval into smaller
intervals (in time, space, sky position, or whatever) and then the number of events in each
sub-interval is an independent random variable with the same properties (but a smaller rate,
obviously).

We can calculate the pmf for the Poisson random variable K as follows: subdivide
the interval into some large number N of identically-sized sub-intervals. Each one has an
expected number of events of λ/N . If we choose N large enough, we can make this number
very very small. This means that in any one sub-interval, the odds are pretty good that
there will be no events. There is some small chance (of order λ/N) of seeing one event, and a
vanishingly small chance (of order [λ/N ]2) of seeing two or more events in this sub-interval:

p (0 |λ/N ) = 1− λ/N +O
(
[λ/N ]2

)
(1.58a)

p (1 |λ/N ) = λ/N +O
(
[λ/N ]2

)
(1.58b)

∞∑
k=2

p (k |λ/N ) = O
(
[λ/N ]2

)
(1.58c)

but this is basically a single trial which can have a yes (there is an event) or no (there is not
an event) result, and the total number K of events in the larger interval can be approximated
by a binomial random variable with N trials and a probability for success of λ/N for each
trial. That means

p(k|λ) = lim
N→∞

b(k|λ/N,N) = lim
N→∞

N !

(N − k)!k!

(
λ

N

)k (
1− λ

N

)N−k
=

(λ)k

k!
lim
N→∞

(
1− λ

N

)N
N !

(N − k)!
(N − λ)−k

(1.59)
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Now,

N !

(N − k)!
= N(N − 1) . . . (N − k + 1) =

k−1∏
`=0

(N − `) (1.60)

and of course

(N − λ)−k =
k−1∏
`=0

1

N − λ
(1.61)

so
N !

(N − k)!
(N − λ)−k =

k−1∏
`=0

N − `
N − λ

=
k−1∏
`=0

1− `/N
1− λ/N

(1.62)

but for finite k this is the product of a finite number of things, each of which goes to 1 as
N →∞, so

p(k|r, T ) =
(λ)k

k!
lim
N→∞

(
1− λ

N

)N
=

(λ)k

k!
e−λ . (1.63)

This is the Poisson distribution. It’s easy to check that it’s normalized, i.e.,

∞∑
k=0

p(k|λ) = e−λ
∞∑
k=0

(λ)k

k!
= e−λeλ = 1 . (1.64)

Note that as a consistency check we can go back and verify our assumptions (1.58):

p(0|λ/N) = e−λ/N = 1− λ/N +O([λ/N ]2) (1.65a)

p(1|λ/N) =
λ

N
e−λ/N =

λ

N
+O([λ/N ]2) (1.65b)

∞∑
k=2

p(k|λ/N) = 1− p(0|λ/N)− p(1|λ/N) = O([λ/N ]2) (1.65c)

By considering the limiting form of the binomial distribution, we can find the mean and
variance of the Poisson distribution:

〈K〉 = λ (1.66a)〈
K2
〉
− 〈K〉2 = λ (1.66b)

1.6.3 The Exponential Distribution (continuous)

Let’s consider further a Poisson process. The Poisson distribution gives the pmf for the total
number of events in an interval, which is a discrete random variable. Now consider another
question. Suppose we are observing a Poisson process with an event rate r. Let’s assume the
intervals are in time, so that r has units of inverse time, and the number of events in a time
∆t will be a Poisson random variable with parameter r∆t. Now suppose we start watching
at a given time and see how long we have to wait for the next event. This waiting time T
will itself be a random variable, with a probability density function fT (t|r) which depends
on the rate r. Note that this is a continuous random variable. We can actually work out the
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pdf from our knowledge of the Poisson process. Consider the probability that T is longer
than some value t:

P (T > t) =

∫ ∞
t

fT (t′|r) dt′ (1.67)

This is the probability that in the interval of length t, beginning when we start watching,
there are no events. But we know how to write the probability that there are no events from
a Poisson process in an interval of a given length. It is the probability that the corresponding
Poisson random variable (which has parameter rt) will take on the value 0:

P (K = 0) = p(0|rt) =
(rt)0

0!
e−rt = e−rt (1.68)

Equating the two expressions for this probability gives∫ ∞
t

fT (t′|r) dt′ = e−rt (1.69)

We can differentiate both sides with respect to t (not t′) and find

− fT (t|r) = −r e−rt (1.70)

which gives us the pdf for T , the exponential distribution:

f(t|r) = r e−rt t ≥ 0 (1.71)

It’s straightforward to show that f(t|r) is normalized, and that the mean and variance are

〈T 〉 =
1

r
(1.72a)〈

T 2
〉
− 〈T 〉2 =

1

r2
(1.72b)

The pdf looks like this:
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Note that this derivation made use of an integral of the pdf. For a general continuous
random variable, we define the cumulative distribution function

FX(x) := P (X ≤ x) =

∫ x

−∞
fX(x′) dx′ (1.73)

The derivative of the cdf is the pdf:

dFX
dx

(x) = fX(x) (1.74)

1.6.4 The Gamma Distribution (continuous)

The plot of the exponential distribution above has the same shape regardless of the value of
the parameter r; changing its value just changes the scales of the axes. It is, however, one
member of a family of distributions known as the Gamma distribution, with pdf

f(x|α, β) =
βα

Γ(α)
xα−1 e−βx x ≥ 0 (1.75)

(Gregory uses the other parametrization, defining θ = 1/β.) Here’s the shape of the pdf for
different choices of α.

It’s a straightforward exercise to show that if X is a gamma-distributed random variable
with parameters α and β then the mean is

〈X〉 =
α

β
(1.76)

and the variance is 〈
X2
〉
− 〈X〉2 =

α

β2
(1.77)

An exponential distribution is a special case of the Gamma distribution with α = 0 and
β = r.
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1.6.5 The Gaussian (aka Normal) Distribution (continuous)

If we consider the pmfs for the binomial distribution in the case where the number of trials
n is large:4

> ipython -pylab

from scipy.special import *

from scipy import comb # this gives the binomial coefficient

n = 200

alpha = 0.4

k = arange(n+1)

mu = n*alpha

sigma = sqrt(mu*(1-alpha))

kcont = linspace(mu-4*sigma,mu+4*sigma,1000)

pmf = comb(n,k) * alpha**k * (1-alpha)**(n-k)

pgauss = exp(-0.5*((kcont-mu)/sigma)**2)/(sigma*sqrt(2.0*pi))

stem(k,pmf,linefmt='k-',markerfmt='k.',basefmt='')

plot(k,pmf,'k.',label='binomial')

plot(kcont,pgauss,'b-',label='gaussian approx')

legend()

xlabel(r'$k$')

ylabel(r'$b(k|%d,%.1f)$' % (n,alpha))

xlim([mu-3.5*sigma,mu+3.5*sigma])

grid(True)

savefig('binomgauss.eps',bbox_inches='tight')
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k

0.00

0.01
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b(
k
|20

0
,0

.4
)

binomial
gaussian approx

4actually, we need nα and n(1− α) both to be large
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or the Poisson distribution where the expected number of events λ is large:5

> ipython -pylab

from scipy.special import *

lam = 123.4

mu = lam

sigma = sqrt(lam)

k = arange(floor(mu-4*sigma),ceil(mu+4*sigma)+1)

kcont = linspace(mu-4*sigma,mu+4*sigma,1000)

pmfln = k * log(lam) - lam - gammaln(k+1)

pmf = exp(pmfln)

pgauss = exp(-0.5*((kcont-mu)/sigma)**2)/(sigma*sqrt(2.0*pi))

figure()

stem(k,pmf,linefmt='k-',markerfmt='k.',basefmt='')

plot(k,pmf,'k.',label='poisson')

plot(kcont,pgauss,'b-',label='gaussian approx')

legend()

xlabel(r'$k$')

ylabel(r'$p(k|\lambda=%.1f)$' % (lam))

xlim([mu-3.5*sigma,mu+3.5*sigma])

grid(True)

savefig('poissgauss.eps',bbox_inches='tight')
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.4
)

poisson
gaussian approx

or the Gamma distribution where the parameter α is large

5We calculate the natural log of the pmf first because terms like λk and e−λ can separately overflow or
underflow when k and λ are large.
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> ipython -pylab

from scipy.special import *

alpha = 234.5

mu = alpha

sigma = sqrt(alpha)

betax = linspace(floor(mu-4*sigma),ceil(mu+4*sigma),1000)

pdfln = (alpha-1) * log(betax) - betax - gammaln(alpha)

pdf = exp(pdfln)

pgauss = exp(-0.5*((betax-mu)/sigma)**2)/(sigma*sqrt(2.0*pi))

figure()

plot(betax,pdf,'k-',label='gamma')

plot(betax,pgauss,'b--',label='gaussian approx')

legend()

xlabel(r'$\beta x$')

ylabel(r'$\beta^{-1}\,p(x|\alpha=%.1f,\beta)$' % (alpha))

xlim([mu-3.5*sigma,mu+3.5*sigma])

grid(True)

savefig('gammagauss.eps',bbox_inches='tight')
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they all have a very similar shape, which approximates the shape of the Gaussian distribution:
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The pdf for this distribution is

f(x|µ, σ) =
1

σ
√

2π
e−(x−µ)

2/(2σ2) (1.78)

In the coming weeks, we will go into the reasons for this, which include

• Taylor expansion of the log of the pdf ln f(x) about its maximum; the quadratic
expansion of ln f(x) leads to a Gaussian form for f(x).

• The Central Limit Theorem, which states that the sum of a large number of indepen-
dent and identically distributed random variables will always be approximated by a
Gaussian.

The integrals we calculated last week can be used to show that (1.78) is normalized, and
that the mean is µ and the variance is σ2.

Given a Gaussian random variable X we can always define a related variable

Z =
X − µ
σ

(1.79)

which follows the standard normal distribution:

fZ(z) =
1√
2π

e−z
2/2 (1.80)

Note that the cdf is

FZ(z) = P (Z < z) =
1√
2π

∫ z

−∞
e−ζ

2/2 dζ =
1

2
+

1√
2π

∫ z/
√
2

0

e−ζ
2/2 dζ

=
1

2
+

1√
π

∫ z/
√
2

0

e−t
2

dt =
1

2
+

1

2
erf

(
z√
2

) (1.81)
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and the cdf of the original Gaussian random variable is

FX(x) = P (X < x) = P

(
Z <

x− µ
σ

)
= FZ

(
x− µ
σ

)
=

1

2
+

1

2
erf

(
x− µ
σ
√

2

)
(1.82)

which looks like this:

1.6.6 The Log-Normal Distribution (continuous)

A distribution closely related to the Gaussian distribution is the log-normal distribution. A
log-normally distributed random variable is just one whose logarithm is normally distributed.
I.e., if Y is log-normally distributed with parameters µ and σ, then X = lnY is Gaussian
with mean µ and variance σ2. (Note that µ and σ2 are not the mean and variance of Y .)

We can work out the pdf by a change of variables:

fY (y) =
dP

dy
=
dx

dy

dP

dx
=

1

y
fX(ln y) =

1

σ
√

2π

e−(ln y−µ)
2/(2σ2)

y
(1.83)

1.6.7 The Chi-Square Distribution (continuous)

A chi-square (χ2) random variable with ν degrees of freedom is just the sum of the squares
of ν independent standard normal random variables:

X =
ν∑
k=1

Zk
2 (1.84)

We can deduce the form of the pdf by starting with the joint pdf for the ν independent
standard normal random variables:

fZ({zk}) = (2π)ν/2 exp

(
−1

2

ν∑
k=1

z2k

)
=
dνP

dνz
(1.85)
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Now, let’s change variables to ν-dimensional spherical coördinates {r, φ1, . . . , φν−1}. We can
get Jacobian of this transformation from

dνz = rν−1 dr dν−1Ω = rν−1
dν−1Ω

dν−1φ
dr dν−1φ (1.86)

so that

fR,Φ(r, φ1, . . . , φν−1) = rν−1
dν−1Ω

dν−1φ
(2π)ν/2 exp

(
−r2/2

)
(1.87)

The geometrical factor6

dν−1Ω

dν−1φ
(1.88)

will depend on the angles {φ1, . . . , φν−1}, but we don’t care about its exact form, just that
it does not depend on r. This is because we are only interested in the PDF for X = R2, and
can marginalize over all of the angular coördinates to get

fR(r) = rν−1e−r
2/2(2π)ν/2

∫
· · ·
∫
dν−1Ω

dν−1φ
dν−1φ ∝ rν−1e−r

2/2 (1.89)

We would need to evaluate the angular integral to get the proportionality constant, but we’ll
get that by requiring the pdf to be normalized, in a moment.

To get the PDF for the chi-square random variable X = R2 we note

fX(x) =
dP

dx
=
dx

dr

dP

dr
=

1

2
√
x
fR(
√
x) ∝ x−1/2x(ν−1)/2e−x/2 = x

ν
2
−1 e−x/2 (1.90)

If we compare this to (1.75) we see that X follows a Gamma distribution with α = ν/2 and
β = 1/2, which allows us to write down the pdf including the normalization constant:

f(x|ν) =
1

2ν/2Γ(ν/2)
x
ν
2
−1 e−x/2 x ≥ 0 (1.91)

It also tells us that the mean is
〈X〉 = ν (1.92)

and the variance is 〈
X2
〉
− 〈X〉2 = 2ν (1.93)

An exponential distribution is a special case of the Gamma distribution with α = 0 and
β = r.

Tuesday, October 19, 2010

2 Parameter Estimation

Now that we’ve laid some of the ground rules for calculating probabilities for the outcome
of an observation given some parameter values, and for turning that likelihood function, if
desired, into a posterior probability for one or more parameters, let’s explore some methods
for using the results of observations to make statements about parameters and models.

6For ν = 3, it is sin θ so that d2Ω = sin θ dθ dφ.
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2.1 Upper Limits

The difference between the Bayesian and frequentist approaches is illustrated by the state-
ment

“Our experiment set an upper limit of xUL on the value of x at the 90% confidence level.”
That turns out to mean rather different things when made in a Bayesian and a frequentist

context.
For simplicity, assume that the output of the experiment is a single measurement, which

results in a number y. Our understanding of the underlying theory and the experimental
setup tells us the likelihood function f(y|x). Note that this is a density in y but not x. It
tells us that the probability that y will lie in a range of values given a specific value of x is

P (y1 < Y < y2|x) =

∫ y2

y1

f(y|x) dy . (2.1)

Now suppose we run the experiment and get the actual number ŷ. How would a Bayesian
and a frequentist calculate a 90% upper limit on x?

2.1.1 Bayesian Upper Limit

The Bayesian 90% upper limit statement means what you’d think it means: given the result
ŷ, you are 90% confident that the true value x is below xBayes

UL . We can write this in terms of
the posterior probability distribution f(x|y)

P (X < xBayes
UL |ŷ) =

∫ xBayes
UL

−∞
f(x|ŷ) dx = 90% (2.2)

Plotting the posterior pdf, xUL is defined such that 90% of the area under the posterior
f(x|ŷ) lies in the region x < xUL:

This is probably what you think of when you hear a 90% upper limit statement:
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“Given that the result of the measurement was ŷ, we estimate a 90% probability that
the true value of x is xUL or lower.”

Of course, it uses the posterior probability f(x|y) rather than the likelihood f(y|x), so
we have to use Bayes’s theorem to evalate it:

f(x|y) =
f(y|x) f(x)

f(y)
=

f(y|x) f(x)∫∞
−∞ f(y|x′) f(x′) dx′

, (2.3)

and that in turn means we need to know the prior f(x).

2.1.2 Frequentist Upper Limit

In the frequentist approach, we can’t estimate the probability that x < xUL, because we
don’t talk about probabilities for physical quantities to have particular values. (After all x
has some fixed value, even if we don’t know it.) The probabilities we can discuss are those
of the outcome of an experiment including some random measurement error. The definition
of the frequentist 90% upper limit is actually

P (Y > ŷ|xfreqUL ) =

∫ ∞
ŷ

f(y|xfreqUL ) dy = 90% (2.4)

or more accurately

P (Y > ŷ|x) =

∫ ∞
ŷ

f(y|x) dy > 90% if x > xfreqUL . (2.5)

That means that the upper limit xfreqUL is defined such that, if the actual value of x is right
at xfreqUL , 90% of the area under the likelihood function f(y|xfreqUL ) lies in the region y > ŷ, i.e.,
we would have expected a y value higher than the one we saw 90% of the time:
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The idea is that, while we can’t assign probabilities to different values of x, we can think
about how unlikely it would be to make a y measurement as low as ŷ if the true value of x
were large. For each possible value of x, we can find the range of y values which we’d expect
to find 90% of the time; those are shaded on this plot:

At any x, the y values that fall in the unshaded region would be expected only 10% of the
time. The range of x values (x > xfreqUL ) excluded at the 90% confidence level is those for
which the actual measured ŷ falls in the 10th percentile or lower among expected y values.
The statement in words is:

“If the true value of x were above the upper limit xfreqUL , we would expect to get our actual
result ŷ or lower in less than 10% of the experiments.”

It’s almost never stated that way, but that’s what “90% frequentist upper limit” means.

2.1.3 Consequences of Choice of Priors in Bayesian Analysis

Let’s return to the Bayesian interpretation of our experiment, and consider how the choice
of prior f(x) impacts the construction of the posterior

f(x|y) =
f(y|x) f(x)

f(y)
=

f(y|x) f(x)∫∞
−∞ f(y|x′) f(x′) dx′

. (2.6)

(Recall that x is the underlying physical parameter and y is the quantity returned by the
experiment.) Notice that since we typically focus on the x dependence, we can write

f(x|ŷ) =
f(ŷ|x) f(x)

f(ŷ)
∝ f(y|x) f(x) (2.7)

where the normalization 1/f(ŷ) is independent of x and can be set by requiring∫ ∞
−∞

f(x|ŷ) dx = 1 (2.8)
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so schematically,

(posterior) = (likelihood)× (prior)× (normalization) (2.9)

But the big question is what we use for f(x). It is supposed to reflect our prior knowledge,
but sometimes it can be dangerous to take that too literally. For example, suppose our prior
expectations have already pretty tightly constrained x compared to the sensitivity of the
experiment. Then we can get a scenario like this

where the posterior looks a lot like the prior. We’d conclude that our state of knowledge
after the experiment is basically what it was before, and was bound to be so regardless
of the outcome of the experiment. That might be true, but it’s not the most informative
description of the experimental results. It’s also the sort of thing which critics of Bayesian
statistics often suspect: letting our prior expectations be part of the analysis can make the
results conform to those expectations.

So sometimes you may choose to be as ignorant as possible about the prior. One seemingly
obvious way to assume we know nothing is to let any value of x be equally likely, and choose
the prior

f(x) = constant . (2.10)

There’s a formal problem, in that we should normalize f(x) so that∫ ∞
−∞

f(x) dx = 1 (2.11)

and you can’t do that if x is literally a constant for all x. There’s an easy workaround,
though. You can take

f(x) =

{
1

xmax
|x| < xmax

2

0 |x| > xmax

2

, (2.12)
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which is constant over some range of values of width xmax and then just choose xmax much
larger than any other relevant scale in the problem. If the likelihood is well-behaved, the
posterior will remain well-defined in the limit xmax →∞. In this case7

f(x|ŷ) =
f(ŷ|x) f(x)∫∞

−∞ f(ŷ|x′) f(x′) dx′
=
f(ŷ|x) Θ(xmax − 2 |x|)xmax

−1∫ xmax/2

−xmax/2
f(ŷ|x′)xmax

−1 dx′
xmax→∞−→ f(ŷ|x)∫∞

−∞ f(ŷ|x′) dx′

(2.13)
so the posterior is just a constant normalization factor times the likelihood, and the Bayesian
approach starts to look a lot like the Frequentist one.

There is another problem with the approach of choosing a uniform prior: the prior f(x)
and the posterior f(x|y) are both densities the physical quantity x. That means if we make
a coördinate change, the prior will not remain constant. For concreteness, suppose x is a
quantity which is physically constrained to be positive, so that the uniform prior is actually

f(x) =

{
1

xmax
0 < x < xmax

0 x > xmax

, (2.14)

which would lead to a posterior

f(x|ŷ) =
f(ŷ|x)∫∞

0
f(ŷ|x′) dx′

∝ f(ŷ|x) . (2.15)

We could also define ξ = lnx, which is allowed to range from −∞ to ∞ as x ranges from 0
to ∞. Well, since f(x) is a density in x, f(ξ) is not just f(x = eξ). Rather,

f(ξ) =
dP

dξ
=
dx

dξ

dP

dx
= eξf(x = eξ) (2.16)

So
If f(x) = constant then f(ξ) ∝ eξ (2.17)

and conversely

If f(ξ) = constant then f(x) ∝ 1

x
. (2.18)

On the other hand, the likelihood f(y|x) is not a density in x, so it is unchanged by a change
of coördinates:

f(y|ξ) = f(y|x = eξ) . (2.19)

So the main moral is that what it means to use a uniform prior depends on how you
parametrize the relevant physical quantities.

2.2 “Maximum Posterior” Parameter Estimation

2.2.1 Single-Parameter Case

Suppose we’ve done an experiment and, based on the data D collected (we’ve been calling
this ŷ, but we’d like to generalize beyond the case of a single number), the posterior pdf

7We use the Heavyside step function Θ(ξ), which is 1 when ξ > 0 and 0 when ξ < 0
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for some parameter x is f(x|D). How do we distill that result to an estimate of x and our
uncertainty of x? Well, we could use the expectation value to talk about a mean value

〈X〉D =

∫ ∞
−∞

x f(x|D) dx (2.20)

and a variance 〈
(X − 〈X〉D)2

〉
D

(2.21)

but that’s sometimes harder to calculate than it is to state in the abstract. In particular,
when we generalize to the case of many parameters, we can quickly end up with multi-
dimensional integrals that are computationally expensive to evaluate.

Another thing we could consider is which value of x is most likely given the results of the
experiment, i.e., the x which maximizes the posterior pdf. We can call this x̂, defined by

∀x : f(x̂|D) ≥ f(x|D) . (2.22)

This is often called the “maximum likelihood estimate”, although in this case we’re actually
maximizing the posterior rather than the likelihood. (There’s an equivalent frequentist
approach which works with the likelihood, and is equivalent to assuming a uniform prior in
x.) To define an uncertainty ∆x associated with this, we could do something like requiring
that x be so likely to fall in the interval x̂ −∆x < x < x̂ + ∆x according to the posterior.
But again, this would require integrating over the posterior, which we can’t always do. But
note that this would be an integral near the maximum of the posterior, which is motivation
for an approximation: expand the posterior about its maximum.

Now, it’s actually not such a good idea to expand f(x|D) itself about x = x̂ because we
know f(x|D) can’t ever be negative, and in fact we expect it to be close to zero if we go far
away from the maximum. Instead, what we want to do is expand its logarithm,

L(x) = ln f(x|D) . (2.23)

taking advantage of the fact that as f(x|D)→ 0, L(x)→ −∞. So we write the Taylor series
as

L(x) = L(x̂) + (x− x̂)L′(x̂) +
(x− x̂)2

2
L′′(x̂) + . . . (2.24)

Since x = x̂ is a maximum of f(x|D) and therefore of L(x), we know that L′(x̂) = 0 and
L′′(x̂) < 0, so to lowest non-trivial order

L(x) ≈ L(x̂)− (x− x̂)2

2
[−L′′(x̂)] (2.25)

and

f(x|D) ≈ f(x̂|D) exp

(
−(x− x̂)2

2[
√
−1/L′′(x̂)]2

)
, (2.26)

so the posterior is approximated near its maximum by a Gaussian of width
√
−1/L′′(x̂). If

it were actually equal to a Gaussian, the expectation value of x would be x̂ and the expected
variance of x would be −1/L′′(x̂). So

√
−1/L′′(x̂) is an estimate in the “one-sigma error”

associated with the estimate x̂.
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2.2.2 Multiple-Parameter Case

Now consider the case where the model has multiple parameters {xα}; writing the vector of
parameters as x, the expansion of the log-posterior about its maximum at x = x̂ is

ln f(x|D) = L(x) ≈ L(x̂)− 1

2

∑
α

∑
β

(
− ∂2L

∂xα∂xβ

)
x=x̂

(xα − x̂α)(xβ − x̂β) . (2.27)

If we define a matrix F with elements

Fαβ = − ∂2L

∂xα∂xβ
(2.28)

we can write this approximation to the posterior as

f(x|D) ≈ f(x̂|D) exp

(
−1

2
(x− x̂)T F (x− x̂)

)
(2.29)

The matrix F is called the Fisher information matrix, and its inverse provides a measure of
the variance and covariance of the {xα}:〈

(X− x̂) (X− x̂)T
〉
≈ F−1 (2.30)

(this would be exact if the posterior really were Gaussian).
Near the maximum, curves of constant posterior will be ellipsoids in the {xα} space. You

can see that by noting that since the Fisher matrix F is a real, symmetric matrix, it has a
full set of real eigenvalues {fα} with orthonormal eigenvectors {uα}, and we can write it as

F =
∑
α

uα fαu
T
α (2.31)

and so

f(x|D) ≈ f(x̂|D) exp

(
−
∑
α

fα
2

(ξα)2

)
(2.32)

where
ξα = uT

α(x− x̂) (2.33)

the equation ∑
α

fα
2

(ξα)2 = constant (2.34)

defines an ellipsoid in the {ξα} coördinates with axes proportional to 1/
√
fα, and the {ξα}

are just a different set of coördinates rotated relative to {xα − x̂α}. These error ellipses
mean that it’s important to use the diagonal elements of the inverse Fisher matrix for error
estimates rather than just taking one over the diagonal elements of the Fisher matrix itself.
I.e., the error estimate for xα is〈

(xα − x̂α)2
〉
≈ (F−1)αα 6=

1

Fαα
(2.35)
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Thursday, October 21, 2010

3 Hypothesis Testing

3.1 Chi-Squared Testing

Let’s turn now to another frequentist method, chi-squared testing. Chi-squared tests take
many forms, but they’re all in some way associated with goodness-of-fit, i.e., are the data
consistent with the model. Actually, what they have in common is that they all involve
constructing a statistic which, if the model is correct, obeys–exactly or approximately–a
chi-squared distribution. (See Section 1.6.7.) The further the data are from the model
prescription, the higher this chi-squared statistic will be, and we can use the cumulative
distribution function to say how unlikely it is that the model would lead to a χ2 that high.

3.1.1 Models Without Free Parameters

The simplest application is to test the validity of a single model. Suppose that we make n
measurements, and the model M predicts that those n random variables {Yi|i = 1, . . . , n},
will each be Gaussian distributed, with means {µi} and standard deviations {σi}. Then we
can construct random variables Zi = Yi−µi

σi
which should be normally distributed. The sum

of their squares is

X =
n∑
i=1

(Yi − µi)2

σ2
i

(3.1)

and its pdf is the pdf for a Gamma distribution with α = n/2 and β = 1/2, i.e.,

fX(x|M) =
1

2n/2Γ(n/2)
x
n
2
−1 e−x/2 (3.2)

If we perform the measurement and obtain a χ2 value of x̂, we can ask about the probability
that X is x̂ or higher, i.e., that we would get a χ2 at least that high from a random data set
generated by the model. This is

P (X ≥ x̂) =
1

2n/2Γ(n/2)

∫ ∞
x̂

x
n
2
−1 e−x/2 dx =

1

Γ(n/2)

∫ ∞
x̂/2

u
n
2
−1 e−u/2 du =

Γ(n/2, x̂/2)

Γ(n/2)
(3.3)

where we have performed a change of variables from x to u = x/2 to convert the inte-
gral into an upper incomplete Gamma function. P (X ≥ x̂) is called the “p-value” cor-
responding to the chi-squared value x̂. We can obtain this in SciPy with the help of
scipy.special.gammaincc:8

> ipython -pylab

from scipy.special import gammaincc

chisq = linspace(0,10,1000)

linestyles = ['k-','b--','r:','g-.']

figure()

for i in xrange(len(linestyles)):

8Note that the incomplete Gamma functions in scipy already have the factor of 1/Γ(α) included in them.
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ndof = i + 1

pval = gammaincc(0.5*ndof,0.5*chisq)

plot(chisq,pval,linestyles[i],label=(r'$n=%d$'%ndof))

legend()

xlabel(r'$\chi^2$')

ylabel(r'$p$ value')

savefig('chisqpval.eps',bbox_inches='tight')
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So for example if we fit 20 data points and obtain a χ2 of 31.2, the p-value is 5.3% which I
calculated from

> ipython

from scipy.special import gammaincc

ndof = 20

chisq = 31.2

pval = gammaincc(0.5*ndof,0.5*chisq)

resfile = open('notes_stats_pval.tex','w')

resfile.write('\\newcommand{\\chisq}{%.1f}\n' % chisq)

resfile.write('\\newcommand{\\pval}{%.1f\\%%}\n' % (100*pval))

resfile.close()

That means that there is only a 5.3% chance that such a high χ2 would be found from data
consistent with the model.

Since the mean of a chi-squared distribution with n degrees of freedom is n and its variance
is 2n, a useful quantity to look at is the χ2 per degree of freedom, which for moderate-sized
n should be 1±

√
2/n.
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Note that we can also represent this problem in matrix notation, defining column vectors

Y =


Y1
Y2
...
Yn

 ; y =


y1
y2
...
yn

 ; µ =


µ1

µ2
...
µn

 (3.4)

and a matrix

σ2 =


σ2
1 0 . . . 0

0 σ2
1 . . . 0

...
...

. . .
...

0 0 · · · σ2
n

 =
〈
(Y − µ) (Y − µT

〉
(3.5)

Then

fY(y|M) =
1√

det 2πσ2
exp

(
−1

2
(y − µ)Tσ−2(y − µ)

)
(3.6)

and we can define
Z = σ−1(Y − µ) (3.7)

which is a column vector of n independent random variables with joint pdf

fZ(z|M) =
1

(2π)n/2
exp

(
−1

2
zTz

)
(3.8)

and then the chi-squared statistic constructed from Y is

X = ZT Z = (Y − µ)Tσ−2(Y − µ) (3.9)

Note that nothing about this matrix construction actually required σ2 to be diagonal. (Off-
diagonal elements σij correspond to correlations between the Y ks.) As long as〈

(Y − µ) (Y − µ)T
〉

= σ2 , (3.10)

which is a real symmetric matrix, is positive definite, we can take both its inverse and its
square root.

3.1.2 Models With Free Parameters

Now consider the case where the model M has m parameters {λα|α = 1, . . . ,m}, and we
want to find the best possible “fit” for these parameters, and use any redundant information
to test the validity of the model. Given a set of parameters, represented as a column vector
λ, the likelihood function

fY(y|λ,M) =
1√

det 2πσ2
exp

(
−1

2
[y − µ(λ)]Tσ−2[y − µ(λ)]

)
(3.11)

Now, if m = n (i.e., there are as many parameters as data points), we can find a unique
“best fit” to the data by solving the n equations

yi = µi(λ) (MLE when m = n) (3.12)
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for the m unknowns {λα}. This will clearly maximize the likelihood function (3.11).
More generally, with the situation described by (3.11), in which the model predicts Y to

be µ(λ) plus a Gaussian error, the likelihood is maximized by minimizing the χ2

[Y − µ(λ)]Tσ−2[Y − µ(λ)] . (3.13)

This is also known as a least-squares fit, since in the case where the errors are uncorrelated,
it means finding the parameters which minimize the normalized squared deviation from the
model

n∑
i=1

[yi − µi(λ)]2

σ2
i

(3.14)

If λ̂(y) are the parameter values which accomplish this for a particular set of observations
y, the residual χ2 is [

y − µ
(
λ̂(y)

)]T
σ−2

[
y − µ

(
λ̂(y)

)]
(3.15)

If we model this whole procedure, the residual chi-squared for an experiment is a random
variable

Xred =
[
Y − µ

(
λ̂(Y)

)]T
σ−2

[
Y − µ

(
λ̂(Y)

)]
(3.16)

It is standard practice to assume this obeys a chi-squared distribution with n−m degrees of
freedom. Depending on the model, this may just be an approximation (just as the assumption
of Gaussian errors may be an approximation in a more general situation). We can show,
however, that it is exactly true when the modelled expectation value µ(λ) is a linear function
of the parameters. This is the case, for example, when the different observations occur at
values ti of some variable, and the model is a superposition of known functions of the ti with
unknown coëfficients:

µi =
∑
α

λαgα(ti) (example of superposition model) (3.17)

the functions {gα}(t) might be polynomials, or Fourier modes, or spherical harmonics, or
whatever.

So, let’s assume that the functional relationship µ(λ) is something linear

µ(λ) = Aλ (3.18)

then the χ2 is
(y −Aλ)Tσ−2 (y −Aλ) (3.19)

If we differentiate this with respect to each of the {λα} and set the result to zero, we get m
maximum likelihood equations which can be combined into a column vector

ATσ−2
[
y −Aλ̂(y)

]
= 0m×1 (3.20)

which means [
ATσ−2A

]
λ̂(y) = ATσ−2y (3.21)

Now, the matrix [
ATσ−2A

]
(3.22)

33



is an m×m symmetric matrix. For the maximum likelihood estimate to exist, it has to be
invertible. If it is, we have [

ATσ−2A
]−1 [

ATσ−2A
]

= 1m×m (3.23)

and the maximum likelihood estimate for the parameters is

λ̂(y) =
[
ATσ−2A

]−1
ATσ−2y (3.24)

and the corresponding expectation values for the data are

µ
(
λ̂(y)

)
= A

[
ATσ−2A

]−1
ATσ−2y (3.25)

Note that we may be tempted to simplify this with something involving the matrix inverse
of A, but that doesn’t exist because A is not a square matrix. What we can do, though, is
define the matrix

P = σ−1A
[
ATσ−2A

]−1
ATσ−1 (3.26)

so that
µ
(
λ̂(y)

)
= σPσ−1y (3.27)

In fact, since
Pσ−1A = σ−1A (3.28)

we see that for any λ,

Pσ−1µ(λ) = Pσ−1Aλ = σ−1Aλ = σ−1µ(λ) (3.29)

The matrix P is not only symmetric, but it’s a projection matrix, since

P P = σ−1A
[
ATσ−2A

]−1
ATσ−2A

[
ATσ−2A

]−1
ATσ−1

= σ−1A
[
ATσ−2A

]−1
ATσ−1 = P

(3.30)

This n× n matrix is a projector onto an m-dimensional subspace, since

tr P = tr
(
σ−1A

[
ATσ−2A

]−1
ATσ−1

)
= tr

(
ATσ−2A

[
ATσ−2A

]−1)
= tr 1m×m = m

(3.31)
That means that it has m eigenvectors with unit eigenvalue and n − m eigenvectors with
zero eigenvalue. Let {ui|i = 1, . . . ,m} be a set of m orthonormal eigenvectors with unit
eigenvalue and {ui|i = m + 1, . . . , n} be a set of n−m orthonormal eigenvectors with unit
eigenvalue, so that

P =
m∑
i=1

ui u
T
i (3.32)

and

1n×n −P =
n∑

i=m+1

ui u
T
i (3.33)

are projection operators onto the two orthogonal subspaces.
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Now, let λtrue be the column vector of true, unknown parameters. Then

Z = σ−1 [Y − µ(λtrue)] (3.34)

is a vector of n independent standard normal random variables. Since {ui|i = 1, . . . , n} is
an orthonormal basis, we can also construct independent standard normal random variables
{Zi|i = 1, . . . , n} where

Zi = uT
i Z = uT

i σ
−1 (Y − µ(λtrue)) (3.35)

If we take the sum of the squares of the last n−m of these random variables, that will obey
a chi-squared distribution with n−m degrees of freedom:

Xn−m =
n∑

i=m+1

[Zi]2 = [Y − µ(λtrue)]
Tσ−1

(
n∑

i=m+1

ui u
T
i

)
σ−1 [Y − µ(λtrue)]

= [Y − µ(λtrue)]
Tσ−1 (1n×n −P)σ−1 [Y − µ(λtrue)]

(3.36)

But by (3.29) and (3.27),

(1n×n −P)σ−1 [Y − µ(λtrue)] = (1n×n −P)σ−1Y = σ−1Y −Pσ−1Y

= σ−1
[
Y − µ

(
λ̂(Y)

)] (3.37)

so

Xn−m =
[
Y − µ

(
λ̂(Y)

)]T
σ−2

[
Y − µ

(
λ̂(Y)

)]
= Xred (3.38)

which means this quantity we’ve constructed, which is χ2-distributed with n−m degrees of
freedom (in the case where the modelled expectation values are linear in the parameters, as
described in (3.18)), is indeed the residual chi-squared defined in (3.16).

Tuesday, October 26, 2010

3.2 Odds Ratio and Bayes Factor

One of the problems about using a frequentist test like a chi-squared test to assess the validity
of a model is that you can always make the fit better by adding more parameters to the
model. In the extreme case, if you have as many model parameters as data points, you can
make the fit perfect. But clearly a model which is “overtuned” in this way is scientifically
unsatisfying.

Bayesian statistics offers a natural way to compare models, which automatically penalizes
models that use too many parameters to fine-tune themselves to match a data set. This is
known as the odds ratio.

Consider Bayes’s theorem in the context of a model M with parameters λ. Given an
observation y, we can construct the posterior pdf for the parameters λ as follows

f(λ|y,M) =
f(y|λ,M)f(λ|M)

f(y|M)
(3.39)

which is sometimes abbreviated as

(posterior) =
(likelihood)(prior)

(evidence)
(3.40)
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So far we’ve just treated the denominator as a normalization factor

f(y|M) =

∫
dλ f(y|λ,M)f(λ|M) (3.41)

but we will now see how it gets the name “evidence”. Note that it is the overall probability
to get the observed result y given the model M, marginalizing over the parameters λ.

Now, consider the case whereM is one of a number of possible models, and we’d like to
construct a posterior probability P (M|y) thatM is the correct model. Well, since we have
a way to calculate f(y|M), we can try using Bayes’s theorem:

P (M|y) =
f(y|M)P (M)

f(y)
(3.42)

The right-hand side has a couple of things that are harder to get a handle on: the prior
probability P (M) of M being the correct model, and the overall pdf f(y) which requires
somehow marginalizing over all possible models. The usual way around this is to consider
two competing modelsM1 andM2, and to calculate the ratio of their posteriors, known as
the odds ratio

O12 =
P (M1|y)

P (M2|y)
=
f(y|M1)P (M1)

f(y|M2)P (M2)
=

(
f(y|M1)

f(y|M2)

)(
P (M1)

P (M2)

)
=

(
P (M1)

P (M2)

)
B12 (3.43)

So the factor of f(y) has cancelled out, and the odds ratio O12 is the ratio of prior proba-
bilities for each model times something known as the Bayes factor

B12 =
f(y|M1)

f(y|M2)
(3.44)

which is the ratio of the “evidence” in each of the models. It represents how our relative
confidence in the two probabilities has changed with the measurement y. If each model has
some parameters, the Bayes factor can be written as

B12 =

∫
dλ1 f(y|λ1,M1) f(λ1|M1)∫
dλ2 f(y|λ2,M2) f(λ2|M2)

(3.45)

To see how the Bayes factor penalizes modes for over-tuning, consider a simple case where
there are two models: M0, which has no parameters and M1, which has a parameter λ. If
we measure data y, the Bayes factor comparing the two models is

B10 =

∫∞
−∞ dλ f(y|λ,M1) f(λ|M1)

f(y|M0)
(3.46)

To get a handle on what the marginalization of the parameter λ does, as compared with
the maximization done by the frequentist method, let’s make some simplifying assumptions.
First let’s assume the likelihood f(y|λ,M1), seen as a function of λ, can be approximated
as a Gaussian about the maximum likelihood value λ̂:

f(y|λ,M1) ≈ f(y|λ̂,M1) e
−(λ−λ̂)/2σ2

λ (3.47)
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We’ll also assume that this is sharply peaked compared to the prior f(λ|M1) and therefore
we can replace λ in the argument of the prior with λ̂, and∫ ∞

−∞
dλ f(y|λ,M1) f(λ|M1) ≈ f(y|λ̂,M1) f(λ̂|M1)

∫ ∞
−∞

dλ e−(λ−λ̂)/2σ
2
λ

= f(y|λ̂,M1) f(λ̂|M1)σλ
√

2π

(3.48)

We can then approximate the Bayes factor as

B10 =
f(y|λ̂,M1)

f(y|M0)

σλ
√

2π

[f(λ̂|M1)]−1
(3.49)

The first factor is the ratio of the likelihoods between the best-fit version of model M1 and
the parameter-free model M0. That’s basically the end of the story in frequentist model
comparison, and we can see that if M0 is included as a special case of M1, this ratio will
always be greater or equal to one, i.e., the tunable model will always be able to find a
higher likelihood than the model without that tunable parameter. But in Bayesian model
comparison, there is also the second factor:

σλ
√

2π

[f(λ̂|M1)]−1
“Occam factor” (3.50)

This is called the Occam factor because it implements Occam’s razor, the principle that, all
else being equal, simpler explanations will be favored over more complicated ones. Because
the prior f(λ|M1) is normalized, [f(λ̂|M1)]

−1 is a measure of the width of the prior, i.e.,
how much parameter space the tunable model has available to it. In particular, if the prior
is uniform over some range:

f(λ|M1) =

{
1

λmax−λmin
λmin < λ < λmax

0 otherwise
(3.51)

then the Occam factor becomes
σλ
√

2π

λmax − λmin

(3.52)

because we assumed the likelihood function was narrowly peaked compared to the prior,
the Occam factor is always less than one, and the tunable model must have a large enough
increase in likelihood over the simpler model in order to overcome this.
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Thursday, October 28, 2010

4 Sums of Random Variables

4.1 Mean and Variance

Consider a situation where there are two random variables X1 and X2, and we construct a
new random variable which is their sum,

T = X1 +X2 . (4.1)

If the expectation values of the random variables are

µ1 = 〈X1〉 (4.2a)

µ2 = 〈X2〉 (4.2b)

then the linearity of the expectation value operation means that the expectation value of
their sum is

µT = 〈T 〉 = 〈X1〉+ 〈X2〉 = µ1 + µ2 (4.3)

If the random variables ave standard deviations σ1 and σ2 and covariance Cov(X1, X2), so
that 〈

(X1 − µ1)
2
〉

= σ2
1 (4.4a)〈

(X2 − µ2)
2
〉

= σ2
2 (4.4b)

〈(X1 − µ1)(X2 − µ2)〉 = Cov(X1, X2) (4.4c)

then the variance of their sum is

σ2
T =

〈
(T − µT )2

〉
=
〈
(X1 +X2 − µ1 − µ2)

2
〉

=
〈
([X1 − µ1] + [X2 − µ2])

2
〉

=
〈
(X1 − µ1)

2
〉

+ 2 〈(X1 − µ1)(X2 − µ2)〉+
〈
(X2 − µ2)

2
〉

= σ2
1 + σ2

2 + 2 Cov(X1, X2)

(4.5)

In particular, if X1 and X2 are independent or otherwise uncorrelated, then the variance of
their sum is equal to the sum of their variances:

σ2
T = σ2

1 + σ2
2 if X1 and X2 uncorrelated (4.6)

Note that this means the standard deviations are “added in quadrature”:

σT =
√
σ2
1 + σ2

2 if X1 and X2 uncorrelated (4.7)

This is the standard way in which uncorrelated random errors are combined.
One more property, which we will state now without proving, is that if X1 and X2 are

both Gaussian random variables, their sum is also a Gaussian random variable.
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4.2 Identical Random Variables (Random Samples)

Considered now the example of N independent, identically distributed (iid) random variables
{Xi} with expectation values

〈Xi〉 = µ and 〈(Xi − µ)(Xj − µ)〉 = δij σ
2 (4.8)

This is known as a random sample, and it can be used to estimate the properties of the
underlying distribution. If we construct the sum

T =
N∑
i=1

Xi (4.9)

then an extension of the results for a pair of random variables shows that its mean is

µT = 〈T 〉 =
N∑
i=1

µ = Nµ (4.10)

and its variance is

σ2
T =

〈
(T − µT )2

〉
=

N∑
i=1

σ2 = Nσ2 (4.11)

so its standard deviation is
σT =

√
N σ . (4.12)

If we take the average of the N random variables

X =
1

N

N−1∑
k=0

Xi =
T

N
, (4.13)

which is itself a random variable, we can see

µX =
〈
X
〉

=
〈T 〉
N

= µ (4.14)

and

σ2
X

= Var(X) = Var

(
T

N

)
=

Var(T )

N2
=
σ2
T

N2
=
Nσ2

N
(4.15)

which means
σX =

σ√
N

(4.16)

I.e., if you take the average of N iid random variables, the standard deviation is 1/
√
N times

theie individual standard deviation.
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4.2.1 Biased and Unbiased Estimators

We can use combinations of the data in a random sample to estimate information about the
underlying data. For instance, because 〈

X
〉

= µ (4.17)

we say the sample average X is an unbiased estimator of the underling mean (expectation
value) of a data point in the sample.

To estimate the underlying variance σ2, we could construct something like

1

N

N∑
i=1

(Xi − µ)2 (4.18)

which would indeed have an expectation value of σ2. This works fine if we already know
what µ is, but often we only have the random sample itself to work with, so we need to use
X to estimate µ. If we examine

N∑
i=1

(Xi −X)2 (4.19)

we will see that its expectation value is not Nσ2 but rather (N − 1)σ2. If we divided (4.19)
by N we would get a biased estimator of the variance, with expectation value N−1

N
σ2. To

see this construct

S2 =
1

N − 1

N∑
i=1

(Xi −X)2 ; (4.20)

Its expectation value is 〈
S2
〉

=
1

N − 1

N∑
i=1

〈
(Xi −X)2

〉
(4.21)

The expectation value inside the sum is〈
(Xi −X)2

〉
=
〈[

(Xi − µ)− (X − µ)
]2〉

=
〈
(Xi − µ)2

〉
− 2

〈
(Xi − µ)(X − µ)

〉
+
〈
(X − µ)2

〉 (4.22)

Now, we already know the first term (the variance of Xi) is σ2 and the last term (the variance
of X) is σ2/N . The cross term involves

〈
(Xi − µ)(X − µ)

〉
=

1

N

N∑
j=1

〈(Xi − µ)(Xj − µ)〉 =
1

N

N∑
j=1

δijσ
2 = σ2/N (4.23)

so 〈
S2
〉

=
1

N − 1

N∑
i=1

(
σ2 − 2

σ2

N
+
σ2

N

)
=

N

N − 1

(
1− 1

N

)
σ2 = σ2 (4.24)

as advertized.

40



4.3 PDF of a Sum of Random Variables

If we consider two independent random variables X1 and X2 with (not necessarily identical)
pdfs f1(x1) and f2(x2), so that their joint pdf is

f(x1, x2) = f1(x1)f2(x2) (4.25)

and write their sum as
T = X1 +X2 (4.26)

we can ask what the pdf fT (t) is. One way to approach this9 is to consider the joint pdf
p(t, x2). We can do this by changing variables from x1 to t = x1 + x2; since we’re actually
changing from {x1, x2} to {t, x2}, we can treat x2 as a constant10 and since dt = dx1 in that
case,

f(t, x2) = f1(t− x2)f2(x2) . (4.27)

if we then marginalize over x2, we find

f(t) =

∫ ∞
−∞

f(t− x2) f2(x2) dx2 (4.28)

and so we see that the pdf of a sum of variables is the convolution of their individual pdfs.
Of course, since convolutions map onto products under the Fourier transform, that means

the Fourier transform of the pdf of a sum of variables is the product of the Fourier transforms
of their individual pdfs. The Fourier transform of a pdf is a very handy thing, known as the
characteristic function for that random variable:

ΦX(ξ) =

∫ ∞
−∞

e−i2πxξ fX(x) dx (4.29)

4.3.1 Properties of the Characteristic Function

• ΦX(ξ) =
〈
e−i2πXξ

〉
. This is often given as the definition of the characteristic function,

but it seems more natural to think of the Fourier transform of the pdf.

• ΦX(0) = 1. This is apparent from the normalization:

ΦX(0) =

∫ ∞
−∞

fX(x) dx = 1 (4.30)

9An alternative, slick shortcut is to write

fT (t) =

∫ ∞
−∞

∫ ∞
−∞

δ(t− [x1 − x2]) f(x1, x2) dx1 dx2

10Alternatively, we can consider the Jacobian determinant

∥∥∥∥ ∂(t, x2)

∂(x1, x2)

∥∥∥∥ =

∣∣∣∣∣∣det


(
∂t
∂x1

)
x2

(
∂t
∂x1

)
x1(

∂x1

∂x1

)
x2

(
∂x1

∂x1

)
x1

∣∣∣∣∣∣ =

∣∣∣∣det

(
1 1
1 0

)∣∣∣∣ = 1

.
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• If we Taylor expand the exponential, we get the moments of the distribution, i.e., the
expectation values of powers of x:

ΦX(ξ) =

∫ ∞
−∞

∞∑
n=0

(−i2π)n

n!
xn ξn fx(x) dx =

∞∑
n=0

(−i2π)n

n!
〈Xn〉 ξn (4.31)

• If fX(x) is a Gaussian,

fX(x) =
1

σ
√

2π
e−(x−µ)

2/2σ2

(4.32)

then

Φx(ξ) = exp

(
−i2πµξ − (2πξ)2

2σ−2

)
(4.33)

which we get as usual by completing the square in the integral over x. Note that
(4.33) can be used to show that the sum of two Gaussian random variables is itself a
Gaussian.

•
ΦaX(ξ) =

∫ ∞
−∞

e−i2πaxξ faX(ax) d(ax) =

∫ ∞
−∞

e−i2πaxξ fX(x) dx = Φx(aξ) (4.34)

4.4 The Central Limit Theorem

We are now in a position to prove the Central Limit Theorem, which says that the average of
many independent, identically distributed variables has a distribution which is approximately
Gaussian. Note that we have seen manifestations in this by examining the large-n forms of
the binomial and Poisson distributions (which represent the sum of many Bernoulli random
variables which can take on the values 0 and 1), and of the Gamma distribution (which,
in its application as the chi-squared distribution, represents the sum of many χ2 random
variables with one degree of freedom each).

Given N iid random variables {X i}, we can construct for each of them a corresponding
random variable

Zi =
X i − µ
σ

(4.35)

An individual Zi will not be a Gaussian rv, but it will have zero mean and unit variance.

〈Zi〉 = 0 and Var(Zi) = 1 (4.36)

If we construct the random variable

Z =
TZ√
N

=
1√
N

N∑
i=1

Zi =
1

σ
√
N

N∑
i=1

(Xi − µ) =
T −Nµ
σ
√
N

=
X − µ
σ

√
N (4.37)

this will also have mean 0 and variance 1. Now we can show that whatever the pdf for the
underlying random variables, Z is Gaussian-distributed in the limit N → ∞. We do this
by showing that the characteristic function ΦZ(ξ) becomes the characteristic function for a
Gaussian in the limit of large N .
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First, note that since TZ =
∑N−1

k=0 Zk,

ΦTZ (ξ) = [ΦZ(ξ)]N (4.38)

(since the pdf fTZ (tz) can be made by convolving together N copies of fZ(zi)). Now, since
Z = TZ/

√
N ,

ΦZ(ξ) = ΦTZ (ξ/
√
N) = [ΦZ(ξ/

√
N)]N . (4.39)

For large N , we can Taylor expand

ΦZ(ξ/
√
N) = 1− i2πξ 〈Zk〉√

N
− (2πξ)2 〈(Zk)2〉

2N
+O(N−3/2) (4.40)

where O(N−3/2) represents terms which go to zero for large N at least as fast as N−3/2.
Since we’ve constructed the {Zk} so that 〈Zk〉 = 0 and 〈(Zk)2〉 = 1, this becomes

ΦZ(ξ/
√
N) = 1− (2πξ)2

2N
+O(N−3/2) (4.41)

and so

ΦZ(ξ) =

(
1− (2πξ)2

2N
+O(N−3/2)

)N
=

(
1− (2πξ)2

2N

)N
+O(N−1/2) (4.42)

and

lim
N→∞

ΦZ(ξ) = lim
N→∞

(
1− (2πξ)2

2N

)N
= exp

(
−(2πξ)2

2

)
. (4.43)

But this is just the characteristic function for a Gaussian of zero mean and unit variance, so

fZ(z)
N→∞−→ 1√

2π
e−z

2/2 (4.44)

and since

Z =
T −Nµ
σ
√
N

(4.45)

that means that for large N ,

fT (t) ≈ 1

σ
√

2πN
exp

(
−(t−Nµ)2

2Nσ2

)
(4.46)
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