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1.2.4 Spherical Coördinates . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Satisfying Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Sturm-Liouville Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Fourier Analysis 15
2.1 Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Continuous Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Properties of the Fourier Transform . . . . . . . . . . . . . . . . . . . 19

2.3 Discrete Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 Nyquist Frequency and Aliasing . . . . . . . . . . . . . . . . . . . . . 22

3 Numerical Methods (guest lectures by Joshua Faber) 24
3.1 Orthogonal functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Runge’s phenomenon and Minimax polynomials . . . . . . . . . . . . 26
3.2 Differentiation and Chebyshev encounters of the second kind . . . . . . . . . 27
3.3 Gauss’s phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Elliptic and Hyperbolic equations: an overview . . . . . . . . . . . . . . . . . 29
3.5 The Poisson equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5.1 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5.2 Mode expansion of the Poisson equation . . . . . . . . . . . . . . . . 31
3.5.3 The Iron sphere theorem . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5.4 Cartesian Spherical Harmonics . . . . . . . . . . . . . . . . . . . . . . 32
3.5.5 Multipole moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

∗Copyright 2010, John T. Whelan and Joshua A. Faber, and all that

1



4 Spectral Analysis of Random Data 33
4.1 Amplitude Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.1 Random Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Continuous Random Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.1 White Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.2 Colored Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Wide-Sense Stationary Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4.1 Symmetry Properties of the Auto-Correlation and the PSD . . . . . . 37

4.5 Power Spectrum Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.5.1 The Discretization Kernel ∆N(x) . . . . . . . . . . . . . . . . . . . . 39
4.5.2 Derivation of the Periodogram . . . . . . . . . . . . . . . . . . . . . . 40
4.5.3 Shortcomings of the Periodogram . . . . . . . . . . . . . . . . . . . . 43

2



Tuesday, September 7, 2010

1 Differential Equations

See Arfken & Weber, Chapter 9

1.1 General Properties; Superposition

Many situations in astrophysics (and physics in general) are described by linear partial
differential equations, which we can write schematically as

Lψ(~r) = 0 (homogeneous PDE) (1.1)

or
Lψ(~r) = ρ(~r) (inhomogeneous PDE) (1.2)

the differential operator can depend in potentially complicated ways on the coördinates, but
not on the scalar field ψ. If L is a linear differential operator, it implies the principle of
superposition: if ψ1 and ψ2 are solutions to the homogeneous PDE (1.1), so is c1ψ1 + c2ψ2:

L(c1ψ1 + c2ψ2) = c1��
�*0

Lψ1 + c2��
�*0

Lψ2 = 0 . (1.3)

The typical approach is to find a sufficient set of independent solutions {ψn} so that an
arbitrary solution can be written

ψ =
∑
n

cnψn (1.4)

and then fix the constants {cn} according to the boundary conditions of the problem.
Arfken has a list of differential equations that arise in physics, for example

1. the Laplace equation
∇2ψ = 0 (1.5)

2. the Poisson equation (e.g., Newtonian gravity)

∇2ψ = 4πρ (1.6)

3. the Helmholtz equation
(∇2 + k2)ψ = 0 (1.7)

4. the diffusion equation (
∇2 − 1

a2

∂

∂t

)
ψ = 0 (1.8)

5. the wave equation (
∇2 − 1

c2

∂2

∂t2

)
ψ = 0 (1.9)

etc etc. Notice that these all involve the Laplacian ∇2. (Some also involve time deriva-
tives, but if we write ψ(~r, t) =

∫∞
−∞ e

−iωtψω(~r) dt, the wave equation for ψ(~r, t) becomes the
Helmholtz equation for ψω(~r) with k = ω/c.) Let’s look a bit into typical partial differential
equations involving the Laplacian in some common coördinate systems.
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1.2 The Laplacian; Separation of Variables

Recall from vector calculus that the Laplacian has the following forms in Cartesian coördinates
{x, y, z}, cylindrical coördinates1 {s, φ, z}, and spherical coördinates {r, θ, φ}:

∇2 = ~∇ · ~∇ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

=
1

s

∂

∂s
s
∂

∂s
+

1

s2

∂2

∂φ2
+

∂2

∂z2

=
1

r2

∂

∂r
r2 ∂

∂r
+

1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

r2 sin2 θ

∂2

∂φ2

(1.10)

Note that

• Every term in (1.10) has units of one over length squared.

• It’s important to think of both the multiplication and the differentiation as operators,
so for example(

1

s

∂

∂s
s
∂

∂s

)
ψ =

1

s

∂

∂s

(
s
∂ψ

∂s

)
=

1

s

(
∂ψ

∂s
+ s

∂2ψ

∂s2

)
=
∂2ψ

∂s2
+

1

s

∂ψ

∂s
=

(
∂2

∂s2
+

1

s

∂

∂s

)
ψ

(1.11)
This can mean there are equivalent ways of writing the Laplacian in a particular
coördinate system, which look different. Exercise: work out a similar explicit form
for the r and θ derivatives appearing in the spherical coördinate form of the Laplacian.

1.2.1 Useful Digression: Form of the Laplacian

The cylindrical and spherical coördinate expressions in (1.10) can be worked out in a number
of ways, but there’s a relatively simple way to remember them. It turns out (we won’t prove
it here) that the Laplacian can be written in any coördinate system as

∇2 =
1√
|g|
∂i

(√
|g| gij∂j

)
(1.12)

To decode this, we need to define a few bits of notation.
First of all, (1.12) is written using the Einstein summation convention, i.e., the indices i

and j are each summed from 1 to 3.
Next, we need to explain what gij and g are. They’re both defined in terms of the metric

tensor, which has components {gij}. (Note that gij, with indices downstairs, is not the same
as gij, with indices upstairs.) This tells the distance d` between points with slightly different
values of the coördinates. In Cartesian coördinates, the displacement vector is

−→
d` = x̂ dx+ ŷ dy + ẑ dz (1.13)

1What to call the cylindrical radial coördinate
√
x2 + y2 is a perpetually troubling issue. It’s clearly

inappropriate to call it r in a three-dimensional context, since that means something different in spherical
coördinates. Arfken calls it ρ, but that can get confusing if ρ is also used as a density. I’ll follow the
convention of Griffiths’s Introduction to Electrodynamics and call it s.
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and so the infinitesimal distance follows the Pythagorean formula

(d`)2 = (dx)2 + (dy)2 + (dz)2 (1.14)

In general, the metric for a coördinate system2 {x1, x2, x3} is3

(d`)2 = gijdx
idxj = g11(dx1)2 + 2g12dx

1dx2 + 2g13dx
1dx3 +g22(dx2)2 + 2g23dx

2dx3 +g33(dx3)2

(1.15)
from which we can read off

gxx = gyy = gzz = 1; gxy = gxz = gyz = 0 (1.16)

The metric in spherical and cylindrical coördinates can be deduced from the distance for-
mulas:

(d`)2 = (dr)2 + r2(dθ)2 + r2 sin2 θ(dφ)2 = (ds)2 + s2(dφ)2 + (dz)2 (1.17)

so that the non-zero metric components in those coördinate systems are

grr = 1; gθθ = r2; gφφ = r2 sin2 θ (1.18)

and
gss = 1; gφφ = s2; gzz = 1 (1.19)

Now we can define g appearing in (1.12): it is just the determinant of the matrix {gij}:

g = det{gij} (1.20)

In each of these coördinate systems, the metric is diagonal, so the determinant is just the
product of those diagonal components:

g = gxxgyygzz = 1 (Cartesian coördinates) (1.21a)

g = grrgθθgφφ = r4 sin2 θ (Spherical coördinates) (1.21b)

g = gssgφφgzz = s2 (Cylindrical coördinates) (1.21c)

One thing to watch out for is that g, despite being written without any indices, is not a
scalar, i.e., it does not take on the same value in every coördinate system. Instead, you have
to transform from one coördinate system to another using the Jacobian determinant, which
makes sense when you consider that

√
|g| is the factor appearing in the volume element

d3V =
√
|g| dx1dx2dx3 = dx dy dz = r2 sin2 θ dr dθ dφ = s ds dφ dz (1.22)

Incidentally, an object which picks up factors of the Jacobian determinant when you transfer
between coördinate systems is called a density, although this geometrical usage is slightly
different from what we usually mean by density in a physical context. For example, the total
mass in a mass distribution is

M =
y

ρ(x1, x2, x3)d3V =
y

ρ(x1, x2, x3)
√
|g| dx1dx2dx3 (1.23)

2It’s conventional in differential geometry to label coördinates with superscripts rather than subscripts
3The metric tensor is defined to be symmetric, i.e., gij = gji. Given the way it appears in (1.15), an

antisymmetric component would be unmeasurable.
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and it’s the combination ρ
√
|g| which transforms like a density.

Finally, the {gij} are the elements of the matrix inverse of the metric {gij}. Since the
metric is diagonal in each of the coördinate systems we considered, the inverse is relatively
simple:

gxx =
1

gxx
= 1; gyy =

1

gyy
= 1; gzz =

1

gzz
= 1 (1.24a)

grr =
1

grr
= 1; gθθ =

1

gθθ
=

1

r2
; gφφ =

1

gφφ
=

1

r2 sin2 θ
(1.24b)

gss =
1

gss
= 1; gφφ =

1

gφφ
=

1

s2
; gzz =

1

gzz
= 1 (1.24c)

where all of the off-diagonal elements of {gij} are zero.
So that gives us all of the pieces, and we can write down, for example, in spherical

coördinates,

∇2 =
1√
|g|
∂i

(√
|g| gij∂j

)
=

1

r2 sin θ

[
∂r · 1 ·

(
r2 sin θ ∂r

)
+ ∂θ

(
��r

2 sin θ
1

��r2
∂θ

)
+ ∂φ

(
���

�
r2 sin θ

1

��
��r2 sin θ

∂φ

)]
=

1

r2
∂r r

2 ∂r +
1

r2 sin θ
∂θ sin θ ∂θ +

1

r2 sin2 θ
∂φ

2

(1.25)

1.2.2 Cartesian Coördinates

For concreteness, we’ll consider the Helmholtz equation(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+ k2

)
ψ(x, y, z) = 0 . (1.26)

A standard method for converting a partial differential equation into a set of ordinary dif-
ferential equations is separation of variables, to look for a solution of the form

ψ(x, y, z) = X(x)Y (y)Z(z) . (1.27)

(Remember that we plan to use superposition to combine different solutions, so we’re not
making such a restrictive assumption on the form of the general solution.) Substituting
(1.27) into (1.26) and dividing by ψ gives us

X ′′(x)

X(x)
+
Y ′′(y)

Y (y)
+
Z ′′(z)

Z(z)
+ k2 = 0 (1.28)

Since the first term depends only on x, the second only on y and the third only on z, the
only way the equation can be satisfied in general is if each of them is a constant:

X ′′(x)

X(x)︸ ︷︷ ︸
=−k2x

+
Y ′′(y)

Y (y)︸ ︷︷ ︸
=−k2y

+
Z ′′(z)

Z(z)︸ ︷︷ ︸
=−k2z

+k2 = 0 (1.29)
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so we can solve the original PDE if X, Y , and Z satisfy4

X ′′(x) + k2
xX(x) = 0 (1.30a)

Y ′′(y) + k2
yY (y) = 0 (1.30b)

Z ′′(z) + k2
zZ(z) = 0 . (1.30c)

where k2
x + k2

y + k2
z = k2.

Each of these, (1.30a) for example, is a pretty simple and familiar ODE. Since it’s second
order, we know there are two independent solutions for a given kx, and they are

X(x) ≡
{
eikxx

e−ikxx

}
or equivalently

{
sin kxx
cos kxx

}
(1.31)

What values are allowed for {kx, ky, kz} depend on things like the boundary conditions for
the problem. Note that kx, ky and kz all have units of inverse length.

1.2.3 Cylindrical Coördinates

Now the PDE is (
1

s

∂

∂s
s
∂

∂s
+

1

s2

∂2

∂φ2
+

∂2

∂z2
+ k2

)
ψ(s, φ, z) = 0 (1.32)

and guessing a separable solution

ψ(s, φ, z) = S(s)Φ(φ)Z(z) (1.33)

gives the equations
1

s

[s S ′(s)]′

S(s)
+

1

s2

Φ′′(φ)

Φ(φ)
+
Z ′′(z)

Z(z)
+ k2 = 0 (1.34)

The separation is slightly trickier this time. We can handle the z dependence the same as
before, and write

Z ′′(z)

Z(z)
= −k2

z . (1.35)

Everything else has some s dependence in it, but if we multiply through by s2 we get

s2S
′′(s)

S(s)
+ s

S ′(s)

S(s)
+ (k2 − k2

z)s
2 +

Φ′′(φ)

Φ(φ)
= 0 . (1.36)

Now the last term depends only on φ and we can set it to a constant, call it −m2. Again,
the simple ODE

Φ′′(φ) +m2Φ(φ) = 0 (1.37)

has the solution
Φ(φ) = eimφ . (1.38)

4We’ve implicitly assumed each constant is negative by writing them as −k2x etc. Depending on the
problem, we may find that some of them should actually be positive, but this can always be handled by
allowing e.g., kx to be imaginary in the end.
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But in a physical problem, φ is an angular coördinate with a period of 2π, so if the solution
to the PDE is to be single-valued, we have to enforce

Φ(φ+ 2π) = Φ(φ) . (1.39)

This means we know the conditions on m:

m must be an integer

So we’re back to the non-trivial ODE for s:

s2S ′′(s) + sS ′(s) +
[
(k2 − k2

z)s
2 −m2

]
S(s) = 0 . (1.40)

It looks like the z and φ equations have stuck us with a two parameter family of possible
ODEs for the s dependence, but that’s not really true. m is a dimensionless parameter (in
fact we know it has to be an integer in most physical problems) but k2−k2

z has dimensions of
inverse length squared. That means it really just sets the scale of the s dependence, and we
can get a simpler differential equation by changing variables to x = s

√
k2 − k2

z and defining
y(x) = S(s); since this is just a rescaling,

s
d

ds
= x

d

dx
(1.41)

and the differential equation becomes

x2y′′(x) + xy′(x) +
[
x2 −m2

]
y(x) = 0 . (1.42)

This is Bessel’s equation, and the two independent solutions to it are called Bessel functions
Jm(x) and Nm(x). We can get a quick look at them with matplotlib:

> ipython -pylab

from scipy.special import *

x=linspace(0.0001,10,1000)

figure()

plot(x,jn(0,x),'k-',label='$J_0(x)$')

plot(x,jn(1,x),'r--',label='$J_1(x)$')

plot(x,jn(2,x),'b-.',label='$J_2(x)$')

legend()

xlabel('$x$')

ylabel('$J_m(x)$')

axis([0,10,-1.1,1.1])

grid(True)

savefig('besselJ.eps',bbox_inches='tight')

figure()

plot(x,yn(0,x),'k-',label='$N_0(x)$')

plot(x,yn(1,x),'r--',label='$N_1(x)$')

plot(x,yn(2,x),'b-.',label='$N_2(x)$')

legend()

8



xlabel('$x$')

ylabel('$N_m(x)$')

axis([0,10,-1.1,1.1])

grid(True)

savefig('neumann.eps',bbox_inches='tight')
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1.2.4 Spherical Coördinates

In spherical coördinates, the PDE is(
1

r2

∂

∂r
r2 ∂

∂r
+

1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

r2 sin2 θ

∂2

∂φ2
+ k2

)
ψ(r, θ, φ) = 0 (1.43)

and the search for a separated solution

ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ) (1.44)

gives us
1

r2

[r2R′(r)]′

R(r)
+

1

r2 sin θ

[sin θΘ′(θ)]′

Θ(θ)
+

1

r2 sin2 θ

Φ′′(φ)

Φ(φ)
+ k2 = 0 (1.45)

As before, the φ dependence is

Φ(φ) = eimφ m ∈ Z (1.46)

so multiplying by r2 gives us

[r2R′(r)]′

R(r)
+ k2r2︸ ︷︷ ︸

`(`+1)

+
1

sin θ

[sin θΘ′(θ)]′

Θ(θ)
− m2

sin2 θ︸ ︷︷ ︸
−`(`+1)

= 0 (1.47)

where by separating the left-hand side into a piece depending only on r and a piece depending
only on θ we know that each has to be a constant. We’ve written that constant rather
provocatively, but it’s because the angular equation

Θ′′(θ) +
cos θ

sin θ
Θ′(θ) +

(
`(`+ 1)− m2

sin2 θ

)
Θ(θ) = 0 (1.48)

turns out to have geometrically sensible solutions only when

|m| ≤ ` ∈ Z (1.49)

These are the associated Legendre functions Pm
` (cos θ) (and Qm

` (cos θ)) and they are part of
the spherical harmonics Y m

` (θ, φ) = Pm
` (cos θ)eimφ which you’ll investigate on the homework.

We could continue as before with the radial equation, and end up with the differential
equation satisfied by spherical Bessel functions.

Thursday, September 9, 2010

1.3 Satisfying Boundary Conditions

Given one or more solutions to a homogeneous differential equation of the form

Lψ = 0 (1.50)

we can generate more solutions by using superposition. We find out which coëfficients to use
to solve the problem of interest by applying boundary conditions and/or initial conditions.
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For example, consider the wave equation in 2+1 dimensions, written in terms of the polar
coördinates (r, φ) and of time. (We could do this in cylindrical coördinates [in which case r
would be called s] but we’d just be carrying around the extra z dependence.) We know that
the wave equation

∇2ψ − 1

c2

∂2ψ

∂t2
=

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂φ2
− 1

c2

∂2

∂t2

)
ψ = 0 (1.51)

has solutions (choose one from each column){
Jm(kr)
Nm(kr)

}{
cosmφ
sinmφ

}{
cos kct
sin kct

}
(1.52)

where m is a non-negative integer and k is non-negative real number.
To figure out what coëfficients go in the superposition, we need to satisfy the boundary

conditions of the problem. E.g., consider the case where ψ vanishes on a circular outer
boundary r = a

ψ(a, φ, t) = 0 (1.53)

and look for the solution for 0 ≤ r ≤ a. This would describe, e.g., the oscillations of a drum
of radius a. Since r = 0 is included, we know the coëfficients of any terms involving the
Neumann functions Nm(kr) have to vanish (or else ψ would blow up at the origin) so we’re
left with solutions of the form

Jm(kr)

{
cosmφ
sinmφ

}{
cos kct
sin kct

}
(1.54)

To satisfy the boundary conditions at all φ and t, we’re not allowed to choose arbitrary k; for
a given term in the superposition we need one that has Jm(ka) = 0. We know from plotting
the Bessel functions that they oscillate, so we define the positive values of their arguments
for which they cross zero as γmn i.e.,

Jm(γmn) = 0 ; (1.55)

γmn is the nth zero of the mth Bessel function. There’s no closed-form expression for these,
but they’re tabulated.

The solutions we want are thus superpositions of

Jm

(γmn
a
r
){cosmφ

sinmφ

}{
cos γmn

a
ct

sin γmn
a
ct

}
n = 1, 2, . . . ; m = 0, 1, 2, . . . (1.56)

To nail down all the coëfficients, we need to know initial conditions on the waves, e.g.,
ψ(r, φ, 0) and ψ̇(r, φ, 0); for concreteness, we can assume we deform the drumhead into some
shape and then release it, so that

ψ(r, φ, 0) = f(r, φ) (1.57)

ψ̇(r, φ, 0) = 0 (1.58)
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where f(r, φ) is some specified function. The ψ̇ condition means the solutions are of the
form

Jm

(γmn
a
r
){cosmφ

sinmφ

}
cos

γmn
a
ct n = 1, 2, . . . ; m = 0, 1, 2, . . . (1.59)

and we can write the solution explicitly as

ψ(r, φ, t) =
∞∑
m=0

∞∑
n=1

Jm

(γmn
a
r
)

(Amn cosmφ+Bmn sinmφ) cos
γmn
a
ct (1.60)

and we impose the boundary conditions by choosing {Amn} and {Bmn} so that

f(r, φ) =
∞∑
m=0

∞∑
n=1

Jm

(γmn
a
r
)

(Amn cosmφ+Bmn sinmφ) (1.61)

This is called a Fourier-Bessel series. The Fourier part is hopefully somewhat familiar and
can be inverted by use of identities like∫ 2π

0

sinm1φ sinm2φ dφ =

{
π m1 = m2 6= 0

0 m1 6= m2

. (1.62)

The Bessel part turns out to be handled with the identity∫ a

0

Jm

(γmn1

a
r
)
Jm

(γmn2

a
r
)
r dr = 0 if n1 6= n2 (1.63)

which we can deduce from the Bessel equation. Recall that for a given k and m, Jm(kr)
satisfies

0 =

[
r2 d

2

dr2
+ r

d

dr
+ (k2r2 −m2)

]
Jm(kr) = r

[
d

dr

(
r
dJm(kr)

dr

)
+
(
k2r − m

r

)
Jm(kr)

]
(1.64)

Taking the equation for k = k1 and multiplying through by Jm(k2r) we get

0 = Jm(k2r)
d

dr

(
r
dJm(k1r)

dr

)
+
(
k2

1r −
m

r

)
Jm(k2r)Jm(k1r) (1.65)

If we integrate this with respect to r from r = 0 to r = a, we get

0 =

[
[Jm(k2r)] r

(
dJm(k1r)

dr

)]a
0

−
∫ a

0

(
dJm(k2r)

dr

)
r

(
dJm(k1r)

dr

)
dr

+

∫ a

0

(
k2

1r −
m

r

)
Jm(k2r)Jm(k1r) dr

, (1.66)

where we’ve integrated the first term by parts. Switching k1 and k2 and subtracting gives us

0 =

[
rJm(k2r)

(
dJm(k1r)

dr

)]a
0

−
[
rJm(k1r)

(
dJm(k2r)

dr

)]a
0

+(k2
1−k2

2)

∫ a

0

Jm(k1r)Jm(k2r) r dr

(1.67)
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Now we can specialize to the case where k1 = γmn1/a and k2 = γmn2/a; that makes the
contribution to the first two terms from r = a vanish (the contribution from r = 0 already
vanishes because of the factor of r) and we get

0 =
γ2
mn1
− γ2

mn2

a2

∫ a

0

Jm

(γmn1

a
r
)
Jm

(γmn2

a
r
)
r dr (1.68)

and so we see that indeed∫ a

0

Jm

(γmn1

a
r
)
Jm

(γmn2

a
r
)
r dr = 0 if k1 6= k2 (1.69)

1.4 Sturm-Liouville Theory

See Arfken & Weber, Chapter 10
Just now we showed that∫ a

0

Jm(k1r) Jm(k2r) r dr = 0 if k1 6= k2 & Jm(k1a) = 0 = Jm(k2a) (1.70)

by manipulating the differential equation[
1

r

d

dr

(
r
d

dr

)
− m2

r2
+ k2

]
Jm(kr) = 0 . (1.71)

This was not just a bit of isolated magic. You can do things like this in general, as an
application of Sturm-Liouville theory. It can be understood by analogy to the eigenvalue
problem in linear algebra:

Linear Algebra Vector u Square Matrix A
Functional Analysis Function u(x) Linear operator L

Let’s recall a few results about the eigenvalue problem in linear algebra

Au = λu . (1.72)

First, recall the inner product
〈u,v〉 = u†v (1.73)

where u† is the adjoint of u, i.e., the complex conjugate of its transpose, so in four dimensions
u1

u2

u3

u4


†

=
(
u∗1 u∗2 u∗3 u∗4

)
. (1.74)

The adjoint A† of a square matrix A has a handy property:

〈u,A†v〉 = u†A†v = (Au)†v = 〈Au,v〉 (1.75)
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In the context of linear algebra, this is a simple identity, but in more abstract vector spaces
(e.g., infinite-dimensional ones) this can act as the definition of the adjoint of an operator.

In a function space, where the “vectors” are sufficiently well-behaved functions on the
interval x ∈ [a, b], one inner product that can be defined is

〈u, v〉 =

∫ b

a

u∗(x) v(x)w(x) dx (1.76)

where we have allowed a real weighting function w(x) to be included in the measure w(x) dx.
Now, if L is a linear operator (e.g., a differential operator)

〈u,Lv〉 =

∫ b

a

u∗(x) [Lv(x)]w(x) dx (1.77)

and

〈u,L†v〉 =

∫ b

a

[Lu(x)]∗ v(x)w(x) dx . (1.78)

If we recall that in linear algebra, a self-adjoint (also known as Hermitian) matrix, for which
A† = A has the nice property that eigenvectors corresponding to different eigenfunctions
are orthogonal, i.e., if

Au1 = λ1u1 (1.79a)

Au2 = λ2u2 (1.79b)

then
〈u1,u2〉 = 0 if λ1 6= λ2 ; (1.80)

The same thing is true of the eigenfunctions of a self-adjoint linear operator.
The demonstration is identical to the demonstration from linear algebra, but let’s go

through it to jog our memory, starting with Lu1 = λ1u1 and Lu2 = λ2u2, with λ1 6= λ2, for
a self-adjoint operator L = L†. Consider

〈u1,Lu2〉 = 〈L†u1, u2〉 = 〈Lu1, u2〉 (1.81)

where the first equality holds by the definition of the adjoint and the second holds because
L is a Hermitian (self-adjoint) operator. But if we apply the eigenvalue equation, we get

0 = 〈u1,Lu2〉 − 〈Lu1, u2〉 = 〈u1, λ2u2〉 − 〈λ1u1, u2〉 = (λ2 − λ∗1)〈u1, u2〉 (1.82)

We’ve been careful and written λ∗1, but actually it’s another property of Hermitian operators
that they have real eigenvalues5 and so we can write

0 = (λ2 − λ1)〈u1, u2〉 (1.83)

which means that if λ1 = λ2, the inner product 〈u1, u2〉 has to vanish.

5You can show this by applying (1.82) with u1 in place of u2 to get (λ1−λ∗1)〈u1, u1〉, and since the norm
〈u1, u1〉 is non-zero for anything but the zero vector, λ1 = λ∗1.
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So in the case of Bessel functions,

L =
1

r

d

dr

(
r
d

dr

)
− m2

r2
, (1.84)

w(r) = r,6 and the eigenvalue equation is

LJm(ks) = −k2Jm(ks) . (1.85)

The demonstration that L is Hermitian is that∫ b

a

u(s)Lv(s) s ds =

∫ b

a

[Lu(s)] v(s) s ds (1.86)

where u(s) and v(s) are real functions that satisfy the boundary conditions

u(0) is regular (1.87a)

u(a) = 0 (1.87b)

The demonstration is similar to what we did above, and involves integrating by parts twice.

Tuesday, September 14, 2010

2 Fourier Analysis

See Arfken & Weber, Chapters 14-15, Numerical Recipes, Chapters 12-13, or Gregory, Ap-
pendix B

2.1 Fourier Series

Consider functions defined on an interval

− T

2
≤ t ≤ T

2
(2.1)

The differential equation
d2

dt2
h(t) = −ω2h(t) (2.2)

has solutions, when ω 6= 0, of7 cosωt and sinωt. Or, equivalently, since

eiωt = cosωt+ i sinωt (2.3)

one can also write the two solutions as eiωt and e−iωt. From Sturm-Liouville theory, we
recognize

d2

dt2
(2.4)

6The weighting function will typically be what’s physically appropriate for the problem. In this case,
w(r) = r makes sense because of the area element d2A = r dr dφ.

7If ω = 0, the independent solutions are 1 and t.
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as a self-adjoint operator under the inner product

〈h1, h2〉 =

∫ T/2

−T/2
h∗1(t)h2(t) dt (2.5)

so its eigenfunctions should form an orthogonal basis. Note that cosωt and sinωt both have
the eigenvalue −ω2, but symmetry properties ensure that∫ T/2

−T/2
cosω1t sinω2t dt = 0 . (2.6)

It’s actually easier to work with the complex versions, though, and we note that

i
d

dt
(2.7)

is also a self-adjoint operator, and eiωt and e−iωt are eigenfunctions of that operator with
different eigenvalues.

We can check orthogonality by writing

〈eiω1t, eiω2t〉 =

∫ T/2

−T/2
ei(ω2−ω1)tdt ; (2.8)

For ω1 = ω2 this is T, while for ω1 6= ω2 it is

ei(ω2−ω1)t

i(ω2 − ω1)

∣∣∣∣T/2
−T/2

=
ei(ω2−ω1)T/2 − e−i(ω2−ω1)T/2

i(ω2 − ω1)
=

2

(ω2 − ω1)
sin

(ω2 − ω1)T

2
(2.9)

so in general

〈eiω1t, eiω2t〉 =

{
T if ω1 = ω2

2
(ω2−ω1)

sin (ω2−ω1)T
2

if ω1 6= ω2

(2.10)

We didn’t get zero in the ω1 6= ω2 case, but we haven’t yet imposed the boundary conditions
on the eigenfunctions, which restrict the possible choices of ω. One choice of boundary
conditions which makes the differential operators self-adjoint is to require periodicity, i.e.,

eiωT/2 = eiω(−T/2) (2.11)

which means that

sin
ωT

2
= 0 (2.12)

and limit us to
ωT

2
= nπ (2.13)

so that

ωn =
2πn

T
(2.14)
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and we do get orthogonality because

〈ei2πn1t/T , ei2πn1t/T 〉 =

{
T if n1 = n2

T
π(n2−n1)

sin[(n2 − n1)π] = 0 if n1 6= n2

(2.15)

or, written more compactly,∫ T/2

−T/2

(
ei2πn1t

)∗ (
ei2πn2t

)
dt = Tδn1n2 (2.16)

where δmn is the usual Kronecker delta.
Since we can expand any function in the eigenfunctions of d2

dt2
(or in this case of i d

dt
), we

can write

h(t) =
∞∑

n=−∞

cn exp

(
i2πnt

T

)
(2.17)

We can use the orthogonality to find the coëfficients:∫ T/2

−T/2
e−

i2πnt
T h(t) dt =

∞∑
m=∞

cmTδmn = Tcn (2.18)

i.e.,

cn =
1

T

∫ T/2

−T/2
h(t) exp

(
−i2πnt

T

)
dt (2.19)

2.2 Continuous Fourier Transform

Note that if we write
fn =

n

T
= n δf (2.20)

so that

h(t) =
∞∑

n=−∞

cn e
i2πfnt (2.21)

the frequencies are spaced closer together for larger T . If we write

h(t) =
∞∑

n=−∞

Tcn︸︷︷︸
h̃(fn)

ei2πfnt δf (2.22)

and take the limit as T →∞ so that the sum becomes an integral, we get

h(t) =

∫ ∞
−∞

h̃(f) ei2πft df (2.23)

and the inverse

h̃(fn) = Tcn =

∫ T/2

−T/2
h(t) e−i2πfnt dt (2.24)
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becomes

h̃(f) =

∫ ∞
−∞

h(t) e−i2πft dt (2.25)

Note that the orthogonality relation∫ T/2

−T/2
ei2π(f2−f1)t dt = T δn1n2 (2.26)

becomes, in the limit of infinite T ,∫ ∞
−∞

ei2π(f2−f1)t dt = δ(f2 − f1) (2.27)

where δ(f2 − f1) is the Dirac delta function defined by∫ ∞
−∞

δ(f2 − f1)H(f1) df1 = H(f2) ; (2.28)

we can check that we got the normalization right by noting

∞∑
n1=−∞

T δn1n2 δf =
∞∑

n1=−∞

δn1n2 = 1 (2.29)

2.2.1 Convolution

A common physical situation is for one quantity, as a function of time, to be linearly related
to another quantity, which we can write as:

g(t) =

∫ ∞
−∞

A(t, t′)h(t′) dt′ . (2.30)

If the mapping of h(t) onto g(t) is stationary, e.g., doesn’t depend on any time-dependent
external factors, it can be written even more simply:

g(t) =

∫ ∞
−∞

A(t− t′)h(t′) dt′ . (2.31)

This relationship is known as a convolution and is sometimes written g = A ∗ h. It can be
written even more simply if we substitute in the form of A(t− t′) and h(t′) in terms of their
Fourier transforms:

h(t′) =

∫ ∞
−∞

h̃(f) ei2πft
′
df (2.32)

A(t− t′) =

∫ ∞
−∞

Ã(f ′) ei2πf
′(t−t′) df ′ (2.33)
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(where we have used different names for the two frequency integration variables so we don’t
mix them up) to get

g(t) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

Ã(f ′) h̃(f) ei2π[f ′(t−t′)+ft′] df df ′ dt′

=

∫ ∞
−∞

∫ ∞
−∞

Ã(f ′) h̃(f) ei2πf
′t

∫ ∞
−∞

ei2π(f−f ′)t′ dt′ df ′ df

=

∫ ∞
−∞

∫ ∞
−∞

Ã(f ′) h̃(f) ei2πf
′t δ(f − f ′) df ′ df

=

∫ ∞
−∞

Ã(f) h̃(f) ei2πft df

(2.34)

which means that
g̃(f) = Ã(f) h̃(f) , (2.35)

i.e., convolution in the time domain is equivalent to multiplication in the frequency domain.

2.2.2 Properties of the Fourier Transform

There are a number of important and useful properties obeyed by Fourier transforms, and
handy Fourier transforms of specific function.

• If h(t) is real, then h̃(−f) = h̃∗(f).

• If h(t) = h0, a constant, then

h̃(f) =

∫ ∞
−∞

h0e
−i2πftdt = h0δ(f) (2.36)

• If h(t) = h0δ(t− t0), then h̃(f) = h0e
−i2πft0

• If h(t) is a square wave

h(t) =

{
h0

−τ
2
< t < τ

2

0 |t| > T
2

(2.37)

then

h̃(f) = h0
2πfτ

πf
= 2h0τ sinc 2fτ (2.38)

where

sincx =
sinπx

πx
(2.39)

is the normalized sinc function.

• If h(t) is a Gaussian

h(t) =
1

σ
√

2π
e−t

2/2σ2

(2.40)
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then its Fourier transform is also a Gaussian:

h̃(f) = e−(2πf)2/2σ−2

(2.41)

Note that the narrower the Gaussian is in the time domain, the wider the corresponding
Gaussian is in the frequency domain. This is related to the Heisenberg uncertainty
principle.

• Dimensionally, the units of h̃(f) are the units of h(t) times time (or divided by fre-

quency). We’ll usually say, e.g., if h(t) has units of “gertrudes”, h̃(f) has units of
“gertrudes per hertz”.

• ∫ ∞
−∞

h∗(t) g(t) dt =

∫ ∞
−∞

h̃∗(f) g̃(f) df (2.42)

It’s a useful exercise, and not too hard, to demonstrate each of these.

Thursday, September 16, 2010

2.3 Discrete Fourier Transform

Recall that an ordinary Fourier series could be written in the form (2.22) relating a finite-

duration h(t) to its Fourier components h̃(fn), with inverse relationship (2.24). The time
variable t is continuously-defined with finite duration, while the frequency fn takes on only
a discrete set of values, but ranges from −∞ to ∞. This situation is summarized as follows:

Resolution Extent
t continuous duration T
f discrete, δf = 1

T
infinite

When we took the limit as T → ∞ to define the inverse Fourier transform (2.23) and the
Fourier transform (2.25) we ended up with both frequency and time being continuously
defined from −∞ to ∞:

Resolution Extent
t continuous infinite
f continuous infinite

In an experimental situation, on the other hand, not only is the duration finite, but the time
is also discretely sampled. Consider the simplest case of N samples separated by a fixed
sampling time of δt so that the total duration is T = N δt:

hj = h(tj) = h(t0 + j δt) j = 0, 1, . . . , N − 1 (2.43)

we’d like to define the Fourier transform

h̃(fk) =

∫ to+T

t0

h(t) e−i2πfk(t−t0) dt (2.44)
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but we don’t have access to the full function h(t), only the discrete samples {hj}. The best
we can do, then, is approximate the integral by a sum and see what we get:

N−1∑
j=0

hj e
−i2πfk(tj−t0) δt =

N−1∑
j=0

hj e
−i2π(k δf)(j δt) δt =

N−1∑
j=0

hj e
−i2πjk/N δt (2.45)

where in the last step we’ve used the fact that

δf δt =
δt

T
=

1

N
(2.46)

Now, (2.45) is the discrete approximation to the Fourier transform, so we could call it

something like h̃k. But if you’re a computer manipulating a set of numbers {hj}, you don’t
really need to know the physical sampling rate, except for the factor of δt in (2.45). So the
standard definition of the discrete Fourier transform leaves this out:

ĥk =
N−1∑
j=0

hj e
−i2πjk/N (2.47)

In principle (2.47) can be used to define the discrete Fourier transform for any integer k.

However, we can see that not all of the ĥk are independent; in particular,

ĥk+N =
N−1∑
j=0

hj e
−i2πjk/N e−i2πj =

N−1∑
j=0

hj e
−i2πjk/N = ĥk (2.48)

where we have used the fact that

e−i2πj = cos 2πj − i sin 2πj = 1 (2.49)

since j is an integer. This means there are only N independent ĥk values, which is not
surprising, since we started with N samples {hj}. One choice is to let k go from 0 to N − 1,
and we can use that to calculate the inverse transform by starting with

N−1∑
k=0

ĥk e
i2πjk/N =

N−1∑
k=0

N−1∑
`=0

h` e
i2π(j−`)k/N (2.50)

If we recall that
1− aN = (1− a) (1 + a+ a2 + . . .+ aN−1) (2.51)

we can see that

N−1∑
k=0

ei2π(j−`)k/N =
N−1∑
k=0

(
ei2π(j−`)/N)k =

{
N if j = ` mod N

1−ei2π(j−`)
1−ei2π(j−`)/N = 0 if j 6= ` mod N

(2.52)

i.e.,
N−1∑
k=0

ei2π(j−`)k/N = N δj,` mod N (2.53)
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so
N−1∑
k=0

ĥk e
i2πjk/N =

N−1∑
`=0

h`N δj,` mod N = Nhj (2.54)

and the inverse transform is

hj =
1

N

N−1∑
k=0

ĥk e
i2πjk/N (2.55)

Note that the asymmetry between the forward and reverse transform arose because we left
out the factor of δt from (2.47); if we write

(ĥk δt) =
N−1∑
j=0

hj e
−i2πjk/N δt (2.56)

then the inverse transform is

hj =
N−1∑
k=0

(ĥk δt) e
i2πjk/N 1

N δt
=

N−1∑
k=0

(ĥk δt) e
i2πjk/N δf (2.57)

which restores the notational symmetry of the continuous Fourier transform.

2.3.1 Nyquist Frequency and Aliasing

In this discussion we’ll assume the number of samples N is even; the generalization to odd
N is straightforward.

We saw above that if you take the discrete Fourier transform of N data points {hj}, the

periodicity ĥk+N = ĥk means that only N of the Fourier components are independent. We
implicitly considered those to be {ĥk|k = 0, 1, . . . , N − 1}, which is certainly convenient if
you’re a computer, but it doesn’t really make the most physical sense.

For example, consider the behavior of the discrete Fourier transform if the original time
series is real, so that h∗j = hj.

if h∗j = hj, ĥ∗k =

(
N−1∑
j=0

hj e
−i2πjk/N

)∗
=

N−1∑
j=0

hj e
i2πjk/N = ĥ−k = ĥN−k (2.58)

If we confine our attention to 0 ≤ k ≤ N−1, the appropriate symmetry relation is ĥN−k = ĥ∗k,
which means the second half of the list of Fourier components is determined by the first. But
this seems a little bit removed from the corresponding symmetry property h̃(−f) = h̃∗(f)
from the continuous Fourier transform.

To better keep positive and negative frequencies together, we’d like to consider the phys-
ically interesting set of N Fourier components to be{

ĥk

∣∣∣∣k = −N
2
, . . . ,

N

2
− 1

}
. (2.59)
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It’s a matter of convention that we include −N/2 rather than N/2 in the list. It makes things
more convenient for fftshift() functions in SciPy, matlab, etc., which move the Fourier
components {ĥN/2, . . . , ĥN−1} to the front of a vector so they can represent {ĥ−N/2, . . . , ĥ−1}.

Note now that the reality condition becomes

if h∗j = hj, ĥ∗k = ĥ−k (2.60)

which means that all of the negative components {ĥ−N/2+1, . . . , ĥ−1} of the DFT of a real
series are just the complex conjugates of the corresponding positive components. The reality
condition also enforces

ĥ0 = ĥ∗0 ∈ R (2.61a)

ĥ−N/2 = ĥ∗N/2 = ĥ∗−N/2 ∈ R (2.61b)

So from N real samples {hj|j = 0, . . . , N−1} we get a discrete Fourier transform completely

described by 2 real components ĥ0 and ĥ−N/2 = ĥN/2 and N
2
− 1 complex components

{ĥk|k = 1, . . . , N
2
− 1}.

The frequency corresponding to the last Fourier component,∣∣f−N/2∣∣ =
∣∣fN/2∣∣ =

N

2
δf =

1

2 δt
(2.62)

is half of the sampling frequency 1/δt, and is known as the Nyquist frequency. It is the
highest frequency which can be resolved in the discrete Fourier transform of a series sampled
with a sampling time δt. Of course, as we’ve seen, frequencies above the Nyquist frequency,
which correspond to Fourier components with k > N/2, aren’t invisible, they just show up
in the same place as lower frequencies. For example, consider a cosine wave with a frequency
of 3 Hz, sampled with a time step of δt = 0.25 sec:
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If we just look at the dots, they don’t look like a 3 Hz cosine wave, but rather like one with
a frequency of 1 Hz. And indeed, we’d get the exact same samples if we sampled a 1 Hz at
the same rate:

This is because f = 3 Hz is above the Nyquist frequency at this sampling rate, which is
fNy = 2 Hz. The higher-frequency cosine wave has been aliased down to a frequency of
fNy − f = −1 Hz.

Note, in closing, that the range of independent frequencies, from −fNy to +fNy, is
2 |fNy| = 1

δt
so we can fill in the table for time-frequency resolution and extent:

Resolution Extent
t discrete, δt duration T
f discrete, δf = 1

T
finite, 2 |fNy| = 1

δt

Tuesday, September 21, 2010

3 Numerical Methods (guest lectures by Joshua Faber)

3.1 Orthogonal functions

As shown in previous classes, sets of orthogonal functions play an important role in the
solution of differential equations. A particularly useful choice is Chebyshev polynomials, as
they combine several of the benefits of Fourier methods with the simplicity of closed-form
polynomial expansions. Chebyshev polynomials have the distinction of being defined using
trigonometric functions, which might seem at first glance like a contradiction in terms, with
the nth Chebyshev polynomial (beginning from n = 0) defined as

Tn(x) = cos(n arccosx) (3.1)
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on the domain [−1, 1]. From the definition, it is clear that the range of the polynomials
is also [−1, 1], except for T0(x) = 1. Less clear is that these are polynomials at all. To
demonstrate this, we begin from the first two expressions T0(x) = 1 and T1(x) = x, and then
note that

2xTn(x)− Tn−1(x) = 2 cos(arccosx) cos(n arccosx)− cos([n− 1] arccosx)

= 2 cos(arccosx) cos(n arccosx)

− [cos(arccosx) cos(n arccosx) + sin(arccosx) sin(n arccosx)]

= cos(arccosx) cos(n arccosx)− sin(arccosx) sin(n arccosx)

= cos([n+ 1] arccosx) ≡ Tn+1(x)

(3.2)

and thus we can build up each new polynomial from the previous two using the recurrence
relation.

Chebyshev polynomials satisfy a weighted continuous orthogonality relation with weight
(1− x2)−1/2 given by

∫ 1

−1

Tn(x)Tm(x)
dx√

1− x2
=


0 : n 6= m

π : n = m = 0

π/2 : n = m 6= 0

(3.3)

To prove this, we may use the trigonometric substitution x = cos θ → dx = − sin θdθ =
−
√

1− x2dθ, and note that

Tn(x) = Tn(cos θ) = cos(n arccos[cos θ]) = cos(nθ) (3.4)

finding that∫ 1

−1

Tn(x)Tm(x)
dx√

1− x2
=

∫ 0

π

cos(nθ) cos(mθ)(−dθ) =

∫ π

0

cos(nθ) cos(mθ)dθ (3.5)

The proof of orthogonality is actually a nice exercise∫ π

0

cos(nθ) cos(mθ)dθ =
1

2

∫ π

0

[cos([m+ n]θ) + cos([m− n]θ)] dθ

=
1

2(m+ n)
sin([m+ n]θ)

∣∣π
0

+
1

2(m− n)
sin([m− n]θ)

∣∣π
0

(3.6)

If m 6= n, we get zero for both terms, if m = n 6= 0, the difference term yields π/2, and if
m = n = 0, each term yields π/2 for a total of π.

The Chebyshev polynomials are even and odd depending on the index, and their endpoint
values follow directly from the definition above. We find:

Tn(1) = 1 Tn(−1) = (−1)n (3.7a)

T ′n(1) = n T ′n(−1) = (−1)n+1n (3.7b)
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From a practical standpoint, we often want to use a Chebyshev polynomial expansion to
approximate a function. Instead of performing a series of integrals over a set of complicated
functions, we can instead make use of the discrete orthogonality principle. Let

xk = cos

(
π(k + 1/2)

n

)
; 0 ≤ k ≤ n− 1 (3.8)

be the n zeroes of Tn(x), known as the Gauss-Lobatto points in the language of orthogonal
functions. The Chebyshev polynomials satisfy the discrete orthogonality relation

n−1∑
k=0

Ti(xk)Tj(xk) =


0 : i 6= j

n : i = j = 0

n/2 : i = j 6= 0

(3.9)

which again may be derived from the properties of Fourier (cosine) modes.
To approximate a function using Chebyshev polynomials, we can use the discrete orthog-

onality relation to our advantage. Assume that we have an expansion

f(x) ≈
n−1∑
j=0

cjTj(x) (3.10)

we find that

n−1∑
k=0

f(xk)Tj(xk) =
n−1∑
k=0

ciTi(xk)Tj(xk) =


0 : i 6= j

nc0 : i = j = 0

nci/2 : i = j 6= 0

(3.11)

or inverting this result

c0 =
1

n

n−1∑
k=0

f(xk) (3.12a)

ci =
2

n

n−1∑
k=0

f(xk)Ti(xk) (3.12b)

3.1.1 Runge’s phenomenon and Minimax polynomials

Consider the curve f(x) = 1
1+25x2

, which looks like a slightly less-curved Gaussian, and is
smooth (infinitely differentiable) everywhere. It is not, however a polynomial. If we were to
approximate it using a series of polynomials, our first attempt might be to try the Taylor
series at x = 0. Unfortunately, the radius of convergence is 1/5, so that doesn’t get us very
far. . . Next, we might choose N + 1 evenly spaced points and try to fit a polynomial through
them. You will find that this works very well for the center, but terribly at the edges. In
fact, the errors near the edges grow in magnitude, without bound, as we increase the number
of points and the order of the polynomials with which we fit the function.
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This is known as Runge’s Phenomenon, after the mathematician perhaps better known for
co-developing a fourth-order differential equation evolution system. It turns out that better
sets of points for reducing the errors to zero is to choose them so that they are concentrated
near the edges of the distribution. The optimal set of points would be to choose the points to
be zeros of a cosine function. Unfortunately, working out each of the polynomial coefficients
based on these N points would typically very slow. If we fit using Chebyshev polynomials, on
the other hand, it is rather simple. As a result, Chebyshev interpolants fcheb(x) are known
to be the best simple approximant to the minimax polynomial of smooth functions f(x),
where the minimax polynomial minimizes the quantity

max |f(x)− fcheb(x)| (3.13)

over the set of all nth order polynomials.

3.2 Differentiation and Chebyshev encounters of the second kind

One of the convenient things about expanding functions in terms of Chebyshev polynomials is
the fact we can solve differential equations, at least approximately, by converting continuous
systems to discrete linear algebra systems. To do so, we need to be able to take derivatives
of Chebyshev polynomials. Using the trig definition, we find that

T ′n(x) =
n sin(n arccosx)√

1− x2
= n

sin(n arccosx)

sin(arccosx)
≡ nUn−1(x) (3.14)

where we may define the functions Un(x), the so-called Chebyshev polynomials of the second
kind, through the relation

Un(x) ≡ sin([n+ 1] arccosx)

sin(arccosx)
(3.15)

As with the Chebyshev polynomials of the first kind, it is not immediately obvious that these
are polynomials at all under the definition, though the differentiation identity above would
seem to imply it. We note the following recurrence relation works as well. By inspection,
U0(x) = 1 and U1 = 2 cos(arccosx) = 2x, and then we note that

Un(x) =
sin([n+ 1] arccosx)

sin(arccosx)

=
1

sin(arccosx)
[sin(n arccosx) cos(arccosx) + cos(n arccosx) sin(arccosx)]

= xUn−1(x) + Tn(x)

(3.16)

It is important to note that unlike Chebyshev polynomials of the first kind, the second kind
are not bounded between −1 and 1. Indeed, one can check that Un(1) = n and by symmetry,
Un(−1) = (−1)nn. There are countless additional recurrence relations linking the two types
of Chebyshev polynomials, but we are most concerned here with this one:

Tn(x) = cos(n arccosx)
sin(arccosx)

sin(arccosx)
=

sin([n+ 1] arccosx)− sin([n− 1] arccos x)

2 sin(arccos x)
=
Un − Un−2

2
(3.17)
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This allows us to establish the following identity about derivatives, after rewriting the pre-
vious equation as Un(x) = 2Tn(x) + Un−2(x):

d

dx
Tn(x) = nUn−1(x) = 2nTn−1(x) + nUn−3(x)

= 2nTn−1(x) + 2nTn−3(x) + nUn−5(x)

= 2nTn−1(x) + 2nTn−3(x) + 2nTn−5(x) + nUn−7(x)

(3.18)

and so on down the line until we reach either T1 or T0, terminating the sequence. It is
worth noting that we can prove this relation using the complex exponential definition of trig
functions as well. Define Θ = arccosx, and we find

Un(x) =
sin([n+ 1]Θ)

sin Θ
=

(ei(n+1)Θ − e−i(n+1)Θ)/2i

(eiΘ − e−iΘ)/2i

= einΘ + ei(n−2)Θ + e−(n−4)Θ + . . .+ e−i(n−2)Θ + e−inΘ

= 2[cos(nΘ) + cos([n− 2]Θ) + cos([n− 4]θ) + . . .]

= 2[Tn(x) + Tn−2(x) + Tn−4(x) + . . .]

(3.19)

Going back to the idea of a polynomial expansion, we see that if we have a function being
approximated as a sum of polynomials,

f(x) ≈
n∑
i=0

ciTi(x) (3.20)

its derivative will involve a set of descending series:

df

dx
= 2ncn(Tn−1 + Tn−3 + Tn−5 + . . .)

+2(n− 1)cn−1(Tn−2 + Tn−4 + . . .)

+2(n− 2)cn−2(Tn−3 + Tn−5 + . . .)

+ . . . =
n−1∑
i=0

diTi(x)

(3.21)

Looking carefully, we see that the only difference between the coefficient of the term Tn−1

and Tn−3 is generated by the coefficient cn−2, so that in general, if

di = di+2 + 2(i+ 1)ci+1 (3.22)

This result can also be derived using Clenshaw’s algorithm, which describes how to evaluate
combinations of polynomials defined by a recurrence relation. Similarly, for integration, we
can essentially read the identity above backwards, finding that if

∫
f(x)dx ≈

∑
biTi(x), then

bi =
ci−1 − ci+1

2i
(3.23)
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3.3 Gauss’s phenomenon

Chebyshev interpolation is spectrally accurate for smooth (infinitely differentiable) functions:
if we approximate a given function on [−1, 1] using n polynomial coefficients, any error
estimate you like including the Li, L2 and L∞ error will scale like kn, or in other words,
exponentially. If the function we wish to interpolate is not smooth, this is no longer true.
The error instead will decrease like nd+2, where the function can be differentiated d times.
Luckily, there is a simple solution to deal with these case. Consider a function we wish to
interpolate that is smooth on the interval [a, b]. If we define a rescaled variable X through the
relation x = (a+ b)/2 + (a− b)X/2, so that the smooth interval satisfies −1 < X < x, then
Tn(X) will satisfy the exponential convergence property. If the function to be interpolated is
piecewise smooth, we may interpolate each segment using a different set of scaled Chebyshev
polynomials, to yield the required accuracy.

Thursday, September 23, 2010

3.4 Elliptic and Hyperbolic equations: an overview

Consider a second order differential equation in a k-dimensional space:

k∑
m=0

k∑
n=0

Amn
∂

∂xm

(
∂f

∂xn

)
+

k∑
p=0

Bp
∂f

∂xp
= F (f) (3.24)

If the matrix A is positive definite everywhere, we call the equation “elliptic”.
Positive definite implies all eigenvalues of the matrix are positive. Rather than focus

on the matrix aspects, we can concentrate on the physical examples. The most famous
elliptic equation is the Poisson equation, which describes, among other things, Newtonian
gravitational and electric fields:

∇2Φ =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
Φ = 4πGρ (3.25)

You’ve already seen that the left hand side takes different forms in different coordinate
systems, but all are elliptic.

Hyperbolic equations look much the same if the sign of one of the terms is negative, as
we find in the wave equation:

∂2f

∂t2
− v2∂

2f

∂x2
= 0 (3.26)

From the standpoint of working with the equations, they could hardly be more different.
Hyperbolic equations evolve forward in time (or whatever you name the variable with the
opposite signature in the second derivative), and require the specification of initial data
(values of the function f and its first derivative), and possibly boundary conditions depending
on the particular equation, solution, domain, and numerical scheme. These are generally
referred to as “Initial Value Problems”. On the boundary of our domain, we need to impose
some form of boundary condition, which typically comes in one of three types:

1. Dirichlet: f(x) is a specified function on the boundary
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2. Von Neumann: ∇Nf(x) is specified on the boundary, where the gradient is taken
normal to the boundary

3. Robin: H[f(x),∇Nf(x)], some function of the value of the function and its normal
gradient, is specified on the boundary

The boundary can be any surface, including one located at spatial infinity.

3.5 The Poisson equation

It is not difficult to find ways to solve the Poisson equation, which arises for both gravitational
fields and electric fields in Newtonian physics. In some ways, the problem is choosing a
method.

We can use:

1. Convolution

2. multipole moments (for the exterior)

3. Spectral methods

We will discuss the first two in turn.

3.5.1 Convolution

Mathematically speaking, convolution is the most elegant approach to the solution of the
Poisson equation. We begin with a known integral form of the solution to the Poisson
equation:

[∇2Φ](~r) = 4πGρ(~r)⇒ Φ(~r) =
y Gρ(~r ′)

|~r − ~r ′|
d3V ′ (3.27)

The key thing to notice is that we have one term involving a function of the variable we
are integrating over (~r ′), and one that depends on a difference between a fixed point in the
integral (~r) and the integration variable (~r ′). In general, there is a simple way to solve these
problems using Fourier transforms, where we will make use of the fact that Fourier forward
and reverse transforms are inverse operations.

Denoting the forward Fourier transform F{g(x)} =
∫∞
−∞ e

2πikxg(x)dx, and considering
the case of one-dimensional integrals, we find that

F{Φ(x)} = G

∫ ∞
−∞

dx e2πikx

∫ ∞
−∞

dx′ ρ(x′) |x− x′|−1
(3.28)

Letting y = x− x′, we find x = x′ + y, and dx dx′ = dx′ dy and the integral becomes

F{Φ(x)} = G

∫ ∞
−∞

∫ ∞
−∞

dy dx′e2πik(x′+y)ρ(x′) |y|−1

= G

(∫ ∞
−∞

dx′ e2πikx′ρ(x′)

)(∫ ∞
−∞

dy e2πiky |y|−1

)
= F{ρ(x)} · F{|x|−1}

(3.29a)

Φ(x) = F−1
{
F{ρ(x)} · F{|x|−1}

}
(3.29b)
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There is nothing special about the functions we convolve to find the potential, and this
method, to Fourier transform both functions, multiply the transforms together pointwise,
and then inverse transform, is the general technique for performing any convolution integral.

3.5.2 Mode expansion of the Poisson equation

By using spherical harmonics, we can break down the Poisson equation, which is linear, into
independent multipole components. By defining

ρ`m(r) ≡
x

ρ(r, θ, φ)Y ∗`m(θ, φ)d2Ω (3.30)

and noting that
s
Y`′m′Y

∗
`md

2Ω = δ``′δmm′ we may split the source term into a set of orthog-
onal moments, such that

ρ(r, θ, φ) =
∑
`,m

ρ`m(r)Y`m(θ, φ) (3.31)

Each term ρ`m generates a term in the solution Φ`m.
There is one issue with solving the general Poisson equation. For each mode, we need to

solve the second order equation

1

r2

∂

∂r

(
r2∂R`m(r)

∂r

)
− `(`+ 1)

r2
R`m(r) = 4πGρ`m(r) (3.32)

Which, being linear, will have a particular solution Rp;`m(r) and two homogeneous solutions.
For spherical harmonics, these are easily found to be

R`m(r) = Rp;`m(r) + Cr` +Dr−(`+1) (3.33)

but we have difficulty if we want the solution to remain finite at either r = 0 or r → ∞.
In practice, if we have a compact matter distribution, we use the trick to split the domain
into two, radially. In the innermost domain, we set D = 0 so that the solution doesn’t blow
up at the origin, whereas in the outer one, we set C = 0 to avoid divergence at spatial
infinity. We have two undetermined coefficients, but these may be fixed by requiring that
R(r) is continuous and differentiable at the interface, as would be expected for a second-
order differential equation. Note that this implies that if a matter distribution has a spherical
harmonic term ρ`m, the resulting field falls off like r−`−1.

3.5.3 The Iron sphere theorem

The easiest mode to calculate of the mass distribution is the Y00 mode, which is given by
the integral

ρ00 =
y

ρ(~r) d3V = M (3.34)

yielding a potential Φ00 = −GM/r. In practical terms, this implies the Iron Sphere Theorem:
From the outside, one can tell the mass of a spherically symmetric mass distribution, but
not its internal structure. From the inside of a spherical shell, there is no force at all. The
proof, which reflects a 2-d integral over angles, says that since the area of a patch on opposite
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sides of the sphere scales like r2, but the force falls off like r−2, the force pulling in opposite
directions cancels out completely.

3.5.4 Cartesian Spherical Harmonics

Spherical harmonics are generally introduced as the eigenmodes of the angular Laplacian
operator ∇2

A, but we can learn a great deal about them by looking at a particular expansion:
the solutions to the Laplacian equation that are regular at the origin. Noting that ∇2

AY`m =
−`(`+1)Y`m, we can find solutions rkY`m that satisfy the Laplacian equation with no source:

1

r2

[
∂

∂r

(
r2 ∂

∂r

)
+∇2

A

]
rkY`m = 0 (3.35)

k(k + 1)rk−2Y`m = `(`+ 1)rk−2Y`m (3.36)

The two radial solutions for a given value of ` are r` and r−(`+1), and we will look at the
former, in particular combinations: r`(Y`m ± Y`,−m), where we consider the real component,
and r`(iY`m ± iY`,−m), the imaginary component. We will ignore the scaling factors used to
normalize spherical harmonics. We find the following expressions:

Y00 = 1 (3.37a)

rY10 = z (3.37b)

Re(rY11) = x (3.37c)

Im(rY11) = y (3.37d)

r2Y20 = 2z2 − x2 − y2 (3.37e)

Re(r2Y21) = xz (3.37f)

Im(r2Y21) = yz (3.37g)

Re(r2Y22) = x2 − y2 (3.37h)

Im(r2Y22) = xy (3.37i)

For ` = 0 and ` = 1, we generate all of the polynomials of order ` that exist. For the case
` = 2, there are six second-order polynomials, x2, y2, z2, xy, xz, yz, but only five spherical
harmonics. The cross-terms appear in the spherical harmonic list, so we are obviously short
one combination of the terms x2, y2, z2. To figure out the term that is missing, express the
two spherical harmonic terms as vectors, Y20 = (−1,−1, 2), and ReY22 = (1,−1, 0). The
missing component is the cross product of these two, which works out to be (2, 2, 2). In
other words, the vector proportional to x2 + y2 + z2. There is no ` = 2 spherical harmonic
representation of this quantity, since it is a radial factor multiplied by Y00.
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3.5.5 Multipole moments

If we have a compact density, i.e., one which is non-zero over a finite domain, we can perform
a multipole expansion of the solution. This involves breaking the source term into spherical
harmonic modes, and solving each in turn. We have to remember that since the potential
goes to a constant as r →∞, our vacuum solution involves the terms in the form r−(`+1)Y`m.
The general solution may be written

Φ = G

[
M

r
+
∑
i

pix̂
i

r2
+

1

2

∑
i,j

Qijx̂
ix̂j

r3
+ . . .

]
(3.38)

where x̂i is the unit normal vector at a given point located at radius r. The monopole
moment of the density distribution is given by the mass, M =

t
ρd3V , the dipole term

collects the ` = 1 Y`m terms:

pi ≡
y

ρxid3V (3.39)

and the Qij terms are the traceless quadrupole moments:

Qij ≡
y (

xixj − 1

3
δijr2

)
ρ(~r) d3V (3.40)

Why traceless? Based on previous discussion, the ` = 2 spherical harmonics don’t contain a
term that represents a pure radial component r2, and thus such modes don’t affect the grav-
itational potential outside of the matter distribution. This is commonly known as Newton’s
iron sphere theorem: a hollow sphere from the outside has the same gravitational potential
as a solid one of the same mass. There are, of course, higher order moments as well, but the
forms of each term get significantly more complicated as we progress.

Tuesday, September 28, 2010

4 Spectral Analysis of Random Data

4.1 Amplitude Spectrum

Given a real time series h(t) we know how to construct its Fourier transform

h̃(f) =

∫ ∞
−∞

h(t) e−i2πft dt (4.1)

or the equivalent discrete Fourier transform from a set of samples {hj|j = 0, . . . , N − 1}:

ĥk =
N−1∑
j=0

hj e
−i2πjk/N (4.2)

where ĥk δt ∼ h̃(fk).
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Think about the physical meaning of h̃(f), by breaking this complex number up into an
amplitude and phase

h̃(f) = A(f) eiφ(f) . (4.3)

If h(t) is real, the condition h̃(−f) = h̃∗(f) = A(f)e−iφ(f) means A(−f) = A(f) and
φ(−f) = −φ(f). Thus we can write the inverse Fourier transform as

h(t) =

∫ 0

−∞
A(f) ei[2πft+φ(f)] df +

∫ ∞
0

A(f) ei[2πft+φ(f)] df

=

∫ ∞
0

A(f)
(
ei[2πft+φ(f)] + e−i[2πft+φ(f)]

)
df

=

∫ ∞
0

2A(f) cos (2πft+ φ(f))

(4.4)

So A(f) is a measure of the amplitude at frequency f and φ(f) is the phase.
Note also that ∫ ∞

−∞
[h(t)]2 dt =

∫ ∞
−∞

∣∣∣h̃(f)
∣∣∣2 df (4.5)

This works pretty well if the properties of h(t) are deterministic. But suppose h(t) is
modelled as random, i.e., it depends on a lot of factors we don’t know about, and all we
can really do is make statistical statements. What is a sensible description of the spectral
content of h?

4.2 Random Variables

Consider a random variable x. Its value is not known, but we can talk about statistical
expectations as to its value. We will have a lot more to say about this soon, but for now
imagine we have a lot of chances to measure x in an ensemble of identically-prepared systems.
The hypothetical average of all of those imagined measurements is called the expectation value
and we write it as 〈x〉. (Another notation is E[x].) We can also take some known function f
and talk about the expectation value 〈f(x)〉 corresponding to a large number of hypothetical
measurements of f(x).

The expectation value of x itself is the mean, sometimes abbreviated as µ. (This name
is taken by analogy to the mean of an actual finite ensemble.) Since x is random, though,
x won’t always have the value 〈x〉. We can talk about how far off x typically is from its
average value 〈x〉. Note however that

〈x− µ〉 = 〈x〉 − 〈µ〉 = 〈x〉 − µ = 0 (4.6)

since the expectation value is a linear operation (being the analogue of an average), and the
expectation value of a non-random quantity is just the quantity itself. So instead of the
mean deviation from the mean, we need to consider the mean square deviation from the
mean 〈

(x− 〈x〉)2
〉

(4.7)

This is called the variance, and is sometimes written σ2. Its square root, the root mean
square (RMS) deviation from the mean, is the standard deviation.
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4.2.1 Random Sequences

Now imagine we have a bunch of random variables {xj}; in principle each can have its own
mean µj = 〈xj〉 and variance σ2

j = 〈(xj − µj)2〉. But we can also think about possible
correlations σ2

j` = 〈(xj − µj)(x` − µ`)〉; if the variables are uncorrelated σ2
j` = δj` σ

2
j , but

that need not be the case.
Think specifically about a series of N samples which are all uncorrelated random variables

with zero mean and the same variance:

〈xj〉 = 0; 〈xjx`〉 = δj` σ
2 ; (4.8)

what are the characteristics of the discrete Fourier transform of this sequence?

x̂k =
N−1∑
j=0

xj e
−i2πjk/N (4.9)

Well,

〈x̂k〉 =
N−1∑
j=0
�
��>

0
〈xj〉 e−i2πjk/N = 0 (4.10)

and

〈x̂kx̂∗`〉 =
N−1∑
j=0

N−1∑
n=0

〈xjxn〉 e−i2π(jk−n`)/N =
N−1∑
j=0

σ2e−i2πj(k−`)/N = Nσ2δk,` mod N (4.11)

so the Fourier components are also uncorrelated random variables with variance〈
|x̂k|2

〉
= Nσ2 (4.12)

Note this is independent of k, which is maybe a bit surprising. After all, it’s natural to think
all times are alike, but all frequencies need not be. Random data like this, which is the same
at all frequencies, is called “white noise”. To gain some more insight into white and colored
noise, it helps to think about the same thing in the idealization of the continuous Fourier
transform.

4.3 Continuous Random Data

Think about the continuous-time analog to the random sequence considered in section 4.2.1.
This is a time series x(t) which is characterized by statistical expectations. In particular we
could talk about its expectation value

〈x(t)〉 = µ(t) (4.13)

and the expectation value of the product of samples taken at possibly different times

〈x(t)x(t′)〉 = Kx(t, t
′) (4.14)

(it’s conventional not to subtract out µ(t) here). Note that 〈x(t)〉 is not the time-average
of a particular instantiation of x(t), although the latter may sometimes be used to estimate
the former.
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4.3.1 White Noise

Now, for white noise we need the continuous-time equivalent of (4.8), in which the data is
uncorrelated with itself except at the very same time. In the case of continuous time, the
sensible thing is the Dirac delta function, so white noise is characterized by

〈x(t)x(t′)〉 = K0 δ(t− t′) (4.15)

where K0 is a measure of how “loud” the noise is. In the frequency domain, this means

〈x̃(f)x̃∗(f ′)〉 =

∫ ∞
−∞

∫ ∞
−∞
〈x(t)x(t′)〉 e−i2π(ft−f ′t′) dt dt′ = K0

∫ ∞
−∞

e−i2π(f−f ′)t dt

= K0 δ(f − f ′) .
(4.16)

4.3.2 Colored Noise

A lot of times, the quantity measured in an experiment is related to some starting quantity
by a linear convolution, so even if we start out with white noise, we could end up dealing
with something that has different properties. If we consider some random variable h(t) which
is produced by convolving white noise with a deterministic response function R(t − t′), so
that

h(t) =

∫ ∞
−∞

R(t− t′)x(t′) dt′ (4.17)

and in the frequency domain
h̃(f) = R̃(f)x̃(f) (4.18)

we have 〈
h̃(f)h̃∗(f ′)

〉
= K0

∣∣∣R̃(f)
∣∣∣2 δ(f − f ′) . (4.19)

Note that even in this case,
〈
|h(f)|2

〉
blows up, so simply looking at the magnitudes of

Fourier components is not the most useful thing to do. However, the quantity K0

∣∣∣R̃(f)
∣∣∣2

which multiplies the delta function can be well-behaved, and gives a useful spectrum. We’ll
see that this is the power spectral density Sh(f), which we’ll define more carefully in a bit.

We can also go back into the time domain in this example, and calculate the autocorre-
lation

Kh(t, t
′) = 〈h(t)h(t′)〉 =

∫ ∞
−∞

∫ ∞
−∞

R(t− t1)R(t′ − t′1) 〈x(t1)x(t′1)〉 dt1 dt′1

=

∫ ∞
−∞

K0R(t− t1)R(t′ − t1) dt1

(4.20)

which is basically the convolution of the response function with itself, time reversed; unlike
in the case of white noise, where Kx(t, t

′) was a delta function, this will in general be finite.
Note that in this example, the autocorrelation Kh(t, t

′) is unchanged by shifting both of
its arguments:

Kh(t+ τ, t′ + τ) = K0

∫ ∞
−∞

R(t− [t1 − τ ])R(t′ − [t1 − τ ]) dt1

= K0

∫ ∞
−∞

R(t− t2)R(t′ − t2) dt2 = Kh(t, t
′)

(4.21)
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where we make the change of integration variables from t1 to t2 = t1 − τ . This means that
in this colored noise case the autocorrelation is a function only of t− t′.

Thursday, September 30, 2010

4.4 Wide-Sense Stationary Data

We now turn to a general formalism which incorporates our observations about colored noise.
A random time series h(t) is called wide-sense stationary if it obeys

〈h(t)〉 = µ = constant (4.22)

and
〈h(t)h(t′)〉 = Kh(t− t′) . (4.23)

Clearly, both our white noise and colored noise examples were wide-sense stationary. The
appearance of a convolution in the time-domain (4.20) a product in the frequency domain
(4.19) suggests to us that the Fourier transform of the auto-correlation function Kh(t − t′)
is a useful quantity. We this define the power spectral density as

Sh(f) =

∫ ∞
−∞

Kh(τ) e−i2πfτ dτ . (4.24)

Note that by the construction (4.23) the autocorrelation is even in its argument [Kh(τ) =
Kh(−τ)] so the PSD of real data will be real and even in f .

We can then show that for a general wide-sense stationary process,〈
h̃(f)h̃∗(f ′)

〉
=

∫ ∞
−∞

∫ ∞
−∞
〈h(t)h(t′)〉 e−i2π(ft−f ′t′) dt dt′

=

∫ ∞
−∞

∫ ∞
−∞

Kh(τ) e−i2πfτe−i2π(f−f ′)t′ dτ dt′ = δ(f − f ′)Sh(f) ,

(4.25)

where we make the change of variables from t to τ = t− t′.

4.4.1 Symmetry Properties of the Auto-Correlation and the PSD

We can see from the definition (4.23) and the result (4.25) that, for real data, both Kh(τ)
and Sh(f) are real and even, and in particular that Sh(f) = Sh(−f). (Of course the fact
that Kh(τ) and Sh(f) are Fourier transforms of each other means that once we know the
symmetry properties of one, we can deduce the symmetry properties of the other.) Because
it’s defined at both positive and negative frequencies, the power spectral density Sh(f) that
we’ve been using is called the two-sided PSD. Since the distinction between positive and
negative frequencies depends on things like the sign convention for the Fourier transform,
it is sometimes considered more natural to define a one-sided PSD which is defined only at
non-negative frequencies, and contains all of the power at the corresponding positive and
negative frequencies:

S1-sided
h (f) =

{
Sh(0) f = 0

Sh(−f) + Sh(f) f > 0
(4.26)
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Apparently, for real data, S1-sided
h (f) = 2Sh(f) when f > 0.

If the original time series is not actually real, there is a straightforward generalization of
the definition of the auto-correlation function:

〈h(t)h∗(t′)〉 = Kh(t− t′) (4.27)

The PSD is then defined as the Fourier transform of this, and (4.25) holds as before. Exam-
ination of (4.27) and (4.25) shows that, for complex data, the symmetry properties which
remain are

• Kh(−τ) = K∗h(τ)

• Sh(f) is real.

4.5 Power Spectrum Estimation

Suppose we have a stretch of data, duration T , sampled at intervals of δt, from a wide-sense
stationary data stream,

hj = h(t0 + j δt) (4.28)

where the autocorrelation
Kh(t− t′) = 〈h(t)h(t′)〉 (4.29)

and its Fourier transform the PSD

Sh(f) =

∫ ∞
−∞

Kh(τ) e−i2πfτ dτ (4.30)

are unknown. How do we estimate Sh(f)? One idea, keeping in mind that〈
h̃(f)h̃∗(f ′)

〉
= δ(f − f ′)Sh(f) , (4.31)

is to use the discrete Fourier components to construct∣∣∣ĥk∣∣∣2 (4.32)

this is, up to normalization, the periodogram. Now, we’re going to have to be a little careful
about just using the identification

ĥk δt ∼ h̃(fk) (4.33)

where

fk = k δf =
k

T
; (4.34)

after all, taking that literally would mean setting f and f ′ both to fk and evaluating the delta
function at zero argument. So we need to be a little more careful about the approximation
that relates the discrete and continuous Fourier transforms.
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4.5.1 The Discretization Kernel ∆N(x)

If we substitute the continuous inverse Fourier transform into the discrete forward Fourier
transform, we find

ĥk =
N−1∑
j=0

h(t0 + j δt) e−i2πjk/N =
N−1∑
j=0

∫ ∞
−∞

h̃(f) e−i2πjk/N ei2πf j δt df

=

∫ ∞
−∞

(
N−1∑
j=0

e−i2πj(fk−f)δt

)
h̃(f) df =

∫ ∞
−∞

∆N([fk − f ]δt) h̃(f) df

(4.35)

where we have defined8

∆N(x) =
N−1∑
j=0

e−i2πjx . (4.36)

Let’s look at some of the properties of this ∆N(x). First, if x is an integer,

∆N(x) =
N−1∑
j=0

e−i2πjx =
N−1∑
j=0

1 = N (x ∈ Z) (4.37)

Next, note that ∆N(x) is periodic in x with period 1, since

∆N(x+ 1) =
N−1∑
j=0

e−i2πj(x+1) =
N−1∑
j=0

e−i2πjxe−i2πj =
N−1∑
j=0

e−i2πjx = ∆N(x) . (4.38)

Note that this is not surprising for something that relates a discrete to a continuous Fourier
transform; incrementing [fk − f ]δt by 1 is the same as decrementing f by 1/δt, which is
twice the Nyquist frequency. This is just the usual phenomenon of aliasing, where many
continuous frequency components, separated at intervals of 1/δt, are mapped onto the same
discrete component.

Note also that

∆N(`/N) =
N−1∑
j=0

e−i2πj`/N = 0 ` ∈ Z and ` 6= 0 mod N (4.39)

of course, it’s sort of cheating to quote that result from before, since we got it by actually
evaluating the sum, so let’s do that again. Since

(1− aN) = (1− a)
N−1∑
j=0

aj , (4.40)

if we set a = e−i2πx, we get, for x /∈ Z (which means a 6= 1),

∆N(x) =
1− e−i2πNx

1− e−i2πx
=
e−iπNx

e−iπx
eiπNx − e−iπNx

ei2πx − e−i2πx
= e−iπ(N−1)x sinπNx

sin πx
(4.41)

8This is closely related to the Dirichlet kernel
n∑

k=−n

e−ikx = sin
(
[2n+ 1]x2

)
/ sin

(
x
2

)
.
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so, to summarize,

∆N(x) =

{
N , x ∈ Z
e−iπ(N−1)x

(
sinπNx
sinπx

)
, x /∈ Z

(4.42)

4.5.2 Derivation of the Periodogram

Now that we have a more precise relationship between ĥk and h̃(f), we can think about∣∣∣ĥk∣∣∣2, and in particular its expectation value:〈∣∣∣ĥk∣∣∣2〉 =

∫ ∞
−∞

∫ ∞
−∞

∆N([fk − f ]δt)∆∗N([fk − f ′]δt)
〈
h̃(f)h̃∗(f ′)

〉
df df ′

=

∫ ∞
−∞
|∆N([fk − f ]δt)|2 Sh(f) df

(4.43)

Let’s get a handle on

|∆N(x)|2 =

(
sin πNx

sin πx

)2

(4.44)

by looking at some plots of it in NumPy/matplotlib:

> ipython -pylab

x=linspace(-1.5,1.5,5e3)

D16 = (sin(16*pi*x)/sin(pi*x))**2

figure()

plot(x,D16,'k-',label=r'$N=16$')

legend()

xlabel(r'$x$')

ylabel(r'$|\Delta_N(x)|^2$')

yticks(arange(5)*64)

ylim([0,300])

grid(1)

savefig('Delta16.eps')

D64 = (sin(64*pi*x)/sin(pi*x))**2

figure()

plot(x,D16,'k-',label=r'$N=16$')

plot(x,D64,'b--',label=r'$N=64$')

legend()

xlabel(r'$x$')

ylabel(r'$|\Delta_N(x)|^2$')

yticks(arange(5)*1024)

ylim([0,4200])

xlim([-1./8,1./8.])

grid(1)

tickvals=arange(-3,4)/32.

ticklabs = [(r'$%d/32$' % x) for x in range(-3,4)]

40



xticks(tickvals,ticklabs)

savefig('Delta64.eps')

If we look for N = 16, we see that |∆N(x)|2 is indeed periodic, with period 1, and has the
value N2 = 162 = 256 for integer x:

�1.5 �1.0 �0.5 0.0 0.5 1.0 1.5
x

0

64

128

192

256

|�

N
(x
)|2

N=16

It’s also pretty sharply peaked at integer values; we can zoom in and compare it to |∆N(x)|2
for N = 64:
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�3/32 �2/32 �1/32 0/32 1/32 2/32 3/32
x

0

1024

2048

3072

4096

|�

N
(x
)|2

N=16

N=64

We see now that the peak at x = 0 is at N2 = 642 = 4096. Note we can also see the zeros
at non-zero integer multiples of 1/N for both functions. And the function is getting more
sharply peaked as N gets larger.

We can see, then, that |∆N(x)|2 is acting as an approximation to a sum of Dirac delta
functions (one peaked at each integer value of x), and this approximation is better for higher
N . We can write this situation as

|∆N(x)|2 ≈ NN
∞∑

s=−∞

δ(x+ s) (4.45)

To get the overall normalization constant NN , we have to integrate both sides of (4.45),
using the fact that ∫ ∞

−∞
δ(x) dx = 1 (4.46)

Of course, we don’t actually want to integrate |∆N(x)|2 from −∞ to∞, because it’s periodic,
and we’re bound to get something infinite when we add up the contributions from the infinite
number of peaks. And likewise, the right-hand side contains an infinite number of delta
functions. So we should just integrate over one cycle, using∫ 1/2

−1/2

δ(x) dx = 1 (4.47)

and choose NN so that∫ 1/2

−1/2

|∆N(x)|2 dx = NN
∞∑

s=−∞

∫ 1/2

−1/2

δ(x+ s) dx = NN (4.48)
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We could explicitly evaluate (or look up) the integral of |∆N(x)|2 =
(

sinπNx
sinπx

)2
, but it turns

out to be easier to evaluate it as

NN =

∫ 1/2

−1/2

∆N(x)[∆N(x)]∗ dx =

∫ 1/2

−1/2

N−1∑
j=0

e−i2πjx
N−1∑
`=0

ei2π`x dx =
N−1∑
j=0

N−1∑
`=0

∫ 1/2

−1/2

e−i2π(j−`)x dx .

(4.49)
But the integral is straighforward:∫ 1/2

−1/2

e−i2π(j−`)x dx =

{
1 j = `
sin(π[j−`])
π(j−`) j 6= `

= δj` (4.50)

so ∫ 1/2

−1/2

e−i2π(j−`)x dx = δj` j, ` ∈ Z (4.51)

and the normalization constant is

NN =
N−1∑
j=0

N−1∑
`=0

δj` = N (4.52)

and

|∆N(x)|2 ≈ N
∞∑

s=−∞

δ(x− s) (4.53)

We can now substitute this back into (4.43) and find〈∣∣∣ĥk∣∣∣2〉 =

∫ ∞
−∞
|∆N([fk − f ]δt)|2 Sh(f) df ≈ N

∞∑
s=−∞

∫ ∞
−∞

δ([fk − f ]δt− s)Sh(f) df

=
N

δt

∞∑
s=−∞

∫ ∞
−∞

δ(f − [fk − s/δt])Sh(f) df =
N

δt

∞∑
s=−∞

Sh(fk − s/δt) .
(4.54)

That means that the correct definition of the periodogram is

Pk :=
δt

N

∣∣∣ĥk∣∣∣2 . (4.55)

Its expectation value is

〈Pk〉 =

∫ ∞
−∞

δt

N
|∆N([fk − f ]δt)|2 Sh(f) df ≈

∞∑
s=−∞

Sh(fk − s/δt) (4.56)

4.5.3 Shortcomings of the Periodogram

There are a few ways in which the periodogram is not quite an ideal estimate of the underlying
PSD Sh(f):
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1. As noted above, it’s not actually an approximation to the PSD at fk, but to that,
plus the PSD at fk + 1/δt plus the PSD at fk + 2/δt etc. This is the usual aliasing
phenomenon; since 1/δt is twice the Nyquist frequency, we can avoid it by doing some
sort of analog processing of our original time series so that Sh(f) = 0 if |f | is above
the Nyquist frequency, and then confining attention to k between −N/2 and N/2− 1
so that fk is between minus Nyquist and Nyquist. We’ll assume we’ve done that.

2. The function |∆N([fk − f ]δt)|2 is not actually the greatest approximation to the Dirac
delta function, because of the “ringing” in the side lobes outside of the main peak. This
means the periodogram estimate at a given frequency will be “contaminated” with data
from nearby frequencies to a greater degree than necessary. This phenomenon is called
spectral leakage. The source of this problem is that by sampling h(t) only from t0 to
t0 + T , we’ve effectively multiplied it by a rectangular window in the time domain

Wr(t) =


0 t < t0

1 t0 ≤ t < T

0 t ≥ T

(4.57)

which means the Fourier transform is the convolution of W̃ (f) with h̃(f). We know
that the Fourier transform of a rectangle is not the nicest thing in the world, so we’re
better off multiplying the data by a window which more smoothly rises from 0 to 1
and then goes back down again, since its Fourier transform will stretch out less in
frequencies. We won’t elaborate on that further right now, but see, e.g., Section 13.4
of Numerical Recipes for more.

3. While Pk has the right expected mean (4.56), its expected variance〈
(Pk − 〈Pk〉)2

〉
=
〈
P 2
k

〉
− 〈Pk〉2 , (4.58)

which is a measure of the square of the typical error associated with the estimate, is
larger than we’d like. We can look at

〈
P 2
k

〉
=

(
δt

N

)2 〈
ĥkĥ

∗
kĥkĥ

∗
k

〉
; (4.59)

now, we can’t actually evaluate this without saying more about the properties of h(t)
than we’ve specified. We’ve talked about the expectation value and the autocorrelation,
but not the full distribution of probabilities of possible values. We’ll soon develop the
machinery to consider such things, but for now, we’ll just state that for some choices
of that underlying distribution〈

ĥkĥ
∗
kĥkĥ

∗
k

〉
∼ 2

〈
ĥkĥ

∗
k

〉〈
ĥkĥ

∗
k

〉
(4.60)

and if that’s the case 〈
P 2
k

〉
∼ 2

(
δt

N

∣∣∣ĥk∣∣∣)2

= 2 〈Pk〉2 (4.61)
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but that means the expected mean square error is the square of the expectation value
itself: 〈

(Pk − 〈Pk〉)2
〉
∼ 〈Pk〉2 ≈ [Sh(fk)]

2 (4.62)

so we have an estimate of the power whose typical error is the same size as the estimate
itself!

Note that this is independent of T , which means you don’t get any better of an es-
timate of the PSD of a wide-sense stationary process by including more data in the
periodogram. This is perhaps not so surprising if we recall that the discrete Fourier
transform was developed in the context of deterministic data. Having a longer stretch
of data produces higher resolution in the frequency domain, because δf = 1

T
. So

that means if you construct a periodogram from 50 seconds of data, you get not-very-
accurate PSD estimates at frequencies separated by 0.02 Hz. If you use 200 seconds,
you get PSD estimates at more frequencies, just 0.005 Hz apart, but they’re not any
more accurate; they still have RMS expected errors equal to their expectation values.
However, if the underlying PSD Sh(f) doesn’t vary much as a function of frequency,
then Sh(43.000 Hz), Sh(43.005 Hz), Sh(43.010 Hz) etc may be more or less the same,
and so the corresponding periodograms will be estimates of roughly the same quantity.
So you’d want to average those together to get a more accurate estimate. I.e., you
want to lower the frequency resolution.

You can get a lower frequency resolution by doing your Fourier transforms over a
shorter time, i.e., by breaking up the time T into Nc chunks, each of duration T/Nc,
then doing discrete Fourier transforms over the N = T

Ncδt samples in each chunk. The
periodogram from the αth chunk is then

Pαk =
δt

N

∣∣∣ĥk∣∣∣2 ; (4.63)

its frequency resolution is

δf =
1

N δt
=
Nc
T

. (4.64)

Each periodogram has expected mean

〈Pαk〉 ≈ P (fk) = P (kδf) (4.65)

and variance 〈
P 2
αk

〉
− 〈Pαk〉 ≈ [P (fk)]

2 (4.66)

as before. But we can take the average of all Nc periodograms

P k =
1

Nc

Nc−1∑
α=0

Pαk (4.67)

and since averaging independent random variables lowers the resulting variance,〈
P k

〉
= P (fn) (4.68)
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and variance 〈
P

2

k

〉
−
〈
P k

〉
≈ [P (fk)]

2

Nc
. (4.69)

So the error in the PSD estimation shrinks like 1/
√
Nc. We can get a more accurate

estimate of the PSD by breaking the time up into chunks and averaging, but at the
expense of a coarser frequency resolution. The appropriate tradeoff depends on the
sharpness of the features that we want to resolve in the spectrum.
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