WS for December 17 th : 1016-351: Coverage -3.3, 3.4: Dr. Chulmin Kim

(Useful formulas are provided on the back.)

1. Wegman's gives its customers cards that may win them a prize when matched with other cards. The back of the card announces the following probabilities of winning various amounts:

Amount	$\$ 100$	$\$ 20$	$\$ 6$	$\$ 0$
Probability	$1 / 100$	$1 / 10$	$1 / 2$	$?$

a. What is the probability of winning nothing, i.e., getting $\$ 0$?
b. What is the mean amount won?
c. What is the standard deviation of the amount won?
d. Find the variance of ($3 X-100$) using the results in part b and c.
2. Let $E[X(X+1)]=16$ and $\operatorname{Var}(X)=10$. Find $E\left(X^{2}\right)$ if $E(X)<0$.
3. Corinne is a basketball player who makes 80% of her free throws over the course of a season. In a key game, she shoots 4 free throws and misses 2 of them. What is the probability she misses 2 or more out of 4 ?
4. Children inherit their blood type from their parents, with probabilities that reflect the parents' generic makeup. Children of Juan and Maria each have probability $1 / 4$ of having type A and inherit independently of each other. Juan and Maria plan to have 3 children. Let X be the number of children who have blood type A.
[Hint: At first find the most appropriate distribution for X.]
a. Make the probability distribution table of X .

x	0	1	2	3	Total
$\mathrm{P}(X=x)$					1

b. Find the mean number of children with type A blood, and standard deviation.

- $\mu_{X}=x_{1} p_{1}+x_{2} p_{2}+\cdots+x_{k} p_{k}$

$$
=\sum_{i=1}^{k} x_{i} p_{i}
$$

- $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$
- $\operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2}$
- If a count X has the binomial distribution $B(n, p)$, then

$$
\mu_{X}=n \times p \quad \sigma_{X}=\sqrt{n \times p \times(1-p)}
$$

VARIANCE OF A DISCRETE RANDOM VARIABLE

Suppose that X is a discrete random variable whose distribution is

Value of X	x_{1}	x_{2}	x_{3}	\cdots	x_{k}
Probability	p_{1}	p_{2}	p_{3}	\cdots	p_{k}

and that μ_{X} is the mean of X. The variance of X is

$$
\begin{aligned}
\sigma_{X}^{2} & =\left(x_{1}-\mu_{X}\right)^{2} p_{1}+\left(x_{2}-\mu_{X}\right)^{2} p_{2}+\cdots+\left(x_{k}-\mu_{X}\right)^{2} p_{k} \\
& =\sum\left(x_{i}-\mu_{X}\right)^{2} p_{i}
\end{aligned}
$$

The standard deviation σ_{X} of X is the square root of the variance.

Definition, pg 300
Introduction to the Practice of Statistics, Fifth Edition

- 2005 W. H. Freeman and Company

BINOMIAL PROBABILITY

If X has the binomial distribution $B(n, p)$ with n observations and probability p of success on each observation, the possible values of X are $0,1,2, \ldots, n$. If k is any one of these values, the binomial probability is

$$
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

