Dr. Kim's Note (December 17th)

The values taken on by the random variable X are random, but the values follow the pattern given in the random variable table. What is a typical value of a random variable X? The solution is given by the following definition:

Mean of a Discrete Random variable

Suppose that X is a discrete random variable whose distribution is

Value of X	Probability			
X 1	рı			
X2	P2			
:	•			
X _k	Рĸ			

To find the **mean** of X, multiply each possible value by its probability, then add all the products: $\mu_X = x_1 p_1 + x_2 p_2 + \dots + x_k p_k = \sum_{i=1}^k x_i p_i$.

This means that the average or expected value, μ_X of the random variable X is equal to the sum of all possible values of the variable, x_i 's, multiplied by the probabilities of each value happening.

In our 2 tosses of a coin example, we can compute the average number of heads in 2 tosses by 0(1/4)+1(1/2)+2(1/4)=1. That is, the average number or expected number of heads in 2 tosses is one head.

A more helpful way to implement this formula is to create the random variable table again, but now add an additional column to the table, and call it $X^*P(x)$. In this third column multiply the value of X by the probability. For example,

X P(x) X*P(x) 0 1/4 0 1 1/2 1/2 2 1/4 1/2

then, the average or expected value of X is found by adding up all the values in the third column to obtain $\mu_X = 1$. Suppose that we toss a coin 3 times, let X be the number of heads in 3 tosses. The table is:

Х	P(x)	X*P(x)
0	1/8	0
1	3/8	3/8
2	3/8	6/8
3	1/8	3/8

 μ_X =12/8=1.5. So the expected number of heads in three is one and a half heads.

Figure Locating the mean of a discrete random variable on the probability histogram for (a) digits between 1 and 9 chosen at random; (b) digits between 1 and 9 chosen from that obey Benford's law. If p(x) is the pmf of X and h(X) is a function of X, then $E[h(X)] = \sum_{i=1}^{k} h(x_i)p(x_i)$.

VARIANCE OF A DISCRETE RANDOM VARIABLE

Suppose that X is a discrete random variable whose distribution is

Value of X	<i>X</i> 1	<i>X</i> ₂	X ₃	•••	X _k
Probability	p_1	p_2	p_3	• • •	p_k

and that μ_X is the mean of *X*. The **variance** of *X* is

$$\sigma_X^2 = (x_1 - \mu_X)^2 p_1 + (x_2 - \mu_X)^2 p_2 + \dots + (x_k - \mu_X)^2 p_k$$

= $\sum (x_i - \mu_X)^2 p_i$

The **standard deviation** σ_X of *X* is the square root of the variance.

Definition, pg 300 Introduction to the Practice of Statistics, Fifth Edition © 2005 W. H. Freeman and Company

•
$$Var(X) = E(X^2) - [E(X)]^2$$

Linear Functions of Random Variables

Rules of Expected Value

- For any constant a, E(aX) = aE(X).
- For any constant b, E(X+b) = E(X) + b.
- So, E(aX+b) = aE(X) + b.

Rules for Variance

• For any constants a or b,

 $Var(aX + b) = a^2 Var(X).$

Mean and Variance of a Bernoulli Variable

If X~Bernoulli(p), then

- $EX = \mu_X = p$
- $Var X = \sigma^{2} = p(1-p).$

The Binomial Distribution

Binomial Distributions

The distribution of the count X of successes is called the **binomial distribution** with parameters n and p. The parameter n is the number of observations, and p is the probability of a success on any single observation. The possible values of X are the integers from 0 to $n. X \sim B(n, p)$.

THE BINOMIAL SETTING

1. There are a fixed number *n* of observations.

2. The *n* observations are all independent.

3. Each observation falls into one of just two categories, which for convenience we call "success" and "failure."

4. The probability of a success, call it *p*, is the same for each observation.

Example (a) Toss a balanced coin 10 times and count the number X of heads. There are n=10 tosses. Successive tosses are independent. If the coin is balanced, the probability of a head is p=0.5 on each toss. The number of heads we observe has the binomial distribution B(10, 0.5).

Finding binomial probabilities: Tables

We find cumulative binomial probabilities for some values for n and p by looking up probabilities in **Appendix Table A.1 (pp.664)** in the back of the book. The entries in the table are the cumulative probabilities $P(X \le x)$ of individual outcomes for a binomial random variable X.

Example A quality engineer selects an SRS of 10 switches from a large shipment for detailed inspection. Unknown to the engineer, 10% of the switches in the shipment fail to meet the specifications. What is the probability that no more than 1 of the 10 switches in the sample fails inspection? (Solution) Let X be the count of bad switches in the sample. The probability that the switches in the shipment fail to meet the specification is p=0.1 and sample size is n=10. Thus $X \sim B(n=10, p=0.1)$. We want to calculate

 $P(X \le 1) = P(X = 0) + P(X = 1)$

Let's look at page 664 in the **Table A.1** for this calculation, look n=10 and x=1 under p=0.10. Then we find

$$P(X \le 1) = P(X = 0) + P(X = 1)$$

= .736.

About 74% of all samples will contain no more than 1 bad switch.

Figure Probability histogram for the binomial distribution with n=10 and p=0.1.

Example Corinne is a basketball player who makes 75% of her free throws over the course of a season. In a key game, Corinne shoots 15 free throws and misses 6 of them. The fans think that she failed because she was nervous. Is it unusual for Corinne to perform this poorly?

(Solution) Let X be the number of misses in 15 attempts. The probability of a miss is p=1-0.75=0.25. Thus, X~B(n=15, p=0.25).

We want the probability of missing 5 or more. Let's look at page 664 in the **Table A.1** for this calculation, look n=15 and x=5 under p=0.25.

 $P(X \ge 6) = P(X = 6) + \dots + P(X = 15)$

 $=1-P(X<6)=1-P(X\leq5)=1-.852=.148.$

Corinne will miss 6 or more out of 15 free throws about 15% of the time, or roughly one of every seven games. While below her average level, this performance is well within the range of the usual chance variation in her shooting.

Binomial Mean and Standard Deviation

If a count X has the binomial distribution B(n,p), then

$$\mu_X = n \times p$$
$$\sigma_X = \sqrt{n \times p \times (1-p)}$$

Binomial formulas

BINOMIAL COEFFICIENT

The number of ways of arranging *k* successes among *n* observations is given by the **binomial coefficient**

$$\binom{n}{k} = \frac{n!}{k! (n-k)!}$$

for k = 0, 1, 2, ..., n.

Definition, pg 349a Introduction to the Practice of Statistics, Fifth Edition © 2005 W. H. Freeman and Company