## Dr. Kim's Note (December 17 ${ }^{\text {th }}$ )

The values taken on by the random variable $X$ are random, but the values follow the pattern given in the random variable table. What is a typical value of a random variable $X$ ? The solution is given by the following definition:

## Mean of a Discrete Random variable

Suppose that $X$ is a discrete random variable whose distribution is

| Value of $\boldsymbol{X}$ | Probability |
| :---: | :---: |
| $x_{1}$ | $p_{1}$ |
| $x_{2}$ | $p_{2}$ |
| $:$ | $:$ |
| $x_{k}$ | $p_{k}$ |

To find the mean of $X$, multiply each possible value by its probability, then add all the products: $\mu_{X}=x_{1} p_{1}+x_{2} p_{2}+\cdots+x_{k} p_{k}=\sum_{i=1}^{k} x_{i} p_{i}$.

This means that the average or expected value, $\mu_{x}$ of the random variable $X$ is equal to the sum of all possible values of the variable, $x_{i}$ 's, multiplied by the probabilities of each value happening.

In our 2 tosses of a coin example, we can compute the average number of heads in 2 tosses by $0(1 / 4)+1(1 / 2)+2(1 / 4)=1$. That is, the average number or expected number of heads in 2 tosses is one head.

A more helpful way to implement this formula is to create the random variable table again, but now add an additional column to the table, and call it $X^{*} P(x)$. In this third column multiply the value of $X$ by the probability. For example,

then, the average or expected value of $X$ is found by adding up all the values in the third column to obtain $\mu_{X}=1$.

Suppose that we toss a coin 3 times, let $X$ be the number of heads in 3 tosses. The table is:

$$
X \quad P(x) \quad X^{*} P(x)
$$

| 0 | $1 / 8$ | 0 |
| :---: | :---: | :---: |
| 1 | $3 / 8$ | $3 / 8$ |
| 2 | $3 / 8$ | $6 / 8$ |
| 3 | $1 / 8$ | $3 / 8$ |

$\mu_{X}=12 / 8=1.5$. So the expected number of heads in three is one and a half heads.


Introduction to the Practice of Statistics, Fifth Edition
$62005 \mathrm{~W} . \mathrm{H}$. Freeman and Company
Figure Locating the mean of a discrete random variable on the probability histogram for (a) digits between 1 and 9 chosen at random; (b) digits between 1 and 9 chosen from that obey Benford's law.

If $p(x)$ is the pmf of $X$ and $h(X)$ is a function of $X$, then $E[h(X)]=\sum_{i=1}^{k} h\left(x_{i}\right) p\left(x_{i}\right)$.

## VARIANCE OF A DISCRETE RANDOM VARIABLE

Suppose that $X$ is a discrete random variable whose distribution is

| Value of $X$ | $x_{1}$ | $x_{2}$ | $x_{3}$ | $\cdots$ | $x_{k}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Probability | $p_{1}$ | $p_{2}$ | $p_{3}$ | $\cdots$ | $p_{k}$ |

and that $\mu_{X}$ is the mean of $X$. The variance of $X$ is

$$
\begin{aligned}
\sigma_{X}^{2} & =\left(x_{1}-\mu_{X}\right)^{2} p_{1}+\left(x_{2}-\mu_{X}\right)^{2} p_{2}+\cdots+\left(x_{k}-\mu_{X}\right)^{2} p_{k} \\
& =\sum\left(x_{i}-\mu_{X}\right)^{2} p_{i}
\end{aligned}
$$

The standard deviation $\sigma_{X}$ of $X$ is the square root of the variance.

Definition, pg 300
Introduction to the Practice of Statistics, Fifth Edition
© 2005 W.H. Freeman and Company

- $\operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2}$


## Linear Functions of Random Variables

## Rules of Expected Value

- For any constant $a, E(a X)=a E(X)$.
- For any constant $b, E(X+b)=E(X)+b$.
- So, $E(a X+b)=a E(X)+b$.


## Rules for Variance

- For any constants a or b,
$\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$.

Mean and Variance of a Bernoulli Variable
If $X \sim$ Bernoulli( $p$ ), then

- $E X=\mu_{x}=p$
- $\operatorname{VarX}=\sigma^{2} x=p(1-p)$.


## The Binomial Distribution

## Binomial Distributions

The distribution of the count $X$ of successes is called the binomial distribution with parameters $n$ and $p$. The parameter $n$ is the number of observations, and $p$ is the probability of a success on any single observation. The possible values of $X$ are the integers from 0 to $n . ~ X \sim B(n, p)$.

## THE BINOMIAL SETTING

1. There are a fixed number $n$ of observations.
2. The $n$ observations are all independent.
3. Each observation falls into one of just two categories, which for convenience we call "success" and "failure."
4. The probability of a success, call it $p$, is the same for each observation.

Example (a) Toss a balanced coin 10 times and count the number $X$ of heads. There are $n=10$ tosses. Successive tosses are independent. If the coin is balanced, the probability of a head is $p=0.5$ on each toss. The number of heads we observe has the binomial distribution $\mathrm{B}(10,0.5)$.

## Finding binomial probabilities: Tables

We find cumulative binomial probabilities for some values for $n$ and $p$ by looking up probabilities in Appendix Table A. 1 (pp.664) in the back of the book. The entries in the table are the cumulative probabilities $P(X \leq x)$ of individual outcomes for a binomial random variable $X$.

Example A quality engineer selects an SRS of 10 switches from a large shipment for detailed inspection. Unknown to the engineer, $10 \%$ of the switches in the shipment fail to meet the specifications. What is the probability that no more than 1 of the 10 switches in the sample fails inspection?
(Solution) Let $X$ be the count of bad switches in the sample. The probability that the switches in the shipment fail to meet the specification is $p=0.1$ and sample size is $n=10$. Thus $X \sim B(n=10, \mathrm{p}=0.1)$. We want to calculate

$$
P(X \leq 1)=P(X=0)+P(X=1)
$$

Let's look at page 664 in the Table A. 1 for this calculation, look $n=10$ and $x=1$ under $\mathrm{p}=0.10$. Then we find

$$
\begin{aligned}
P(X \leq 1)= & P(X=0)+P(X=1) \\
& =.736 .
\end{aligned}
$$

About 74\% of all samples will contain no more than 1 bad switch.


Figure Probability histogram for the binomial distribution with $n=10$ and $p=0.1$.

Example Corinne is a basketball player who makes $75 \%$ of her free throws over the course of a season. In a key game, Corinne shoots 15 free throws and misses 6 of them. The fans think that she failed because she was nervous. Is it unusual for Corinne to perform this poorly?
(Solution) Let $X$ be the number of misses in 15 attempts. The probability of a miss is $p=1$ $0.75=0.25$. Thus, $X \sim B(n=15, p=0.25)$.
We want the probability of missing 5 or more. Let's look at page 664 in the Table A. 1 for this calculation, look $n=15$ and $x=5$ under $\mathrm{p}=0.25$.

$$
\begin{aligned}
P(X \geq 6) & =P(X=6)+\cdots+P(X=15) \\
& =1-\mathrm{P}(\mathrm{X}<6)=1-\mathrm{P}(\mathrm{X} \leq 5)=1-.852=.148 .
\end{aligned}
$$

Corinne will miss 6 or more out of 15 free throws about $15 \%$ of the time, or roughly one of every seven games. While below her average level, this performance is well within the range of the usual chance variation in her shooting.

## Binomial Mean and Standard Deviation

If a count $X$ has the binomial distribution $B(n, p)$, then

$$
\begin{aligned}
& \mu_{X}=n \times p \\
& \sigma_{X}=\sqrt{n \times p \times(1-p)}
\end{aligned}
$$

## Binomial formulas

## BINOMIAL COEFFICIENT

The number of ways of arranging $k$ successes among $n$ observations is given by the binomial coefficient

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

for $k=0,1,2, \ldots, n$.

