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0 Bayes’s Theorem

1 Random Variables
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3.7, 3.9, 3.13, 3.21, 3.23, 3.25
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3 Binomial Distribution

Practice Problems
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Tuesday 5 January 2010

4 More on the Binomial Distribution

Recall: if we have a fixed number n of trials, each of which has a chance p
of success, then if X is the random variable representing the total number of
successes, X is called a binomial random variable, and we write

X ∼ Bin(n, p) (4.1)

and the pmf of X follows a binomial distribution

p(x) = b(x;n, p) =

(
n

x

)
px(1− p)n−x x = 0, 1, . . . , n (4.2)
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because (
n

x

)
=

n!

x!(n− x)!
(4.3)

(“n choose x”) is the number of possible sequences of x successes and n− x
failures, and px(1− p)n−x is the probability of any one such sequence.

Also, the cdf of X is written

F (x) = B(x;n, p) =
x∑
y=0

b(y;n, p) (4.4)

Now, b(x;n, p) and B(x;n, p) are explicitly defined, and you could in
principle work them out by hand every time you need one. However, for
all but the smallest values of x and n − x, that becomes tedious rather
quickly. So this is the first of unfortunately many examples in probability
and statistics where the standard approach is to look up the distribution in
a statistical table. This is something of an anachronism, since these things
can be easily calculated on a computer these days. But there is some middle
ground between relying entirely on brute force and tables, and letting a
statistical software package do your entire analysis for you. It’s sort of like
trigonometry: before the advent of calculators, you had to interpolate sines
and cosines from values in a table. Now you can punch them into your
calculator or call a function in a computer program. But you don’t rely
on a trigonometry package to work out all of your triangles for you. (And
you hopefully remember the sines and cosines of a few simple angles like 0◦,
30◦, 45◦ and 90◦.) So you shouldn’t be ashamed to leave the calculating of
something like B(15; 35, .7) to a computer, but you should remember where
it came from. (And also be able to write a little script in the language of
your choice to calculate it.)

4.1 Hypergeometric Distribution

The binomial distribution is appropriate when the probability of each success
or failure doesn’t depend on the number of successes, like when calculating
the probability of getting a total of three sixes when rolling ten six-sided
dice. However, it doesn’t give the right probabilities when you’re taking
elements out of a finite population. For example, consider the probability of
getting exactly three spades in a five-card poker hand. Although 13 of the
52 cards in the deck are spades, we know from our example of calculating
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the probability of a flush that it’s not just b(3; 5, 1/4). Instead we need to
calculate the number of different hands which have three spades and two
non-spades, and divide it by the total number of possible poker hands.

• There are
(
13
3

)
= 13!

3!10!
combinations of 3 out of the 13 spades.

• There are
(
39
2

)
= 39!

2!37!
combinations of 5−3 = 2 out of the 52−13 = 39

non-spades.

• There are
(
52
5

)
= 52!

5!47!
combinations of 5 out of the 52 cards.

So there are
(
13
3

)(
39
2

)
different hands with exactly 3 spades, out of

(
52
5

)
total

hands, and the probability is

p(3♠) =

(
13
3

)(
52−13
5−3

)(
52
5

) (4.5)

This is a special case of something called the Hypergeometric Distribution.
If we randomly draw n items out of a set of N , M of which are successes,
the number of successes we’ll draw is a random variable X whose pmf is

h(x;n,M,N) =

(
M
x

)(
N−M
n−x

)(
N
n

) (4.6)

We say that the n items are drawn “without replacement”. If we drew
cards one at a time and shuffled them back into the deck, we would be
back in the situation where the probability of success for each card was the
same no matter how many spades had already been drawn, and in that case
we’d be back to a binomial distrubution. It must also be the case that the
hypergeometric distribution reduces to a binomial one when the number of
draws is much less than the number of total objects, since in that case the
probability of success on each draw shouldn’t be effected much by the removal
of a few successes or failures from the pool.

We can show this from the formula, that h(x;n,M,N) ≈ b(x;n,M/N)
when n� N , x�M and n− x� N −M . We first note that(

N

n

)
=

N !

(N − n)!n!
=
N(N − 1) · · · (N − n+ 1)

n!

=
Nn

n!

(
1− 1

N

)(
1− 2

N

)
· · ·
(

1− n− 1

N

) (4.7)
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In the limit of large N , each of the factors in parentheses goes to 1, so we can
replace

(
N
n

)
with Nn

n!
. If we do the same thing with the other combinations,

we get

h(x;n,M,N) ≈
Mx

x!
(N−M)n−x

(n−x)!
Nn

n!

=
n!

x!(n− x)!

Mx(N −M)n−x

NxNn−x

=

(
n

x

)(
M

N

)x(
N −M
N

)n−x
= b

(
x;N,

M

N

) . (4.8)

4.2 Negative Binomial Distribution

Return now to a scenario where the per-trial chance of success is fixed. The
binomial distribution is appropriate when the number of trials, n, is fixed
ahead of time. If instead we decide that we’ll keep doing trials until we have
a specified number of successes, r, the pmf for the number of failures, X,
that we have in the meantime is nb(x; r, p). Note that this is not n times
b(· · · ); the “nb” is taken as a unit. The total number of trials is X+r (which
is also a random variable).

This probability is a little more involved to estimate. To get X = x, we
have to have r− 1 successes (and x failures) in the first x+ r− 1 trials, and
then a success in the last trial, so

nb(x; r, p) = b(r − 1;x+ r − 1, p) · p =

(
x+ r − 1

r − 1

)
pr−1(1− p)xp

=

(
x+ r − 1

r − 1

)
pr(1− p)x

(4.9)

We can have any (non-negative integer) number of failures, so the pmf is
defined for x = 0, 1, 2, . . ..

4.3 Summary of Binomial and Related Distributions

The binomial, hypergeometric and negative binomial distributions are sum-
marized in this table:

Distribution Trials Successes Failures Prob/Success
Binomial n, fixed X, rv n−X, rv p, fixed

Hypergeometric n, fixed X, rv n−X, rv drawn from M succ in pop of N
Negative Binomial X + r, rv r, fixed X, rv p, fixed
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Distribution pmf Domain
Binomial b(x;n, p) =

(
n
x

)
px(1− p)n−x 0 ≤ x ≤ n

Hypergeometric h(x;n,M,N) =
(M

x )(N−M
n−x )

(N
n)

max(0, n−N +M) ≤ x ≤ min(n,M)

Negative Binomial nb(x; r, p) =
(
x+r−1
r−1

)
pr(1− p)x 0 ≤ x

Practice Problems

3.65, 3.69, 3.71, 3.73, 3.75, 3.77

Thursday 7 January 2010

5 Poisson Distribution

Devore introduces the Poisson distribution starting with its pmf and then
delving into the situations where it’s relevant. Let’s come at it from the
other side. Consider the numerous statistical statements1 you get like:

1. On average 118.3 people per day are killed in traffic accidents in the
US

2. On average there are 367.2 gamma-ray bursts detected per year by
orbiting satellites

3. During a rainstorm, an average of 929.4 raindrops falls on a square foot
of ground each minute

In each of these cases, the number of events, X, occurring in one representa-
tive interval is a discrete random variable with a probability mass function.
The average number of events occurring is a parameter of this distribution,
which we traditionally write as λ. From the information given above, we
only know the mean value of the distribution, E(X) = λ.

The key bit of extra information that makes the pmf a Poisson distribu-
tion is what happens if you break the interval up into smaller pieces. If each
of the pieces can be treated as the same and independent of the others, the
Poisson distribution is appropriate. So if we divide the day into 100 equal
pieces of 14 minutes 24 seconds each, is the number of traffic deaths in each

1I fabricated the last few significant figures in each of these numbers to produce a
concrete example.
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an independent random variable with a mean value of 11.83? Now, in prac-
tice this assumption will often not quite be true: the rate of traffic deaths
is higher at some times of the day than others, some patches of ground may
be more prone to be rained on because of wind patterns, etc, but we can
imagine an idealized situation in which this subdivision works.

Okay, so how do we get the pmf? Take the interval in question (time
interval, area of ground, or whatever) and divide it into n pieces. Each one
of them will have an average of λ/n events. If we make n really big, so that
λ/n � 1, the probability of getting one event in that little piece will be
small, and the probability that two or more of them happen to occur in the
same piece is even smaller, and we can ignore it to a good approximation.
(We can always make the approximation better by making n bigger.) That
means that the number of events in that little piece, call it Y , has a pmf of

p(Y = 0) ≈ 1− p (5.1a)

p(Y = 1) = p (5.1b)

p(Y > 1) ≈ 0 (5.1c)

In order to have E(Y ) = λ/n, the probability of an event occurring in that
little piece has to be p = λ/n.

But we have now described the conditions for a binomial distribution!
Each of the n tiny sub-pieces of the interval is like a trial, a piece with an
event is a success, and a piece with no event is a failure. So the pmf for this
Poisson random variable must be the limit of a binomial distribution as the
number of trials gets large:

p(x;λ) = lim
n→∞

b(x;n, λ/n) = lim
n→∞

n!

x!(n− x)!

(
λ

n

)x(
1− λ

n

)n−x
=
λx

x!
lim
n→∞

(
1− λ

n

)n
n!

(n− x)!

(
1/n

1− λ/n

)x (5.2)

Now, the ratio of factorials is a product of x things:

n!

(n− x)!
= n(n− 1)(n− 2) · · · (n− x+ 1) (5.3)

The last factor is of course also the product of x things, i.e., x identical copies
of

1/n

1− λ/n
=

1

n− λ
. (5.4)
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But that means the two of them together give you

n!

(n− x)!

(
1/n

1− λ/n

)x
=

n

n− λ
n− 1

n− λ
n− 2

n− λ
· · · n− x+ 1

n− λ
(5.5)

which is the product of x fractions, each of which goes to 1 as n goes to
infinity, so we can lose that factor in the limit and get

p(x;λ) =
λx

x!
lim
n→∞

(
1− λ

n

)n
=
λx

x!
e−λ . (5.6)

We’ve used the exponential function

eα = lim
n→∞

(
1 +

α

n

)n
; (5.7)

This is the form one usually sees in the context of compound interest. 2 Here
e is Euler’s number, e = 2.718 . . ..

Note that in the pmf for a Poisson random variable X,

p(x;λ) =
λx

x!
e−λ (5.8)

the most daunting part, the exponential, doesn’t actually depend on x. It’s
a normalization constant which depends on the parameter λ. If we only care
about the relative probabilities, we could write

p(x;λ) = N (λ)
λx

x!
; (5.9)

the fact that the constant N (λ) is e−λ is required by the normalization

∞∑
x=0

p(x;λ) = N (λ)
∞∑
x=0

λx

x!
= N (λ) eλ . (5.10)

This uses the Taylor series

eλ =
∞∑
x=0

λx

x!
(5.11)

2If the rate times the term is α and we compound the interest at n equally spaced
intervlas during the term, the principal grows by a factor of (1 + α/n)

n
; in the limit of

continuously compounded interest, the principal doesn’t grow infinitely, but only by a
factor of eα.
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5.1 Example: Poisson distribution for λ = 2

We can work out the pmf in this case. The normalization constant is e−2 =
.135335. The pmf values are

p(0; 2.) =
20

0!
e−2 = .135 (5.12a)

p(1; 2.) =
21

1!
e−2 = .271 (5.12b)

p(2; 2.) =
22

2!
e−2 = .271 (5.12c)

p(3; 2.) =
23

3!
e−2 = .180 (5.12d)

p(4; 2.) =
24

4!
e−2 = .0902 (5.12e)

p(5; 2.) =
25

5!
e−2 = .0361 (5.12f)

p(6; 2.) =
26

6!
e−2 = .0120 (5.12g)

p(7; 2.) =
27

7!
e−2 = .00344 (5.12h)

p(8; 2.) =
28

8!
e−2 = .000859 (5.12i)

Note that p(x;λ) never goes to zero, but it gets very small. We can also say
what the total probability of being above a certain point is, e.g.,

P (X > 4) = 1− P (X ≤ 4) = 1− e−2
(

1 + 2 + 2 +
4

3
+

2

3

)
= 1− 7e−2

= 1− .947 = .053

(5.13)

Practice Problems

3.79, 3.81, 3.83, 3.85, 3.91, 3.93
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