
Probability
(Devore Chapter Two)

1016-351-03: Probability∗

Winter 2009-2010

Contents

1 Axiomatic Probability 1
1.1 Outcomes and Events . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Rules of Probability . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Assigning Probabilities . . . . . . . . . . . . . . . . . . . . . . 4

2 Counting Techniques 4
2.1 Ordered Sequences . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Permutations and Combinations . . . . . . . . . . . . . . . . . 6

3 Conditional Probabilities and Tree Diagrams 8
3.1 Example: Odds of Winning at Craps . . . . . . . . . . . . . . 8
3.2 Definition of Conditional Probability . . . . . . . . . . . . . . 10
3.3 The Monty Hall Problem . . . . . . . . . . . . . . . . . . . . . 11

4 Bayes’s Theorem 12

∗Copyright 2009, John T. Whelan, and all that

1



Tuesday 8 December 2009

1 Axiomatic Probability

Many of the rules of probability appear to be self-evident, but an important
part of mathematics is illustrating that our intuition agrees with the logical
outcome of our models. To that end, Devore develops with some care a math-
ematical theory of probability. We’ll mostly summarize the key definitions
and results here.

1.1 Outcomes and Events

Devore defines probability in terms of an experiment which can have one
of a set of possible outcomes.

• The sample space of an experiment, written S, is the set of all possible
outcomes.

• An event is a subset of S, a set of possible outcomes to the experiment.
Special cases are:

– The null event ∅ is an event consisting of no outcomes (the
empty set)

– A simple event consists of exactly one outcome

– A compound event consists of more than one outcome

The sample space S itself an event, of course.
One example of an experiment is flipping a coin three times. The out-

comes in that case are HHH, HHT , HTH, HTT , THH, THT , TTH, and
TTT . Possible outcomes include:

• Exactly two heads: {HHT,HTH, THH}
• The first flip is heads: {HHH,HHT,HTH,HTT}
• The second and third flips are the same: {HHH,HTT, THH, TTT}

Another example is a game of craps, in which:

• if a 2, 3 or 12 is rolled on the first roll, the shooter loses

• if a 7 or 11 is rolled on the first roll, the shooter wins

• if a 4, 5, 6, 8, 9, or 10 is rolled on the first roll, the dice are rolled again
until the either that number or a 7 comes up, in which case the shooter
wins or loses, respectively.
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In this case there are an infinite number of outcomes in S, some of which
are: 2, 3, 7, 11, 12, 4|4, 4|7, 5|5, 5|7, 6|6, 6|7, 8|8, 8|7, 9|9, 9|7, 10|10,
10|7, 4|2|4, 4|3|4, 4|5|4, 4|6|4, . . . . Possible events include: the shooter wins
{7, 11, 4|4, 5|5, 6|6, 8|8, . . .}; the shooter loses {2, 3, 12, 4|7, . . .}; the dice are
thrown exactly once {2, 3, 7, 11, 12}, etc.

Since an event is a set of outcomes, we can use all of the machinery of set
theory, specifically:

• The complement A′ of a set A, is the set of all outcomes in S which
are not in A.

• The union A∪B of two sets A and B, is the set of all outcomes which
are in A or B, including those which are in both.

• The intersection A ∩ B is the set of all outcomes which are in both
A and B.

In the case of coin flips, if the events are A = {HHT,HTH, THH}
(exactly two heads) and B = {HHH,HHT,HTH,HTT} (first flip heads),
we

A′ = {HHH,HTT, THT, TTH, TTT}
A ∪B = {HHH,HHT,HTH,HTT, THH}

A ∩B = {HHT,HTH}

Another useful definition is that A and B are disjoint or mutually
exclusive events if A ∩B = ∅.

1.2 Rules of Probability

Having formally defined what we mean by an event, we can proceed to define
the probability of that event, which we think of as the chance that it will
occur. Devore starts with three axioms

1. For any event A, P (A) ≥ 0

2. P (S) = 1

3. Given an infinite collection A1, A2, A3, . . . of disjoint events,

P (A1 ∪ A2 ∪ A3 ∪ · · · ) = P

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai) (1.1)
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From there he manages to derive a bunch of other sensible results, such as

1. For any event A, P (A) ≤ 1

2. P (∅) = 0

3. P (A′) = 1− P (A)

One useful result concerns the probability of the union of any two events.
Since A ∪ B = (A ∩ B′) ∪ (A ∩ B) ∪ (A′ ∩ B), the union of three disjoint
events,

P (A ∪B) = P (A ∩B′) + P (A ∩B) + P (A′ ∩B) (1.2)

On the other hand, A = (A∩B′)∪ (A∩B) and B = (A∩B)∪ (A′ ∩B), so

P (A) = P (A ∩B′) + P (A ∩B) (1.3a)

P (B) = P (A ∩B) + P (A′ ∩B) (1.3b)

which means that

P (A) +P (B) = P (A∩B′) + 2P (A∩B) +P (A′∩B) = P (A∪B) +P (A∩B)
(1.4)

so
P (A ∪B) = P (A) + P (B)− P (A ∩B) (1.5)

1.3 Assigning Probabilities

The axioms of probability let us relate the probabilities of different events,
but they don’t tell us what those probabilities should be in the first place. If
we have a way of assigning probabilities to each outcome, and therefore each
simple event, then we can use the sum rule for disjoint events to write the
probability of any event as the sum of the probabilities of the simple events
which make it up. I.e.,

P (A) =
∑

Ei in A

P (Ei) (1.6)

One possibility is that each outcome, i.e., each simple event might be
equally likely. In that case, if there are N outcomes total, the probability of
each of the simple events is P (Ei) = 1/N (so that

∑N
i=1 P (Ei) = P (S) = 1),

and in that case

P (A) =
∑

Ei in A

1

N
=

N(A)

N
(1.7)
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where N(A) is the number of outcomes which make up the event A.
Note, however, that one has to consider whether it’s appropriate to take

all of the outcomes to be equally likely. For instance, in our craps example,
we considered each roll, e.g., 2 and 4, to be its own outcome. But you can
also consider the rolls of the individual dice, and then the two dice totalling
4 would be a composite event consisting of the outcomes (1, 3), (2, 2), and
(3, 1). For a pair of fair dice, the 36 possible outcomes defined by the numbers
on the two dice taken in order (suppose one die is green and the other red)
are equally likely outcomes.

2 Counting Techniques

2.1 Ordered Sequences

We can come up with 36 as the number of possible results on a pair of fair
dice in a couple of ways. We could make a table

1 2 3 4 5 6

1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

which is also useful for counting the number of occurrences of each total. Or
we could use something called a tree diagram:
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This works well for counting a small number of possible outcomes, but already
with 36 outcomes it is becoming unwieldy. So instead of literally counting
the possible outcomes, we should calculate how many there will be. In this
case, where the outcome is an ordered pair of numbers from 1 to 6, there are
6 possibilities for the first number, and corresponding to each of those there
are 6 possibilities for the second number. So the total is 6× 6 = 36.

More generally, if we have an ordered set of k objects, with n1 possibilities
for the first, n2 for the second, etc, the number of possible ordered k-tuples
is n1n2 . . . nk, which we can also write as

k∏
i=1

nk . (2.1)

2.2 Permutations and Combinations

Consider the probability of getting a poker hand (5 cards out of the 52-card
deck) which consists entirely of hearts.1 Since there are four different suits,
you might think the odds are (1/4)(1/4)(1/4)(1/4)(1/4) = (1/4)5 = 1/45.

1This is, hopefully self-apparently, one-quarter of the probability of getting a flush of
any kind.
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However, once a heart has been drawn on the first card, there are only 12
hearts left in the deck out of 51; after two hearts there are 11 out of 50, etc.,
so the actual odds are

P (♥♥♥♥♥) =

(
13

52

)(
12

51

)(
11

50

)(
10

49

)(
9

48

)
(2.2)

This turns out not to be the most effective way to calculate the odds of
poker hands, though. (For instance, it’s basically impossible to do a card-
by-card accounting of the probabability of getting a full house.) Instead
we’d like to take the approach of counting the total number of possible five-
card hands (outcomes) and then counting up how many fall into a particular
category (event). The terms for the quantities we will be interested in are
permutation and combination.

First, let’s consider the number of possible sequences of five cards drawn
out of a deck of 52. This is the permutation number of permutations of 5
objects out of 52, called P5,52. The first card can be any of the 52; the second
can be any of the remaining 51; the third can be any of the remaining 50,
etc. The number of permutations is

P5,52 = 52× 51× 50× 49× 48 (2.3)

In general

Pk,n = n(n− 1)(n− 2) · · · (n− k + 1) =
k−1∏
`=0

(n− `) . (2.4)

Now, there is a handy way to write this in terms of the factorial function.
Remember that the factorial is defined as

n! = n(n− 1)(n− 1) · · · (2)(1) =
n∏

`=1

` (2.5)

with the special case that 0! = 1. Then we can see that

n!

(n− k)!
=

n(n− 1)(n− 2) · · · (n− k + 1)����(n− k)������
(n− k − 1) · · ·��(2)��(1)

����(n− k)������
(n− k − 1) · · ·��(2)��(1)

= Pk,n

(2.6)

7



Note in particular that the number of ways of arranging n items is

Pn,n =
n!

(n− n)!
=

n!

0!
= n! (2.7)

Now, when we think about the number of different poker hands, actually
we don’t consider the cards in a hand to be ordered. So in fact all we care
about is the number of ways of choosing 5 objects out of a set of 52, without
regard to order. This is the number of combinations, which is sometimes
written C5,52, but which we’ll write as

(
52
5

)
, pronounced “52 choose 5”. When

we counted the number of different permutations of 5 cards out of 52, we
actually counted each possible hand a bunch of times, once for each of the
ways of arranging the cards. There are P5,5 = 5! different ways of arranging
the five cards of a poker hand, so the number of permutations of 5 cards out
of 52 is the number of combinations times the number of permutations of the
5 cards among themselves:

P5,52 =

(
52

5

)
P5,5 (2.8)

The factor of P5,5 = 5! is the factor by which we overcounted, so we divide
by it to get (

52

5

)
=

P5,52

P5,5

=
52!

47!5!
= 2598960 (2.9)

or in general (
n

k

)
=

n!

(n− k)!k!
(2.10)

So to return to the question of the odds of getting five hearts, there
are

(
52
5

)
different poker hands, and

(
13
5

)
different hands of all hearts (since

there are 13 hearts in the deck), which means the probability of the event
A = ♥♥♥♥♥ is

P (A) =
N(A)

N
=

(
13
5

)(
52
5

) =
13!
8!5!
52!
47!5!

=
13!47!

8!52!
=

(13)(12)(11)(10)(9)

(52)(51)(50)(49)(48)
(2.11)

which is of course what we calculated before. Numerically, P (A) ≈ 4.95 ×
10−4, while 1/45 ≈ 9.77× 10−4. The odds of getting any flush are four times
the odds of getting an all heart flush, i.e., 1.98× 10−3.
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Actually, if we want to calculate the odds of getting a flush, we have
over-counted somewhat, since we have also included straight flushes, e.g.,
4♥-5♥-6♥-7♥-8♥. If we want to count only hands which are flushes, we
need to subtract those. Since aces can count as either high or low, there are
ten different all-heart straight flushes, which means the number of different
all-heart flushes which are not straight flushes is(

13

5

)
− 10 =

13!

8!5!
− 10 = 1287− 10 = 1277 (2.12)

and the probability of getting an all-heart flush is 4.92×10−4, or 1.97×10−3

for any flush.
Exercise: work out the number of possible straights and therefore the

odds of getting a straight.

Practice Problems

2.5, 2.9, 2.13, 2.17, 2.29, 2.33, 2.43

Thursday 10 December 2009

3 Conditional Probabilities and Tree Diagrams

3.1 Example: Odds of Winning at Craps

Although there are an infinite number of possible outcomes to a craps game,
we can still calculate the probability of winning.

First, the sample space can be divided up into mutually exclusive events
based on the result of the first roll:

Event Probability Result of game

2, 3 or 12 on 1st roll 1+2+1
36

= 4
36
≈ 11.1% lose

7 or 11 on 1st roll 6+2
36

= 8
36
≈ 22.2% win

4 or 10 on 1st roll 3+3
36

= 6
36
≈ 16.7% ???

5 or 9 on 1st roll 4+4
36

= 8
36
≈ 22.2% ???

6 or 8 on 1st roll 5+5
36

= 10
36
≈ 27.8% ???

The last three events each contain some outcomes that correspond to win-
ning, and some that correspond to losing. We can figure out the probability
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of winning if, for example, you roll a 4 initially. Then you will win if another
4 comes up before a 7, and lose if a 7 comes up before a 4. On any given
roll, a 7 is twice as likely to come up as a 4 (6/36 vs 3/36), so the odds are
6/9 = 2/3 ≈ 66.7% that you will roll a 7 before a 4 and lose. Thus the odds
of losing after starting with a 4 are 66.7%, while the odds of winning after
starting with a 4 are 33.3%. The same calculation applies if you get a 10 on
the first roll. This means that the 6/36 ≈ 16.7% probability of rolling a 4 or
10 initially can be divided up into a 4/36 ≈ 11.1% probability to start with
a 4 or 10 and eventually lose, and a 2/36 ≈ 5.6% probability to start with a
4 or 10 and eventually win.

We can summarize this branching of probabilities with a tree diagram:

The probability of winning given that you’ve rolled a 4 or 10 initially is an
example of a conditional probability. If A is the event “roll a 4 or 10 initially”
and B is the event “win the game”, we write the conditional probability for
event B given that A occurs as P (B|A). We have argued that the probability
for both A and B to occur, P (A ∩ B), should be the probability of A times
the conditional probability of B given A, i.e.,

P (A ∩B) = P (B|A)P (A) (3.1)

We can use this to fill out a table of probabilities for different sets of outcomes
of a craps game, analogous to the tree diagram.
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A P (A) B P (B|A) P (A ∩B) = P (B|A)P (A)

2, 3 or 12 on 1st roll .111 lose 1 .111
7 or 11 on 1st roll .222 win 1 .222

4 or 10 on 1st roll .167
lose .667 .111
win .333 .056

5 or 9 on 1st roll .222
lose .6 .133
win .4 .089

6 or 8 on 1st roll .278
lose .545 .152
win .455 .126

Since the rows all describe disjoint events whose union is the sample space
S, we can add the probabilities of winning and find that

P (win) ≈ .222 + .056 + .089 + .126 ≈ .493 (3.2)

and
P (lose) ≈ .111 + .111 + .133 + .152 ≈ .507 (3.3)

3.2 Definition of Conditional Probability

We’ve motivated the concept of conditional probability and applied it via
(3.1). In fact, from a formal point of view, conditional probability is defined
as

P (B|A) =
P (A ∩B)

P (A)
. (3.4)

We actually used that definition in another context above without realizing
it, when we were calculating the probability of rolling a 7 before rolling a
4. We know that P (7) = 6/36 and P (4) = 3/36 on any given roll. The
probability of rolling a 7 given that the game ends on that throw is

P (7|7 ∪ 4) =
P (7)

P (7 ∪ 4)
=

P (7)

P (7) + P (4)
=

6/36

9/36
=

6

9
(3.5)

We calculated that using the definition of conditional probability.

3.3 The Monty Hall Problem

This is a classic problem in logic and probability, usually described in terms
of the game show Let’s Make a Deal.
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You are given a choice of three doors; behind one there is a valuable prize
(a new car), and behind the other two are booby prizes (goats). The car and
goats were randomly placed before the game, and there is nothing special
about any of the doors. You choose door #1. Before you open it, the host,
Monty Hall, opens one of the other two doors, reveals that there is a goat
behind it. You are then given the opportunity to switch from door #1 to the
other unopened door.

Monty was obligated to open one of the doors, knows which door has the
car behind it, and deliberately chose a door with a goat.

• What is the probability that you will win the car if you switch? What
is the probability that you will win if you don’t switch?

• Suppose now that Monty did not know where the car was, and chose one
of the two unopened doors at random. Given that that door happened
to contain a goat, what is the probability that you will win if you
switch? If you don’t switch?

This problem (which has caused vehement disagreements among very
intelligent and educated people), can be attacked using the tools of tree
diagrams and conditional probabilities.

Practice Problems

2.45, 2.59, 2.63, 2.71, 2.105 parts a & b

Tuesday 15 December 2009

Guest lecture by Dr. Chulmin Kim; see Dr. Kim’s notes and worksheet

4 Bayes’s Theorem
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