
Physics A301: Classical Mechanics II

Problem Set 4

Assigned 2006 May 23
Due 2006 May 29

Show your work on all problems! Be sure to give credit to any collaborators, or outside
sources used in solving the problems.

1 Gauss’s Law Redux

Consider an infinitely long right circular cylinder of constant density ρ and radius a.

a) Define a cylindrical coördinate system (q, φ, z) (chosen to fit the symmetries of the problem),
and explain carefully on symmetry grounds what components of the gravitational field ~g(~r)
should be non-zero and upon which coördinates they should depend.

b) By applying Gauss’s Law to suitably chosen surfaces [and using the result of part a)], find the
gravitational field at any point inside or outside the cylinder.

c) By integrating the equation ~g = −~∇ϕ, find the gravitational potential both inside and outside
the cylinder. Choose your integration constants so that ϕ = 0 at the surface of the cylinder.

d) Why is it impossible to choose ϕ = 0 infinitely far from the cylinder? What would have
happened if you had tried to find the gravitational potential by explicitly evaluating the
integral

ϕ(~r) = −
y Gρ(~r ′)d3V ′

|~r − ~r ′|
? (1.1)

Note: you do NOT have to evaluate the integral to answer this question!

2 Coriolis Force and Conservation of Angular Momentum

[Note: this problem is not an exercise in the technical formalism developed in this chapter; you’re
actually intended to build up each step by thinking about the physics and geometry of the situation
and then in the end verify that your physically-derived results agree with the more general formal
ones.]

Consider a flat turntable rotating counter-clockwise at a fixed angular velocity ωz. Let a particle
of mass m be instantaneously a distance q from the center, seen by an observer rotating with the
turntable to be moving radially outward at a speed v∗q .

a) What is the tangential component vφ of the particle’s velocity as seen by an inertial observer
not rotating with the turntable?

b) The angular momentum of the particle according to the inertial observer is `z = mqvφ. (If
this is not obvious, you should review the section on rotational motion in your Basic Physics
text.) Write `z in terms of the parameters of the problem (ωz, m, q, and v∗q ).
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c) After an infinitesimal time dt, the particle is a distance q + dq from the center; find dq in
terms of the parameters of the problem and dt. (Throughout this problem, you should drop
any terms which are second order and higher in infinitesimal quantities.)

d) As a result of non-inertial effects, the particle may have picked up a small transverse velocity
dv∗φ as seen by the co-rotating observer. In terms of this unknown dv∗φ, what is the transverse
component vφ + dvφ of the particle’s velocity as seen by the inertial observer? (This will be
the transverse velocity of a fixed point on the turntable q + dq from the center, plus dv∗φ.)

e) Using the results of parts c) and d), work out the angular momentum `z + d`z of the particle
after an infinitesimal time dt, as seen by the inertial observer, in terms of dt, the unknown
dv∗φ, and the parameters of the problem.

f) If the particle is moving freely and not subject to any torques, the angular momentum as
measured by an inertial observer will be conserved, i.e., `z + d`z = `z. Use this condition to
solve for dv∗φ in terms of the parameters of the problem and dt.

g) Verify that this apparent acceleration in the φ direction seen by the rotating observer, needed
to conserve angular momentum, has the same magnitude and direction as the acceleration
which would be produced by the Coriolis force derived formally in class and in the text.

3 Lunar and Solar Tides

In class, we showed that the distortion of the surface of a nearly spherical, perfectly elastic planet
of mass M1 and radius R by a body of mass M2 a distance a away, in the limit M2

M1

R3

a3
� 1, was

given by

δRtide(r̂
∗) = R

M2

M1

R3

a3
3(r̂∗ · r̂∗2)2 − 1
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(3.1)

where r̂∗ and r̂∗2 are unit vectors from the center of the planet to the place at which δRtide is
measured and to the distant body, respectively.

a) According to this approximation, what is the height difference between the high and low tides
caused on the Earth by the Moon, in meters?

b) According to this approximation, what is the height difference between the high and low tides
caused on the Earth by the Sun, in meters?

c) In the perturbative approximation we’ve been using, the combined effect of the Sun and Moon
can be obtained by adding the tidal distortions from each of them. Writing the masses of
the Sun and Moon as M� and M%, the distances of each from the Earth as a� and a%, the
directions to each as r̂∗� and r̂∗%, and the Mass and radius of the Earth and M⊕ and R⊕, write

the tidal height in a direction r̂∗ from the center. (You don’t need to use any astronomical
data in this part of the problem.)

d) Let the directions to the Sun and Moon be either the same or opposite, and define the x∗ axis
to lie in this direction. Write the tidal height as a function of the spherical coördinates θ∗ and
φ∗ (in terms of the relevant masses and distances) and evaluate this height in meters at the
following locations:
i) θ∗ = 0; ii) θ∗ = π/2, φ∗ = 0; iii) θ∗ = π/2, φ∗ = π/2

e) Let the directions to the Sun and Moon be at right angles to one another, and define the x∗

axis to point moonward and the y∗ axis to point sunward. Write the tidal height as a function
of the spherical coördinates θ∗ and φ∗ (in terms of the relevant masses and distances) and
evaluate this height in meters at the following locations:
i) θ∗ = 0; ii) θ∗ = π/2, φ∗ = 0; iii) θ∗ = π/2, φ∗ = π/2
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