Physics A301: Classical Mechanics II

Problem Set 3

Assigned 2006 May 18
Due 2006 May 25

Show your work on all problems! Be sure to give credit to any collaborators, or outside sources used in solving the problems.

1 Periodically Accelerating Reference Frame

Symon Chapter Seven, Problem Two. Call the unstretched length of the spring ℓ_{0}.

2 Rotational Oblateness of the Earth

Consider the Earth, rotating at a fixed angular velocity $\vec{\omega}$. Define two sets of Cartesian coördinates, (x, y, z) and $\left(x^{*}, y^{*}, z^{*}\right)$, each with its origin at the center of the Earth and its positive z (or z^{*}) axis pointed towards the North Pole along the Earth's rotation axis, so that $\vec{\omega}=\omega \hat{z}=\omega \hat{z}^{*}$. Let the unstarred coördinate axes be fixed in space while the starred ones rotate along with the Earth.
a) Define spherical coördinates, (r, θ, ϕ) and $\left(r^{*}, \theta^{*}, \phi^{*}\right)$, respectively, corresponding to the nonrotating and rotating Cartesian coördinate systems. Explain (or show) why $r^{*}=r$ and $\theta^{*}=\theta$, and also $\hat{r}^{*}=\hat{r}$ and $\hat{\theta}^{*}=\hat{\theta}$.
b) Assume that most of the matter in the Earth is spherically symmetric about its center, so that the gravitational field is well approximated by

$$
\begin{equation*}
\vec{g}=-g(r) \hat{r} \tag{2.1}
\end{equation*}
$$

where the magnitude $g(r)$ is a function of r alone. Find the effective gravitational field $\vec{g}^{\text {eff }}$ including centrifugal effects in the co-rotating coördinate system, in terms of $g(r), \omega, r, \theta$, and the basis vectors \hat{r} and $\hat{\theta}$.
c) In the limit $\omega \rightarrow 0$, the Earth is just a sphere of radius R and mass M, and the gravitational acceleration at its surface is

$$
\begin{equation*}
g_{0}=\frac{G M}{R^{2}} . \tag{2.2}
\end{equation*}
$$

Construct the dimensionless combination of ω, g_{0}, and R which is proportional to ω^{2}, and call this ε.
d) Let the actual shape of the surface of the rotating Earth be given by

$$
\begin{equation*}
r=R+\delta R(\theta) \tag{2.3}
\end{equation*}
$$

where $\delta R(\theta)$ is a small correction of order ε. If \vec{n} is a vector normal (perpendicular) to this surface, what is the ratio of components n_{θ} / n_{r} ?
e) Using the results of part b), construct the ratio $g_{\theta}^{\text {eff }} / g_{r}^{\text {eff }}$. This should be proportional to ω^{2} and therefore also of order ε.
f) In your answer to part e), set r to R and neglect the ω^{2} term appearing in the denominator. (These approximations are justified because anything more accurate would just add a correction of order ε^{2}.) Express this approximate ratio in terms of g_{0}, R, ω, and θ. Verify that you get sensible results at the North Pole $(\theta=0)$, the Equator $(\theta=\pi / 2)$ and the South Pole ($\theta=\pi$).
g) By requiring $\vec{g}^{\text {eff }}$ to be normal to the surface of the Earth, obtain and solve a differential equation for $\delta R(\theta)$. (Don't forget to include the integration constant in the solution.) What is the difference between the polar and equatorial radii, in terms of g_{0}, R, and ω ?
h) Using the actual values for the Earth ($g_{0}=9.8 \mathrm{~m} / \mathrm{s}^{2}, \omega=2 \pi /(24 \mathrm{hr})$, and $\left.R=6.4 \times 10^{3} \mathrm{~km}\right)$, evaluate the following ratios to two significant figures:
i) ε, the "small" parameter defined in part c);
ii) The fractional decrease of the magnitude of $\vec{g}^{\text {eff }}$ at the equator relative to the poles;
iii) $\frac{\delta R(\pi / 2)-\delta R(0)}{R}$, the size of the equatorial bulge as a fraction or the Earth's radius.

3 Deflection of a Falling Object Due to Coriolis Force

Do Symon Chapter Seven, Problem Seven. Also evaluate your expression for the displacement, for an object dropped from a height of 20 meters at a latitude of $30^{\circ} \mathrm{N}$, and specify the direction of the deflection.

