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5.4 Rotating Coördinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.4.1 Time-Dependence of Hamiltonian . . . . . . . . . . . . . . . . . . . . 34

6 Lightning Recap 34

7 Review of Lagrangian Mechanics 35

A Appendix: Correspondence to Class Lectures 38

2



Friday, May 26, 2006

1 Lagrangian Mechanics

Newtonian mechanics is most naturally written in terms of inertial Cartesian coördinates of
one or more particles. But often it’s more convenient to describe a problem in terms of a
different set of variables, such as spherical or other non-Cartesian coördinates, non-inertial
coördinates, or even variables which combine the coördinates of different particles (e.g. the
center-of-mass and relative position vectors in the two-body problem). In each of those
cases, we’ve had to start with the inertial Cartesian formulation, and deduce the form of
the equations of motion in terms of the more general sets of coördinates. The fundamental
reason why things are so much easier in Cartesian coördinates is the vector nature of the
equations of motion written in terms of the force ~F . It turns out that by concentrating on
scalar expressions like the energy, we can formulate mechanics in a way that is equivalent for
any set of coördinates, Cartesian or not. That formulation is called Lagrangian Mechanics.

1.1 Derivation of the Lagrange Equations

1.1.1 Newton’s Second Law from Scalar Functions

First, let’s make an observation about Newton’s second law:

m~̈r =
d~p

dt
= ~F (1.1)

If the force is dependent only on position, and conservative, it can be written in terms of a
potential V (x, y, z)

~F = −~∇V (1.2)

written out in terms of components, this means the components of the force can be written
in terms of derivatives of the kinetic energy.

Fx = −∂V
∂x

(1.3a)

Fy = −∂V
∂y

(1.3b)

Fz = −∂V
∂z

(1.3c)

On the other hand, since the kinetic energy is

T (ẋ, ẏ, ż) =
1

2
m
∣∣∣~̇r∣∣∣2 =

1

2
mẋ2 +

1

2
mẏ2 +

1

2
mż2 (1.4)
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the components of the momentum can be written as partial derivatives of the kinetic energy:

px = mẋ =
∂T

∂ẋ
(1.5a)

py = mẏ =
∂T

∂ẏ
(1.5b)

pz = mż =
∂T

∂ż
(1.5c)

So we can write the equations of motion starting from the scalar functions T (ẋ, ẏ, ż) and
V (x, y, z):

d

dt

(
∂T

∂ẋ

)
= −∂V

∂x
(1.6a)

d

dt

(
∂T

∂ẏ

)
= −∂V

∂y
(1.6b)

d

dt

(
∂T

∂ż

)
= −∂V

∂z
(1.6c)

For a system ofN particles with forces determined by an overall potential energy V ({xk}, {yk}, {zk}),
everything goes as before and the equations of motion can be written in terms of derivatives
of V and the total kinetic energy T ({ẋk}, {ẏk}, {żk})

d

dt

(
∂T

∂ẋk

)
= − ∂V

∂xk
(1.7a)

d

dt

(
∂T

∂ẏk

)
= − ∂V

∂yk
(1.7b)

d

dt

(
∂T

∂żk

)
= −∂V

∂zk
(1.7c)

1.1.2 Non-Cartesian Examples

So far, this seems like nothing but an intellectual curiosity, but let’s see what happens if we
try to write Newton’s third law from scratch in non-Cartesian or non-inertial coördinates.

Polar Coördinates Consider a two-dimensional problem where we define polar coördinates
r and φ according to the usual convention

x = r cosφ (1.8a)

y = r sinφ (1.8b)

We can’t write down the equations of motion directly in these coördinates:

mr̈ 6= r̂ · ~F (1.9a)

mφ̈ 6= φ̂ · ~F (1.9b)
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because Newton’s second law takes the form

~F = m~̈r = m(r̈ − rφ̇2)r̂ +m(rφ̈+ 2ṙφ̇)φ̂ = Frr̂ + Fφφ̂ (1.10)

with the extra terms arising because of the non-constant polar coördinate basis vectors:

dr̂

dt
6= ~0 (1.11a)

dφ̂

dt
6= ~0 (1.11b)

The equations of motion are:

mr̈ = Fr +mrφ̇2 (1.12a)

mrφ̈ = Fφ − 2mṙφ̇ (1.12b)

Rotating Coördinates Consider another two-dimensional problem where we find it con-
venient to define coördinates rotating with angular speed ω relative to the inertial Cartesian
coördinates. Those might be written explicitly as

x∗ = x cosωt+ y sinωt (1.13a)

y∗ = −x sinωt+ y cosωt (1.13b)

again, the form of Newton’s second law is not the simplest one:

mẍ∗ 6= x̂∗ · ~F (1.14a)

mÿ∗ 6= ŷ∗ · ~F (1.14b)

because of the rotation of the starred basis vectors. Instead, the equations of motion come
from

mẍ∗x̂∗ +mÿ∗ŷ∗ = m
d∗2~r

dt
= ~F − ~ω × (~ω × ~r)− 2~ω × d∗~r

dt
(1.15)

where ~ω = ωẑ
So again, the equations of motion contain correction terms compared to the Cartesian

forms.

Two-Body Problem In this case, the coördinates of the particles are mixed up in the
components of the vectors

~r = ~r1 − ~r2 (1.16a)

~R =
m1~r1 +m2~r2

m1 +m2

(1.16b)

Here the situation is even more extreme than just having different basis vectors. It’s not
even clear-cut how you define the “component” of force corresponding to, for example, x or
Z.

5



1.1.3 Generalized Coördinates

In all those cases, we would get the equations of motion by starting from the Cartesian
form of Newton’s second law and converting the resulting equations of motion. We’d like,
instead, to find a generic method, starting with kinetic and potential energy, to construct
the equations of motion directly in any set of coördinates.

So, suppose we have N particles moving in three dimensions. There are then a total of
3N Cartesian coördinates: x1, y1, z1, x2 . . . yN , and zN . For notational convenience, we’ll
define the symbol X` to refer to any of the 3N Cartesian coördinates, labelled as follows:

X1 = x1, X2 = y1, X3 = z1, X4 = x2, . . . , X3N = zN (1.17)

We refer to the whole list of 3N Cartesian coördinates by any of the following:

{x1, y1, . . . , zN} ≡ {X1, X2, . . . , X3N} ≡ {X`|` = 1 . . . 3N} ≡ {X`} (1.18)

We can also describe the same system a different set of 3N generalized coördinates, which
we refer to as

{q1, q2, . . . , q3N} ≡ {qk|k = 1 . . . 3N} ≡ {qk} (1.19)

If this is a good set of coördinates, we should be able to work out the generalized coördinates
of a particle given its Cartesian coördinates, although that relationship may be time-dependent.
So we can write each of the generalized coördinates as a function of the full set of Cartesian
coördinates and time:

qk = qk({X`}, t) (1.20)

and if this is a good coördinate mapping, we should also be able to invert the relationship
and write each Cartesian coördinate as a function of the full set of generalized coördinates
and time:

X` = X`({qk}, t) (1.21)

Example: Polar Coördinates In this case, it’s only a two-dimensional problem, so
“3N”, the number of Cartesian coördinates is only 2: X1 = x and X2 = y. The generalized
coördinates are1

q1 = r =
√
x2 + y2 (1.22a)

q2 = φ = tan−1
(y
x

)
(1.22b)

The inverse transformation is

X1 = x = r cosφ (1.23a)

X2 = y = r sinφ (1.23b)

1Technically, the expression for φ is a little more complicated, since the principal value of the arctangent
is between −π/2 and π/2, which is only the case if x ≥ 0; we should actually specify something which adds
or subtracts π if x < 0 to give the correct angle for negative x. Computer programming languages define
such a function, and the correct expression is phi=atan2(y,x).
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Example: Rotating Coördinates Once again, in this two-dimensional problem, “3N”=2.
Now, the coördinate transformation is explicitly time-dependent:

q1 = x∗(x, y, t) = x cosωt+ y sinωt (1.24a)

q2 = y∗(x, y, t) = −x sinωt+ y cosωt (1.24b)

1.1.4 Coördinate Transformations and the Chain Rule

Now we want look for a set of equations of motion in generalized coördinates, something like
the equations of motion (1.7) in Cartesian coördinates, which in our streamlined notation
are

d

dt

(
∂T

∂Ẋ`

)
= − ∂V

∂X`

(1.25)

note that this holds for any value of `, so it represents all 3N equations of motion.
Our strategy is going to be to work out the corresponding partial derivatives of the scalar

functions
V ({qk}, t) = V ({X`({qk}, t)}, t) (1.26)

and
T ({qk}, {q̇k}, t) = T ({Ẋ`({qk}, {q̇k}, t)}) (1.27)

in term of the derivatives
{
∂V
∂X`

}
and

{
∂T
∂Ẋ`

}
and see what the consequences of (1.27) are.

Derivatives of Potential Energy Let’s start with the potential energy, since it’s simpler.
We want the partial derivative ∂V

∂qk
, which is the derivative with respect to one particular qk

(for one value of k) with all the other qk′s (for all other values of the index), as well as time,
treated as constants. The chain rule tells us how to calculate this derivative, if we realize
that V ’s dependence on qk comes through the qk dependence of all the {X`}s:

∂V

∂qk
=

∂V

∂X1

∂X1

∂qk
+

∂V

∂X2

∂X2

∂qk
+ . . .+

∂V

∂X3N

∂X3N

∂qk
=

3N∑
`=1

∂V

∂X`

∂X`

∂qk
(1.28)

Total and Partial Time Derivatives So far, so good. Things get a little trickier with
the kinetic energy, since we have to consider the velocity Ẋ`. In a sense we have two different
perspectives on the behavior of X` as a function. On the one hand, the inverse coördinate
transformations define it as just a function of some arguments q1, q2, . . . q3N , and t. We
can take a partial derivative with respect to any of those arguments, treating all the others,
formally, as constants. That is the meaning of the partial derivative

∂X`

∂t
=

(
∂X`

∂t

)
{qk}

(1.29)

On the other hand, X`, as a physical quantity, has some actual time dependence determined
by the trajectories of the particles in the problem. So from that point of view, it’s just a
function of one variable, time X`(t). The relationship between the two comes about because
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the actual trajectories of the particles also imply some physical time dependence for the
generalized coördinates as well. The time dependence of the Cartesian coördinates can be
determined from the time dependence of the generalized coördinates and the coördinate
transformation:

X`(t) = X`({qk(t)}, t) (1.30)

The velocity Ẋ` is the time derivative of the actual physical trajectory X`(t) and is this a
total (not partial) derivative, which can be calculated using the chain rule. Explicitly, if we
think about advancing an infinitesimal amount of time dt, all of the generalized coördinates
will change by infinitesimal amounts {dqk}, inducing a change

dX` =
3N∑
k=1

∂X`

∂qk
dqk +

∂X`

∂t
dt (1.31)

in the Cartesian coördinate. The time derivative is just this infinitesimal change divided by
the infinitesimal time change dt:

Ẋ` =
dX`

dt
=

3N∑
k=1

∂X`

∂qk

dqk
dt

+
∂X`

∂t

dt

dt
=

3N∑
k=1

∂X`

∂qk
q̇k +

∂X`

∂t
(1.32)

The partial derivatives {∂X`

∂qk
} and ∂X`

∂t
are, like X`, functions of {qk(t)} and t. This means

the functional dependence of the Cartesian velocity is Ẋ`({qk}, {q̇k}, t).
As an example of how this works, we return to one of our three canonical examples, this

time the rotating coördinates q1 = x∗ and q2 = y∗. The inverse coördinate transformations
are

X1 = x = x∗ cosωt− y∗ sinωt (1.33a)

X2 = y = x∗ sinωt+ y∗ cosωt (1.33b)

Focussing on x, the partial derivatives are

∂x

∂x∗
=

(
∂x

∂x∗

)
y∗,t

= cosωt (1.34a)

∂x

∂y∗
=

(
∂x

∂y∗

)
x∗,t

= − sinωt (1.34b)

∂x

∂t
=

(
∂x

∂t

)
x∗,y∗

= −ωx∗ sinωt− ωy∗ cosωt (1.34c)

On the other hand, the x component of the velocity, which is the total time derivative, is

ẋ = ẋ∗ cosωt︸ ︷︷ ︸
∂x
∂x∗

dx∗
dt

−ẏ∗ sinωt︸ ︷︷ ︸
∂x
∂y∗

dy∗
dt

−ωx∗ sinωt− ωy∗ cosωt︸ ︷︷ ︸
∂x
∂t

(1.35)

The corresponding derivatives of y are left as an exercise.
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Tuesday, May 30, 2006

1.1.5 Partial Derivatives of the Kinetic and Potential Energy

In Cartesian coördinates, the kinetic energy T is a function only of the velocities {Ẋ`}:

T =
1

2
m1ẋ

2
1 +

1

2
m1ẏ

2
1 +

1

2
m1ż

2
1 +

1

2
m2ẋ

2
2 . . .

1

2
mN ż

2
N =

3N∑
`=1

1

2
M`Ẋ

2
` (1.36)

(where we have defined the notation M1 = M2 = M3 = m1, M4 = M5 = M6 = m2 ,
. . .M3N−2 = M3N−1 = M3N = mN). But since the velocities {Ẋ`} are functions in general
of the generalized coördinates {qk} and time t as well as the generalized velocities {q̇k}, the
kinetic energy depends on all of those things when written in generalized coördinates:

T ({Ẋ`}) = T ({qk}, {q̇k}, t) (1.37)

So the derivative we’re interested in is ∂T
∂q̇k

, a partial derivative with respect to one q̇k with
all the other q̇k′s, plus all of the qk′s and t treated as constants. The chain rule tells us that

∂T

∂q̇k
=

3N∑
`=1

∂T

∂Ẋ`

∂Ẋ`

∂q̇k
(1.38)

So the thing we need to relate one set of partial derivatives to the other is ∂Ẋ`

∂q̇k
for each

possible choice of ` and k. We can actually look explicitly at the q̇k dependence by writing
out (1.32):

Ẋ` =
∂X`

∂q1

q̇1 +
∂X`

∂q2

q̇2 + . . .+
∂X`

∂q3N

q̇3N +
∂X`

∂t
(1.39)

As we’ve noted before, all the coëfficients like ∂X`

∂q1
and ∂X`

∂t
will depend only on {qk′} and t,

and not on q̇k. In fact, for each possible value of k, only one term contains q̇k; for example,

if k = 5 the only term which gives a non-zero contribution to the partial derivative ∂Ẋ`

∂q̇5
is

∂Ẋ`

∂q̇5

=
∂

∂q̇5

(
∂X`

∂q5

q̇5

)
=
∂X`

∂q5

(1.40)

So for a general k, we find that
∂Ẋ`

∂q̇k
=
∂X`

∂qk
(1.41)

which means that
∂T

∂q̇k
=

3N∑
`=1

∂T

∂Ẋ`

∂Ẋ`

∂q̇k
=

3N∑
`=1

∂T

∂Ẋ`

∂X`

∂qk
(1.42)

So now we have ∂T
∂q̇k

from (1.42) and ∂V
∂qk

from (1.28). To write something analogous to

(1.27), we need to take the (total) time derivative of this. So we differentiate (1.42), using
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the sum and product rules:

d

dt

(
∂T

∂q̇k

)
=

3N∑
`=1

[
d

dt

(
∂T

∂Ẋ`

)
∂X`

∂qk
+

∂T

∂Ẋ`

d

dt

(
∂X`

∂qk

)]

=
3N∑
`=1

d

dt

(
∂T

∂Ẋ`

)
∂X`

∂qk
+

3N∑
`=1

∂T

∂Ẋ`

d

dt

(
∂X`

∂qk

) (1.43)

The first sum can be simplified by using the equation of motion (1.27) and the chain rule:

3N∑
`=1

d

dt

(
∂T

∂Ẋ`

)
∂X`

∂qk
=

3N∑
`=1

(
− ∂V

∂X`

)
∂X`

∂qk
= −∂V

∂qk
(1.44)

The second sum, which is the correction arising from the use of generalized coördinates, can
be evaluated by noting that ∂X`

∂qk
, like X`, is a function of all the qk′s as well as time, so we

can write its total time derivative as

d

dt

(
∂X`

∂qk

)
=

3N∑
k′=1

∂

∂qk′

(
∂X`

∂qk

)
dqk′

dt
+
∂

∂t

(
∂X`

∂qk

)
=

3N∑
k′=1

(
∂2X`

∂qk′∂qk

)
q̇k′ +

(
∂2X`

∂t∂qk

)

=
∂

∂qk

[
3N∑
k′=1

(
∂X`

∂qk′

)
q̇k′ +

(
∂X`

∂t

)]
︸ ︷︷ ︸

dX`
dt

=
∂Ẋ`

∂qk

(1.45)

Plugging this back into (1.43) gives us

d

dt

(
∂T

∂q̇k

)
= −∂V

∂qk
+

3N∑
`=1

∂T

∂Ẋ`

∂Ẋ`

∂qk
= −∂V

∂qk
+
∂T

∂qk
(1.46)

where in the last step we have used the chain rule applied to

T ({qk}, {q̇k}, t) = T (X`({{qk}, {q̇k}, t)) (1.47)

So this means the equations of motion (Newton’s second law) are equivalent to

d

dt

(
∂T

∂q̇k

)
∂

∂qk
(T − V ) (1.48)

Now, since V is just a potential energy and depends only on the coördinates and time,

∂V

∂q̇k
= 0 (1.49)

so we can make the equation look more symmetric by adding zero to the left-hand side and
writing

d

dt

(
∂

∂q̇k
(T − V )

)
=

∂

∂qk
(T − V ) (1.50)
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The quantity appearing in parentheses on both sides of the equation is called the Lagrangian

L = T − V (1.51)

Note that this is kinetic minus potential energy, as opposed to the total energy, which
is kinetic plus potential. We’ve now shown that for any set of generalized coördinates2,
Newton’s second law is equivalent to the full set of Lagrange Equations :

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= 0 k = 1, 2, . . . , 3N (1.52)

This is the generic form we were looking for. All we need to do is write the kinetic and
potential energies in terms of the generalized coördinates, their time derivatives, and time,
and we can find the equations of motion by taking partial derivatives without ever needing
to use inertial Cartesian coördinates.

1.2 Examples

Let’s return to our three examples of generalized coördinates and see how we obtain the
correct equations of motion in each case:

1.2.1 Polar Coördinates

Recall that here the total number of coördinates “3N” is 2, and the Cartesian and generalized
coördinates are

X1 = x q1= r

X2 = y q2=φ

The kinetic energy is

T =
1

2
mṙ2 +

1

2
mr2φ̇2 (1.54)

which we can obtain either directly by considering the infinitesimal distance

ds2 = dr2 + r2 dφ2 (1.55)

associated with changes in r and φ, or by starting with

T =
1

2
mẋ2 +

1

2
mẏ2 (1.56)

and making the substitutions

ẋ = ṙ cosφ− rφ̇ sinφ (1.57a)

ẏ = ṙ sinφ+ rφ̇ cosφ (1.57b)

2which can in principle be related by a coördinate transformation to the Cartesian coördinates for a
problem with forces arising solely from a potential energy
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Meanwhile the potential energy V (r, φ) is a scalar field which can be described equally well
as a function of the polar coördinates. So the Lagrangian is

L =
1

2
mṙ2 +

1

2
mr2φ̇2 − V (r, φ) (1.58)

Lagrange’s equations are

d

dt

(
∂L

∂ṙ

)
=
∂L

∂r
(1.59a)

d

dt

(
∂L

∂φ̇

)
=
∂L

∂φ
(1.59b)

so to apply them we need to take the relevant partial derivatives:

∂L

∂r
= mrφ̇2 − ∂V

∂r
(1.60a)

∂L

∂φ
= −∂V

∂φ
(1.60b)

∂L

∂ṙ
= mṙ radial compt of momentum (1.60c)

∂L

∂φ̇
= mr2φ̇ angular momentum (1.60d)

d

dt

(
∂L

∂ṙ

)
= mr̈ (1.60e)

d

dt

(
∂L

∂φ̇

)
= mr2φ̈+ 2mrṙφ̇ (1.60f)

So the equations of motion are

mr̈ = mrφ̇2 − ∂V

∂r
(1.61a)

mr2φ̈+ 2mrṙφ̇ = −∂V
∂φ

(1.61b)

We can verify that these are the same equations of motion given by

m~̈r = −~∇V (1.62)

in the vector approach, in which

− ~∇V = −∂V
∂r

r̂ − 1

r

∂V

∂φ
φ̂ (1.63)

and, thanks to the position and therefore time-dependent basis vectors

dr̂

dt
= φ̇φ̂ (1.64a)

dφ̂

dt
= −φ̇r̂ (1.64b)
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the acceleration is calculated via

~r = rr̂ ⇒ ~̇r = ṙr̂ + rφ̇φ̂ ⇒ ~̈r = r̈r̂ + 2ṙφ̇φ̂+ rφ̈φ̂− rφ̇2r̂ (1.65)

to give the equations of motion

m~̈r =
(
mr̈ −mrφ̇2

)
r̂ +

(
mrφ̈+ 2mṙφ̇

)
(1.66)

Equating the r and φ components of the vector expressions (1.66) and (1.63) gives the same
equations of motion as (1.61).

1.2.2 Rotating Coördinates

Here again the total number of coördinates “3N” is 2, and the Cartesian and generalized
coördinates are

X1 = x q1=x∗

X2 = y q2= y∗

To get the kinetic energy, we really need to start with the inertial form and transform it
using

ẋ = (ẋ∗ − ωy∗) cosωt− (ẏ∗ + ωx∗) sinωt (1.68a)

ẏ = (ẋ∗ − ωy∗) sinωt− (ẏ∗ + ωx∗) cosωt (1.68b)

which makes the kinetic energy

T =
1

2
mẋ2 +

1

2
mẏ2) =

1

2
m(ẋ∗ − ωy∗)2 +

1

2
m(ẏ∗ + ωx∗)2

=
m

2

[
(ẋ∗)2 + (ẏ∗)2 − 2ωẋ∗y∗ + 2ωẏ∗x∗ + ω2(x∗)2 + ω2(y∗)2

] (1.69)

and the Lagrangian
L = T − V (x∗, y∗, t) (1.70)

so that the partial derivatives are

∂L

∂x∗
= mωẏ∗ +mω2x∗ − ∂V

∂x∗
(1.71a)

∂L

∂y∗
= −mωẋ∗ +mω2y∗ − ∂V

∂y∗
(1.71b)

∂L

∂ẋ∗
= mẋ∗ −mωy∗ (1.71c)

∂L

∂ẏ∗
= mẏ∗ +mωx∗ (1.71d)

d

dt

(
∂L

∂ẋ∗

)
= mẍ∗ −mωẏ∗ (1.71e)

d

dt

(
∂L

∂ẏ∗

)
= mÿ∗ +mωẏ∗ (1.71f)
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So that the equations of motion are

d

dt

∂L

∂ẋ∗
− ∂L

∂x∗
= mẍ∗ −

(
2mωẏ∗ +mω2x∗ − ∂V

∂x∗

)
= 0 (1.72a)

d

dt

∂L

∂ẏ∗
− ∂L

∂y∗
= mÿ∗ −

(
−2mωẋ∗ +mω2y∗ − ∂V

∂y∗

)
= 0 (1.72b)

And one can easily check (exercise!) that these equations of motion are the same as those
given by the non-inertial coördinate system method including fictitious forces.

1.2.3 Two-Body Problem

In this case, 3N = 6 and the Cartesian coördinates are the six components of the two position
vectors ~r1 and ~r2, while the generalized coördinates are the six components of the vectors
~R and ~r. The most interesting part about the construction of the Lagrangian is the kinetic
energy, which can be obtained by differentiating the inverse coördinate transformations:

~r1 = ~R +
m2

m1 +m2

~r (1.73a)

~r2 = ~R− m1

m1 +m2

~r (1.73b)

to get

~̇r1 = ~̇R +
m2

m1 +m2

~̇r (1.74a)

~̇r2 = ~̇R− m1

m1 +m2

~̇r (1.74b)

The kinetic energy is thus

T =
1

2
m1~̇r1 · ~̇r1 +

1

2
m2~̇r2 · ~̇r2 =

1

2
m1

~̇R · ~̇R +
���

��
���m1m2

m1 +m2

~̇r · ~̇R +
1

2

m1m
2
2

(m1 +m2)2
~̇r · ~̇r

+
1

2
m2

~̇R · ~̇R−
���

��
���m1m2

m1 +m2

~̇r · ~̇R +
1

2

m2
1m2

(m1 +m2)2
~̇r · ~̇r

=
1

2
(m1 +m2) ~̇R · ~̇R +

1

2
���

���(m1 +m2)m1m2

(m1 +m2)�2
~̇r · ~̇r =

1

2
M ~̇R · ~̇R +

1

2
µ~̇r · ~̇r

(1.75)

And this is actually a more direct way of showing the equivalence to the one-body problem.
Furthermore, if the potential energy depends only on the distance |~r1 − ~r2| = |~r| = r between
the two bodies (central force motion with no external forces), the Lagrangian becomes

L =
1

2
M ~̇R · ~̇R +

1

2
µ~̇r · ~̇r − V (r) (1.76)

14



Supplemental Notes

The following notes follow the presentation used in previous years, which may or may not
follow Dr. Brans’s treatment. They are included as a potentially useful resource.

2 Lagrangian Formulation with Constraints

2.0 Recap

Recall that a system of N particles moving in 3 dimensions has a set of 3N Cartesian
coördinates {X`}:

X1 = x1, X2 = y1, X3 = z1, . . . X3N = zN (2.1)

Newton’s second law in in the presence of a potential V is

d

dt

(
∂T

∂Ẋ`

)
= M`Ẍ` = − ∂V

∂X`

` = 1, 2, . . . 3N (2.2)

where

T ({Ẋ`}) =
N∑
`=1

1

2
M`(Ẋ`)

2 (2.3)

is the kinetic energy, and

M1 = M2 = M3 = m1, . . . M3N−2 = M3N−1 = M3N = mN (2.4)

This is a special case of the Lagrange equations

d

dt

(
∂L

∂Ẋ`

)
− ∂L

∂X`

= 0 ` = 1, 2, . . . 3N (2.5)

where L = T − V is the Lagrangian. Similar equations hold in any set of 3N “generalized”
coördinates {qk}, i.e.,

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= 0 k = 1, 2, . . . 3N (2.6)

2.1 The Springy Pendulum

As an example, consider a pointlike pendulum bob of mass m attached to the end of a spring
of spring constant k and unstretched length b, moving in a plane under the influence of a
constant gravitational field of magnitude g. Choose as generalized coördinates the (actual,
instantaneous) length ` of the spring and the angle α between the spring and the vertical.
These are something like polar coördinates, so the kinetic energy of the bob is

T =
1

2
m ˙̀2 +

1

2
m`2α̇2 (2.7)
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There are two sources of potential energy: gravity and the spring. The gravitational potential
energy can be worked out with a little trigonometry as−mg` cosα, while the potential energy
in the spring is 1

2
k(`− b)2. So the Lagrangian is

L =
1

2
m ˙̀2 +

1

2
m`2α̇2 +mg` cosα− 1

2
k(`− b)2 (2.8)

The relevant derivatives are

∂L

∂`
= m`α̇2 +mg cosα− k(`− b) (2.9a)

∂L

∂α
= −mg sinα (2.9b)

∂L

∂ ˙̀
= m ˙̀ (2.9c)

∂L

∂α̇
= m`2α̇ (2.9d)

d

dt

(
∂L

∂ ˙̀

)
= m῭ (2.9e)

d

dt

(
∂L

∂α̇

)
= m`2α̈ + 2m` ˙̀α̇ (2.9f)

which makes the equations of motion

m῭= m`α̇2 +mg cosα− k(`− b) (2.10a)

m`2α̈ + 2m` ˙̀α̇ = −mg` sinα (2.10b)

Note that, if we define a unit vector ˆ̀ in the direction of increasing ` (i.e., radially outward),
the force due to the spring is

~Fspring = −k(`− b)ˆ̀ (2.11)

and this is reflected by a −k(`− b) which appears in the ῭ equation.
What if there were a rod rather than a spring, so that the ` coördinate were fixed to be

b? Physically, the rod would provide an additional radial force (pushing or tension) which
was just what was needed to keep ` constant.

The key thing about a constraining force (e.g., tension, normal force, static friction) is
that we don’t know it a priori at each instant or at each point in space. It has to be just
enough to keep the particle’s motion consistent with the constraint.

If we write the tension in the rod as λ (which could be negative if the rod is pushing
rather than pulling on the pendulum bob), the equations of motion are

m῭= m`α̇2 +mg cosα− λ (2.12a)

m`2α̈ + 2m` ˙̀α̇ = −mg` sinα (2.12b)

And additionally there is a constraint
` = b (2.12c)

The tension λ at any time is only worked out after the fact from the actual trajectory.
There are two ways to obtain the equations of motion (2.12) from a Lagrangian formalism:
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1. Since one of the coördinates is a constant, we can make the substitutions ` = b, ˙̀ = 0,
and ῭= 0 into (2.12b) and get

mb2α̈ = −mgb sinα (2.13)

which are Lagrange’s equations if we start with the reduced Lagrangian

Lred(α, α̇, t) =
1

2
mb2α̇2 +mgb cosα (2.14)

In the reduced Lagrangian, the constraint is satisfied and only the unconstrained “de-
gree of freedom” α is treated as a generalized coördinate.

2. We can instead treat `, α, and λ as the variables and look for a Lagrangian L̃(`, α, λ, ˙̀, α̇, λ̇, t)
which gives the equations of motion (2.12).

If we note that

− λ =
∂

∂`
(−`λ) (2.15)

we see that

m῭−m`α̇2 = mg cosα− λ =
∂

∂`
(mg` cosα− λ`) (2.16)

so we would get the right equation for ῭ if we add −λ` to the Lagrangian:

L̃
?
=

1

2
m ˙̀2 +

1

2
m`2α̇2 +mg` cosα− λ` (2.17)

That’s not quite right, though, since if we take the derivatives associated with the
tension, we get

∂L̃

∂λ
= −` (2.18a)

∂L̃

∂λ̇
= 0 (2.18b)

d

dt

(
∂L̃

∂λ̇

)
= 0 (2.18c)

since the constraint is ` = b, not ` = 0. But if we add λ(b− `) instead of −λ`, we don’t

change ∂L̃
∂λ

and we do get

∂L̃

∂λ
= b− ` = 0 =

d

dt

(
∂L̃

∂ ˙̀

)
(2.19)

so the constraint is just the Lagrange equation associated with the unknown tension
λ.

So we can describe the pendulum with the Lagrangian

L̃ =
1

2
m ˙̀2 +

1

2
m`2α̇2︸ ︷︷ ︸

T

+mg` cosα︸ ︷︷ ︸
−V

+ λ︸︷︷︸
Lagrange
multiplier

(b− `)︸ ︷︷ ︸
constraint

(2.20)
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In Cartesian coördinates (centered at the support point of the pendulum) the constraint
is

b−
√
x2 + y2 = 0 (2.21)

so we can’t just eliminate one coördinate by setting it to a constant. In this case, the
constraining force has components in both directions. Since

cosα = − y√
x2 + y2

(2.22a)

sinα =
x√

x2 + y2
(2.22b)

if we call the tension ~T and let λ be ±
∣∣∣~T ∣∣∣ (with the sign depending on whether ~T is a pull

or a push), then

Tx = −λ sinα = − x

x2 + y2
= λ

∂

∂x

(
b−

√
x2 + y2

)
(2.23a)

Ty = λ cosα = − y

x2 + y2
= λ

∂

∂y

(
b−

√
x2 + y2

)
(2.23b)

so, again we get the right equations by adding λ times the constraint to the Lagrangian:

L̃(x, y, λ, ẋ, ẏ, t) =
1

2
mẋ2 +

1

2
mẏ2 +mgy + λ

(
b−

√
x2 + y2

)
(2.24)

The circle defined by ` = b is called a surface of constraint. The tension in the rod is
directed radially, i.e., perpendicular to that circle. In polar coördinates, we can write the
constraint as h(r, φ) = b− r = 0 and note that ~∇h = r̂ is perpendicular to the surface of the

constraint, so the constraining force −λr̂ is parallel to ~∇h.

2.2 Constrained Systems in General

Think about the general case with 3N Cartesian cördinates for N particles and require these
to satisfy c constraints

h1({X`}) = 0 (2.25a)

h2({X`}) = 0 (2.25b)

...

hc({X`}) = 0 (2.25c)

Each constraint has an associated constraining force which acts on each particle. For one
particle, the force corresponding to the jth constraint, which might be called ~Fj, will be

perpendicular to the surface hj(~r) = 0, and thus be parallel to ~∇hj. so we could write it as
~F const
j = λj ~∇hj. For N particles, the force associated with the jth constraint, acting on the
ith particle, will be

~F const
ji = λj ~∇ihj (2.26)
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In our current notation for Cartesian coördinates, this makes the equations of motion

d

dt

(
∂T

∂Ẋ`

)
= M`Ẍ` = − ∂V

∂X`

+
c∑
j=1

λj
∂hj
∂X`

(2.27)

Now, although we know the directions of the constraining forces, their strengths {λj|j =
1 . . . c} are unknown, which means there are 3N + c unknowns

X1, X2, . . . , X3N , λ1, λ2, . . . , λc (2.28)

We have a total of 3N + c equations of motion: the 3N dynamical equations (2.27) plus
the c constraints (2.25). Now, we can turn the unconstrained differential equations into the
constrained ones by replacing V with V −

∑c
j=1 λjhj so if we define a modified Lagrangian

L̃ = L+
c∑
j=1

λjhj = T − V +
c∑
j=1

λjhj (2.29)

we will get the right equations of motion. First, if we hold all the {λj} constant in the
derivatives,

d

dt

(
∂L̃

∂Ẋ`

)
=

d

dt

(
∂L

∂Ẋ`

)
= MẌ` = − ∂V

∂X`

+
c∑
j=1

λj
∂hj
∂X`

=
∂L̃

∂X`

(2.30)

On the other hand if we take a partial derivative with respect to each λj, holding the {X`}
and {Ẋ`} constant,

∂L̃

∂X`

=
c∑

j′=1

∂λj′

∂λj︸︷︷︸
0 if j′ 6=j
1 if j′=j

hj′({X`}) = hj({X`}) = 0 =
d

dt

(
∂L̃

∂λ̇j

)
(2.31)

So the 3N + c equations of motion are

d

dt

(
∂L̃

∂Ẋ`

)
− ∂L̃

∂X`

= 0 ` = 1, 2, . . . 3N (2.32a)

d

dt

(
∂L̃

∂λ̇k

)
− ∂L̃

∂λk
= 0 k = 1, 2, . . . c (2.32b)

This is called the method of Lagrange undetermined multipliers. The modified Lagrangian is
a function of 3N+c “coördinates” {X1, X2, . . . , X3N , λ1, λ2, . . . , λc} and their time derivatives
(it happens to be independent of {λ̇j})

L̃({X`}, {λj}, {Ẋ`}, t) = L({X`}, {λj}, {Ẋ`}, t) +
c∑
j=1

λjhj({X`}) (2.33)
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Now, we could replace these 3N+c coördinates with 3N+c different ones, and the equations
of motion would still come from applying Lagrange’s equations to L̃.

Suppose we manage to choose those in such a way that c of them are just the constraints,
c of them are still the Lagrange multipliers, and the remaining

3N − c =: f (2.34)

are something else. Then f is the number of “degrees of freedom” which is just the number
of unconstrained “directions” the system can move in. the old and new coördinates would
be

Old: X1 X2 . . . Xf Xf+1 . . . Xf+c λ1 . . . λc
New: q1 q2 . . . qf a1 . . . ac λ1 . . . λc

Substituting the inverse transformations X` = X`({qk|k = 1 . . . f}, {aj|j = 1 . . . c}) into
the modified Lagrangian, we’d get the form

L̃({qk}, {aj}, {λj}, {q̇k}, {ȧj}, t) = L({qk}, {aj}, {q̇k}, {ȧj}, t) +
c∑
j=1

λjaj (2.35)

The Lagrange equations are then

d

dt

(
∂L

∂q̇k

)
=

d

dt

(
∂L̃

∂q̇k

)
=
∂L

∂qk
=
∂L̃

∂qk
(2.36a)

d

dt

(
∂L

∂ȧj

)
=

d

dt

(
∂L̃

∂ȧj

)
=
∂L

∂aj
=
∂L̃

∂aj
+ λj (2.36b)

0 =
d

dt

(
∂L̃

∂λ̇j

)
=

∂L

∂λj
= aj (2.36c)

• Now, the last set of Lagrange equations tell us we can impose the constraints and set
aj = 0 for j = 1 . . . c in the other two.

• The second set is only really needed if we care about the constraining forces, i.e., the
Lagrange multipliers λj.

• The first set tells us[
d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk

]
a1=0

...
ac=0

= 0 k = 1 . . . f (2.37)

If we define the reduced Lagrangian

Lred({qk}, {q̇k}, t) = L({qk}, {aj = 0}, {q̇k}, {ȧj = 0}, t) (2.38)

then the Lagrange equations are equivalent to

d

dt

(
∂Lred

∂q̇k

)
− ∂Lred

∂qk
= 0 k = 1 . . . f (2.39)

This means that if a system is constrained to have only f degrees of freedom, we can formulate
the Lagrangian as a function of the f generalized coördinates and apply the usual Lagrange
equations. as long as we don’t care about the constraining forces.
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2.3 Example: The Atwood Machine

As an example of how to apply the method of Lagrange multipliers to a constrained system,
consider the Atwood machine. This consists of two blocks, of masses m1 and m2, at opposite
ends of a massless rope of (fixed) length `, hung over a massless, frictionless pulley, subject
to a uniform gravitational field of strength g. This is illustrated in Symon’s Fig. 9.5. Symon
considers this system in the reduced Lagrangian approach in Section 9.5.

We are looking for the acceleration of each block, and possibly also the tension in the
rope.

2.3.1 Lagrange Multiplier Approach

Here we will use the modified Lagrangian approach, with a Lagrange multiplier corresponding
to the unknown constraining force, here provided by the tension in the rope.

We define generalized coördinates x1 and x2, which are both supposed to be positive, and
refer to the distance of each block below the pulley. The constraint here is that the fixed
length of the rope is ` = x1 +x2. To construct the modified Lagrangian, we need the kinetic
energy

T =
1

2
m1ẋ

2
1 +

1

2
m2ẋ2 (2.40)

and the potential energy
V = −m1gx1 −m2gx2 (2.41)

(since the height of each block above the pulley is −x1 or −x2). The modified Lagrangian is
then

L̃(x1, x2, λ, ẋ1, ẏ1, t) = T−V +λ(`−x1−x2) =
1

2
m1ẋ

2
1+

1

2
m2ẋ

2
2+m1gx1+m2gx2+λ(`−x1−x2)

(2.42)
and the equations of motion are

m1ẍ1 =
d

dt

(
∂L̃

∂ẋ1

)
=

∂L

∂x1

= m1g − λ (2.43a)

m1ẍ2 =
d

dt

(
∂L̃

∂ẋ2

)
=

∂L

∂x2

= m2g − λ (2.43b)

0 =
d

dt

(
∂L̃

∂λ̇

)
=
∂L

∂λ
= `− x1 − x2 (2.43c)

Since a positive tension will produce a force which tends to try to decrease x1 and x2, the
tension in the rope is λ > 0.

To get separate equations for ẍ1 and ẍ2, we take time derivatives of the constraint (2.43c)
to say

ẋ1 + ẋ2 = 0 (2.44a)

ẍ1 + ẍ2 = 0 (2.44b)
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and so we can substitute ẍ2 = −ẍ1. We might also need x2 = ` − x1 in a more general
problem, but here the equations of motion turn out to be independent of x2.

To eliminate λ from (2.43a) we solve (2.43b) for

− λ = m2(ẍ2 − g) = m2(−ẍ1 − g) (2.45)

and then substitute in to get

m1ẍ1 = m1g −m2ẍ1 −m2g (2.46)

which can be solved for

ẍ1 =
m1 −m2

m1 +m2

g (2.47)

and then

ẍ2 = −ẍ1 =
m2 −m1

m2 +m1

g (2.48)

and finally

λ = −m1(ẍ1 + g) = m1g

(
−m1 +m2 +m1 +m2

m1 +m2

)
=

2m1m2

m1 +m2

g (2.49)

which is the tension in the rope.

2.3.2 Reduced Lagrangian Approach

The other way to handle this problem is to make the replacements x2 = `−x1 and ẋ2 = −ẋ1

at the level of the Lagrangian, and obtain the reduced Lagrangian with one degree of freedom:

L(x1, ẋ1, t) =
1

2
m1ẋ

2
1+

1

2
m2(−ẋ1)2+m1gx1+m2g(`−x1) =

1

2
(m1+m2)ẋ2

1+(m1−m2)gx1+m2g`

(2.50)
The equation of motion is then

(m1 +m2)ẍ1 =
d

dt

(
∂L

∂ẋ1

)
=

∂L

∂x1

= (m1 −m2)g (2.51)

or

ẍ1 =
m1 −m2

m1 +m2

g (2.52)

It’s a lot simpler to get the equation of motion from this approach, but we don’t get the
value of the tension.

3 Velocity-Dependent Potentials

So far we’ve started from the Newtonian picture and seen how to derive a Lagrangian for each
class of problem. Once we’d justified the Lagrangian approach, we were able to construct the
Lagrangian in generalized coördinates directly. Now, let’s go a step further and start with
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a Lagrangian, and see what sort of systems it describes. The Lagrangian is, in Cartesian
coördinates for a single particle,

L(~r, ~̇r, t) =
1

2
m
∣∣∣~̇r∣∣∣2 −Qϕ(~r, t) +Q~̇r · ~A(~r, t) (3.1)

where Q is a constant, ϕ(~r, t) is a scalar field, and ~A(~r, t) is a vector field. Note that

Qϕ(~r, t)−Q~̇r · ~A(~r, t) (3.2)

plays the role of the potential energy V , but now it depends on ~̇r as well as ~r. This sort of
Lagrangian is associated with a “velocity-dependent potential”.

Writing the Lagrangian out explicitly,

L =
1

2
mẋ2 +

1

2
mẏ2 +

1

2
mż2 −Qϕ+QẋAx +QẏAy +QżAz (3.3)

where Ax, Ay, Az, and ϕ are all functions of x, y, z, and t.
Let’s focus on one Lagrange equation, the one corresponding to the x coördinate. The

relevant derivatives are
∂L

∂ẋ
= mẋ+QAx (3.4)

and then, using the chain rule to evaluate the total time derivative,

d

dt

∂L

∂ẋ
= mẍ+Q

dAx
dt

= mẍ+Q
∂Ax
∂x

ẋ+Q
∂Ax
∂y

ẏ +Q
∂Ax
∂z

ż +Q
∂Ax
∂t

(3.5)

and finally, because the Lagrangian depends on x through the fields ~A and ϕ,

∂L

∂x
= −Q∂ϕ

∂x
+Qẋ

Ax
∂x

+Qẏ
∂Ay
∂x

+Qż
∂Az
∂x

(3.6)

Now, the Lagrange equation is

0 =
d

dt

∂L

∂ẋ
− ∂L

∂x

= mẍ+
�
�
�
��

Qẋ
∂Ax
∂x

+Qẏ
∂Ax
∂y

+Qż
∂Ax
∂z

+Q
∂Ax
∂t

+Q
∂ϕ

∂x
−
�
�
��

Qẋ
Ax
∂x
−Qẏ∂Ay

∂x
−Qż∂Az

∂x

= mẍ+Q

(
∂Ax
∂t

+
∂ϕ

∂x

)
+Qẏ

(
∂Ax
∂y
− ∂Ay

∂x

)
+Qż

(
∂Ax
∂z
− ∂Az

∂x

)
(3.7)

which we can solve for

mẍ = Q

([
−∂ϕ
∂x
− ∂Ax

∂t

]
+ ẏ

[
∂Ay
∂x
− ∂Ax

∂y

]
− ż

[
∂Ax
∂z
− ∂Az

∂x

])
(3.8)

The first expression in brackets is the x component of −~∇ϕ − ∂ ~A
∂t

, the second expression

in brackets is the z component of ~∇ × ~A, and the third expression in brackets is the y
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component of ~∇ × ~A. But if we interpret ϕ as the scalar potential and ~A as the vector
potential of electrodynamics, these are just components of the electric and magnetic fields

~E = −~∇ϕ− ∂ ~A

∂t
(3.9a)

~B = ~∇× ~A (3.9b)

so
mẍ = Q

(
Ex + ẏBz − żBy︸ ︷︷ ︸

x compt of ~̇r × ~B

)
= x̂ ·

[
Q
(
~E + ~̇r × ~B

)]
(3.10)

The calculations for the y and z components of the acceleration are similar and the Lagrange
equations arising from

L =
1

2
m
∣∣∣~̇r∣∣∣2 −Qϕ+Q~̇r · ~A (3.11)

are just the components of the Lorentz force law

m~̈r = Q
(
~E + ~̇r × ~B

)
(3.12)

More on this example in the future.

4 Conservation Laws

4.1 Conservation of Momentum and Ignorable Coördinates

Recall conservation of momentum in Newtonian physics:

d~p

dt
= m~̈r = ~F = −~∇V (4.1)

px = mẋ = constant if
∂V

∂x
= 0 (4.2a)

py = mẏ = constant if
∂V

∂y
= 0 (4.2b)

pz = mż = constant if
∂V

∂z
= 0 (4.2c)

If V is independent of one of the Cartesian coördinates, the corresponding component of the
momentum is a constant of the motion.

In Lagrangian mechanics, with generalized coördinates,

d

dt

∂L

∂q̇k
=
∂L

∂qk
(4.3)

so if L is independent if one of the coördinates qk, the corresponding quantity ∂L
∂q̇k

is a
constant. We call this the generalized momentum

pk =
∂L

∂q̇k
(4.4)
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(This definition applies in general, even if ∂L
∂qk
6= 0.) The generalized momentum is sometimes

also called the canonical momentum. We say that a given pk is canonically conjugate to the
corresponding qk.

For Cartesian coördinates, this is just one of the components of the momentum of one of
the particles.

pxi =
∂L

∂ẋi
= mẋi (4.5a)

pyi =
∂L

∂ẏi
= mẏi (4.5b)

pzi =
∂L

∂żi
= mżi (4.5c)

(i is particle label)
As an example of the definition of generalized momenta for non-Cartesian coördinates,

consider the Lagrangian for a single particle in two dimensions, described in polar coördinates:

L =
1

2
mṙ2 +

1

2
mr2φ̇2 − V (r, φ) (4.6)

the generalized momenta are

pr =
∂L

∂ṙ
= mṙ (4.7a)

pφ =
∂L

∂φ̇
= mr2φ̇ (4.7b)

Note that these are not just the components of the usual momentum vector

~p = mṙ r̂ +mrφ̇ φ̂ (4.8)

In particular,
pφ 6= φ̂ · ~p (4.9)

(For one thing, the two quantities have different units!) Thus pφ refers to something different
than it did last semester. There’s not really an ideal way around this notational hassle. We
could write pφ̂ for φ̂ · pφ, but we wouldn’t want to have been doing that all along. Another
convention would be to call the generalized momenta {πk} rather than {pk}, but that’s also
potentially confusing.

In fact, there is a physical interpretation for pφ: it’s just the z component of the orbital
angular momentum of the particle:

pφ = mr2φ̇ = Lz = ẑ · [~r × (m~̇r)] (4.10)

Another example where the generalized momenta are not the components of the ordinary
momentum vector is in the electromagnetic Lagrangian we consdidered last time:

L =
1

2
m
∣∣∣~̇r∣∣∣2 −Qϕ+Q~̇r · ~A (4.11)
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In Cartesian coördinates, we get, for example

px =
∂L

∂ẋ
= mẋ+QAx (4.12)

and similarly for the y and z momenta. Here the canonical momenta can even be combined
into a vector

pxx̂+ pyŷ + pz ẑ = m~̇r +Q~A (4.13)

Whether to call this “canonical momentum vector” ~p (or, for example, ~π) is again a matter
of notational preference.

Returning to the original topic of conservation laws, if L is independent of qk, then pk is
a constant of the motion (its time derivative vanishes as a result of Lagrange’s equations),
and qk is called an ignorable coördinate.

So if the Lagrangian is independent of y (translationally invariant), the component of
momentum in the y direction vanishes. If it’s independent of φ (rotationally invariant about
an axis) the component of angular momentum along that axis vanishes. In general in Physics,
a symmetry is associated with a conservation law.

Note that it’s L that needs to be independent of qk, not just V . For example, in polar
coördinates, the Lagrange equation associated with the r coördinate tells us

dpr
dt

=
d

dt

∂L

∂ṙ
=
∂L

∂r
= mrφ̇2 +

∂V

∂r
(4.14)

which does not vanish even if the potential V is independent of r.

4.2 Conservation of Energy and Definition of the Hamiltonian

Recall conservation of energy, T + V = E = constant, i.e., d
dt

(T + V ) = 0. How did that
come about in the simplest situation, one particle in one dimension with T = 1

2
mẋ2?

d

dt
(T + V ) =

dT

dt
+
dV

dt
(4.15)

where
dT

dt
=
dT

dẋ

dẋ

dt
= mẋẍ = ẋF (x) = ẋ

(
−dV
dx

)
(4.16)

(using Newton’s 2nd law) while

dV

dt
=
dV

dx

dx

dt
=
dV

dx
ẋ (4.17)

so
dT

dt
= −dV

dt
(4.18)

Note this only works because V is independent of time. If we had V (x, t) with explicit time
dependence as well as that implicit in the x, we’d get

dV

dt
=
∂V

∂x

dx

dt
+
∂V

∂t

dt

dt
=
∂V

∂x
ẋ+

∂V

∂t
(4.19)
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Now L = T − V ; can we use Lagrange eqns to derive conservation of energy? Use chain
rule to find time derivative of L(t) = L({qk(t)}, {q̇k(t)}, t)

dL

dt
=

f∑
k=1

(
∂L

∂qk

dqk
dt

+
∂L

∂q̇k

dq̇k
dt

)
+
∂L

∂t
=

f∑
k=1

(
d

dt

(
∂L

∂q̇k

)
q̇k +

∂L

∂q̇k
q̈k

)
+
∂L

∂t

=
d

dt

(
f∑
k=1

∂L

∂q̇k
q̇k

)
+
∂L

∂t

(4.20)

Or, putting all the total derivatives on one side,

d

dt

(
f∑
k=1

∂L

∂q̇k
q̇k − L

)
= −∂L

∂t
(4.21)

If the Lagrangian has no explicit time dependence (∂L
∂t

= 0), then

H =

f∑
k=1

∂L

∂q̇k
q̇k − L (4.22)

is a constant of the motion. H is called the Hamiltonian, and is often but not always equal
to the total energy T + V .

4.2.1 When is the Hamiltonian the Total Energy?

If you start from the Cartesian definition

T =
3N∑
`=1

1

2
M`Ẋ

2
` (4.23)

and substitute in

Ẋ` =

f∑
k=1

∂X`

∂qk
q̇k +

∂X`

∂t
(4.24)

which we found in Sec. (1.1.5)3, you can see that T ({qk}, {q̇k}, t) is in general made up of
pieces which are quadratic, linear and independent of the generalized velocities {q̇k}:

T =

f∑
k′=1

f∑
k′′=1

1

2
Ak′k′′({qk}, t)q̇k′ q̇k′′︸ ︷︷ ︸

T2({qk},{q̇k},t)

+

f∑
k′=1

Bk′k′′({qk}, t)q̇k′︸ ︷︷ ︸
T1({qk},{q̇k},t)

+T0({qk}, t) (4.25)

3Technically speaking, we only did this for completely unconstrained systems, but the introduction of
constraints to reduce the Lagrangian doesn’t change things; the expression given here is just the Cartesian
velocity in terms of the unconstrained degrees of freedom, once the constraints are imposed.
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We can show that

f∑
k=1

∂T2

∂q̇k
q̇k = 2T2 (4.26a)

f∑
k=1

∂T1

∂q̇k
q̇k = T1 (4.26b)

f∑
k=1

∂T0

∂q̇k
q̇k = 0 (4.26c)

So in general
H = 2T2 + T1 − (T2 + T1 + T0 − V ) = T2 − T0 − V (4.27)

So the Hamiltonian is the same as the total energy T + V if the kinetic energy is purely
quadratic, T1 = 0 = T0 so that T = T2.

4.2.2 Examples

Examples where H is or is not the total energy.

5 Hamiltonian Mechanics

So far: system w/f degrees of freedom described by f generalized coördinates {qk|k = 1 . . . f}
Construct a Lagrangian L({qk}, {q̇k}, t) which is usually T − V .
The actual trajectory {qk(t)} satisfies

d

dt

(
∂L

∂q̇k

)
=
∂L

∂qk
for all k = 1 . . . f (5.1)

Note, these are second-order differential equations because ∂L
∂q̇k

will usually contain time

derivatives {q̇k′}.
Last week you saw that pk = ∂L

∂q̇k
was a constant of the motion if

(
∂L
∂qk

)
{qk′ 6=k},{q̇k′},t

= 0,

because dpk
dt

= ∂L
∂qk

.

You also saw that “X”=
∑f

k=1 q̇k
∂L
∂q̇k
− L was conserved if L had no explicit time de-

pendence, and this “X” was often the total energy T + V . This quantity is called the
Hamiltonian, and we use the symbol H to refer to it.

We thought of pk as some function of the {qk′} & {q̇k′} but since we’re taking a total
derivative, it could also be thought of as some function of time which is determined by the
trajectory, so ṗk = ∂L

∂qk
as a consequence of the Lagrange equations.

This is an interesting situation:

pk =
∂L

∂q̇k
(5.2a)

ṗk =
∂L

∂qk
(5.2b)
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A good way to summarize partial derivatives is to think about the infinitesimal change in a
function associated with infinitesimal changes in its arguments. So for f(x, y), we have

df =
∂f

∂x
dx+

∂f

∂y
dy (5.3)

This is a distillation of the chain rule (with a hint of implicit differentiation thrown in).
Apply this to L({qk}, {q̇k}, t):

dL =
∂L

∂q1

dq1 +
∂L

∂q2

dq2 + . . .+
∂L

∂qf
dqf +

∂L

∂q̇1

dq̇1 +
∂L

∂q̇2

dq̇2 + . . .+
∂L

∂q̇f
dq̇f +

∂L

∂t
dt

=

f∑
k=1

(
∂L

∂qk
dqk +

∂L

∂q̇k
dq̇k

)
+
∂L

∂t
dt =

f∑
k=1

(ṗk dqk + pk dq̇k) +
∂L

∂t
dt

(5.4)

Now think about the definition of the Hamiltonian

H =

f∑
k=1

pkq̇k − L (5.5)

well,

dH =

f∑
k=1

(����pk dq̇k + q̇k dpk)−
f∑
k=1

(ṗk dqk +����pk dq̇k)−
∂L

∂t
dt

=

f∑
k=1

(q̇k dpk − ṗk dqk)−
∂L

∂t
dt

(5.6)

The dq̇ terms cancel. This means that it’s much easier to think of H as a function of {qk},
{pk} and t rather than {qk}, {q̇k} and t. Its partial derivatives are(

∂H

∂pk

)
{qk′ 6=k},{pk′},t

= q̇k (5.7a)(
∂H

∂qk

)
{qk′},{pk′ 6=k},t

= −ṗk (5.7b)(
∂H

∂t

)
{qk},{pk}

= −
(
∂L

∂t

)
{qk},{q̇k}

(5.7c)

The first two equations are called Hamilton’s equations and contain the same information as
the Lagrange equations.

What we have just performed is called a Legendre transformation from L({qk}, {q̇k}, t)
to H({qk}, {pk}, t):
• Construct pk({qk′}, {q̇k′}, t) = ∂L

∂pk

• Invert to get q̇k = q̇k({qk′}, {pk′}, t)

•

H({qk}, {pk}, t) =

f∑
k′=1

pk′ q̇k({qk′}, {pk′}, t)− LL({qk}, {q̇k({qk′}, {pk′}, t)}, t) (5.8)
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5.1 Examples

5.1.1 Cartesian Coördinates

For N particles in three dimensions, we have as usual

L =
3N∑
`=1

1

2
M`Ẋ

2
` − V ({X`}) (5.9)

The canonical momentum conjugate to a particular X` is

P` =
∂L

∂Ẋ`

= M`Ẋ` (5.10)

which can be inverted to get

Ẋ` =
P`
M`

(5.11)

and then we find the Hamiltonian

H =
3N∑
`=1

P`Ẋ` −
3N∑
`=1

1

2
M`Ẋ

2
` + V ({X`})

=
3N∑
`=1

P 2
`

M`

−
3N∑
`=1

1

2
M`

(
P`
M`

)2

+ V ({X`})

=
3N∑
`=1

P 2
`

2M`

+ V ({X`})

(5.12)

which then has Hamilton equations of

∂H

∂P`
=

P`
M`

= Ẋ` (5.13a)

∂H

∂X`

=
∂V

∂X`

= −Ṗ` (5.13b)

5.1.2 Polar Coördinates

In terms of polar coördinates r and φ, the Lagrangian is

L =
1

2
mṙ2 +

1

2
mr2φ̇2 − V (r, φ) (5.14)

The conjugate momenta are

pr = mṙ (5.15a)

pφ = mr2φ̇ (5.15b)

which are, physically, the radial component of momentum and the angular momentum,
respectively.
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Inverting this gives

ṙ =
pr
m

(5.16a)

φ̇ =
pφ
mr2

(5.16b)

Note the r dependence of φ̇.
The Hamiltonian is then

H = prṙ + pφφ̇−
1

2
mṙ2 − 1

2
mr2φ̇2 + V (r, φ)

=
p2
r

m
+

pφ
mr2

− m

2

(pr
m

)2

− mr2

2

( pφ
2mr2

)2

+ V (r, φ)

=
p2
r

2m
+

pφ
2mr2

+ V (r, φ)

(5.17)

and Hamilton’s equations are

∂H

∂pr
=
pr
m

= ṙ (5.18a)

∂H

∂r
= −

p2
φ

mr3
+
∂V

∂r
= −ṗr (5.18b)

∂H

∂pφ
=

pφ
mr2

= φ̇ (5.18c)

∂H

∂r
=
∂V

∂φ
= −ṗφ (5.18d)

Note that if V is V (r), as in the case of a central force, φ is an “ignorable coördinate” and
pφ is a constant.

5.2 More Features of the Hamiltonian

Last time, we constructed a Hamiltonian out of a Lagrangian and then showed Lagrange’s
equations implied Hamilton’s equations. To stress the completeness of the Hamiltonian
picture, let’s state the formulation without reference to the Lagrangian picture:

Given a Hamiltonian H({qk}, {pk}, t), Hamilton’s equations are

∂H

∂qk
= −ṗk k = 1, . . . , f (5.19a)

∂H

∂pk
= q̇k k = 1, . . . , f (5.19b)

What is this Hamiltonian? Starting from the Lagrangian L({qk}, {q̇k}, t), construct pk =
∂L
∂pk

= pk({qk′}, {q̇k′}, t) and H =
∑f

k=1 pkq̇k − L, using the inverse q̇k = q̇k({qk′}, {pk′}, t) to
write H as a function of the ps and qs but not the q̇s.

The Hamiltonian is “often” the total energy E = T + V . Basically, they’re the same
whenever V is a function only of the {qk} and T is purely quadratic in the {q̇k}. Look at an
example for f = 1 to make this explicit without worrying about subscripts . . .
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From the kinetic energy

T =
1

2
a(q, t) q̇2 + b(q, t) q̇ + c(q, t) (5.20)

and the potential energy V = V (q, t) we can construct the Lagrangian

L =
1

2
a(q, t) q̇2 + b(q, t) q̇ + c(q, t)− V (q, t) (5.21)

and the generalized momentum

p =
∂L

∂q̇
= a(q, t) q̇ + b(q, t) (5.22)

which makes the Hamiltonian

H = pq̇ − L = a(q, t) q̇2 +���
�b(q, t) q̇ − 1

2
a(q, t) q̇2 −����b(q, t) q̇ − c(q, t) + V (q, t)

=
1

2
a(q, t) q̇2 − c(q, t) + V (q, t)

(5.23)

The first two terms are only equal to T if b = 0 and c = 0, i.e., if T = 1
2
a(q, t) q̇2.

In the general case, H = T + V if and only if T =
∑f

k=1

∑f
k′=1 Akk′({qk′′}, t) q̇k q̇k′ .

5.3 Example: 1-D Harmonic Oscillator

So, for a one-dimensional harmonic oscillator

T =
1

2
mẋ2 =

p2

2m
(5.24a)

V =
1

2
kx2 (5.24b)

which meets the conditions (quadratic kinetic energy, velocity-independent potential energy)
so the Hamiltonian is just the total energy:

H(x, p) = T + V =
p2

2m
+

1

2
kx2 (5.25)

Hamilton’s equations are

∂H

∂x
= kx = −ṗ (5.26a)

∂H

∂p
=

p

m
= ẋ (5.26b)

Now look at an example where T is not purely quadratic . . .
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5.4 Rotating Coördinates

As we’ve seen before,

L =
mẋ∗2

2
+
mẏ∗2

2
−mωẋ∗y∗ +mωẏ∗x∗−V (x∗, y∗) +

mω2x∗2

2
+
mω2y∗2

2︸ ︷︷ ︸
−Veff(x∗,y∗)

(5.27)

So the generalized momenta are

px∗ = mẋ∗ −mωy∗ (5.28a)

py∗ = mẏ∗ +mωx∗ (5.28b)

which can be inverted to give

ẋ∗ =
px∗

m
+ ωy∗ (5.29a)

ẏ∗ =
py∗

m
− ωx∗ (5.29b)

We want to construct
H = px∗ẋ

∗ + py∗ ẏ
∗ − L (5.30)

The straightforward approach says to substitute for ẋ∗ and ẏ∗. But the algebra is easier if
we substitute for px∗ and px∗ and then back again:

H = mẋ∗2 −�����mωẋ∗y∗ +mẏ∗2 −�����mωẏ∗x∗ − mẋ∗2

2
− mẏ∗2

2
+���

��mωẋ∗y∗ −�����mωẏ∗x∗ + Veff

=
1

2
m
(px∗
m

+ ωy∗
)2

+
1

2
m
(py∗
m
− ωx∗

)2

+ V (x∗, y∗)− mω2x∗2

2
− mω2y∗2

2

=
p2
x∗

2m
+
p2
y∗

2m
+ ωy∗px∗ − ωx∗py∗ + V (x∗, y∗)

(5.31)

From this Hamiltonian we get Hamilton’s equations:

∂H

∂px∗
=
px∗

m
+ ωy∗ = ẋ∗ (5.32a)

∂H

∂py∗
=
py∗

m
− ωx∗ = ẏ∗ (5.32b)

∂H

∂x∗
= −ωpy∗ +

∂V

∂x∗
= −ṗx∗ (5.32c)

∂H

∂y∗
= ωpx∗ +

∂V

∂y∗
= −ṗy∗ (5.32d)

(5.32e)
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5.4.1 Time-Dependence of Hamiltonian

Note one consequence of Hamilton’s equations:

dH

dt
=

f∑
k=1

(
∂H

∂qk
q̇k +

∂H

∂pk
ṗk

)
+
∂H

∂t
=

f∑
k=1

(−ṗk q̇k + q̇k ṗk) +
∂H

∂t
(5.33)

I.e.,
dH

dt
=
∂H

∂t
(5.34)

Because of Hamilton’s equations, the implicit time dependence of the Hamiltonian “cancels
out”.

This tells us something we already know:
If H is a function of the {pk} and {qk} with no explicit time dependence, H is a constant

of the motion.
We knew this because we saw last time(

∂H

∂t

)
{qk},{pk}

= −
(
∂L

∂t

)
{qk},{q̇k}

(5.35)

and we first saw the Hamiltonian as the thing which is conserved when ∂L
∂t

= 0.

6 Lightning Recap

1. For f degrees of freedom the Lagrangian depends on {qk|k = 1 . . . f} and {q̇k|k =
1 . . . f} and maybe t. Physically

L({qk}, {q̇k}, t) = T︸︷︷︸
kinetic

− V︸︷︷︸
potential; usually fcn only of {qk}

(6.1)

Mechanics given by Lagrange’s equations:

d

dt

∂L

∂q̇k
=
∂L

∂qk
k = 1 . . . f (6.2)

2. Constraints and Lagrange Multipliers

There are two different was to handle constraints: Either you can choose coördinates
such that the constraints are automatically satisfied or use Lagrange multipliers (which
are useful for getting the constraining forces).

In the Lagrange multiplier method, the Lagrangian

L({qk|k = 1 . . . f + c}, {q̇k|k = 1 . . . f + c}, t) = T − V (6.3)

needs to be modified to enforce the constraints

hj({qk}) = 0 j = 1 . . . c (6.4)
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The modified Lagrangian is

L̃({qk}, {λj}, {q̇k}, t) = L({qk}, {q̇k}, t) +
c∑
j=1

λjhj({qk}) (6.5)

The equations of motion are then the Lagrange equations for L̃:

d

dt

∂L̃

∂q̇k
=
∂L̃

∂qk
(6.6a)

0 =
∂L̃

∂λj
(6.6b)

This works physically because the (unknown) constraining forces are perpendicular to
the surface of constraint.

3. Conserved quantities

∂L

∂qk
= 0 for some k ⇒ pk =

∂L

∂q̇k
conserved for that k (6.7a)

∂L

∂t
= 0 ⇒ H =

f∑
k=1

pkq̇k − L conserved (6.7b)

7 Review of Lagrangian Mechanics

1. Basic Formulation: f degrees of freedom, generalized coördinates {qk|k = 1 . . . f},
Lagrangian L({qk}, {q̇k}, t)
Lagrange’s equations

d

dt

∂L

∂q̇k
=
∂L

∂qk
(7.1)

are equivalent to Newton’s laws when L = T − V .

(a) Derivation starting from Newton’s laws in Cartesian coördintes {X`|` = 1 . . . 3N}
for N particles in 3 dimensions with

T ({Ẋ`}) =
1

2
M`Ẋ

2
` and V ({X`}, t) (7.2)

Newton’s laws are
d

dt

(
∂T

∂Ẋ`

)
=

d

dt
(M`Ẋ`) = − ∂V

∂X`

(7.3)

(The one-particle version of this is d
dt

(m~̇r) = ~∇V .)

Converting derivatives using X`({qk}, t) gives T ({qk}, {q̇k}, t) and V ({qk}, t).
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(b) Justification for f < 3N comes from reduction of constraint problem.

(c) Can also start from Lagrangian, e.g., the electromagnetic Lagrangian

L =
1

2
m(~̇r · ~̇r)−Qϕ(~r, t) +Q~̇r · ~A(~r, t) (7.4)

2. Constraints: Given f + c coördinates but only f degrees of freedom, there are c con-
straints4

hj({qk}, t) = 0 j = 1 . . . c (7.5)

Modify ordinary Lagrangian L({qk}, {q̇k}, t) by adding terms involving new “coördinates”
{λj|j = 1 . . . c}

L̃({qk}, {λj}, {q̇k}, {λ̇j}, t) = L({qk}, {q̇k}, t) +
c∑
j=1

λjhj({qk}, t) (7.6)

The equations of motion are then the Lagrange equations

d

dt

(
∂L

∂q̇k

)
=

d

dt

(
∂L̃

∂q̇k

)
=
∂L̃

∂qk
=
∂L

∂qk
+

c∑
j=1

λj
∂hj
∂qk

(7.7a)

0 =
d

dt

(
∂L̃

∂λ̇j

)
=

∂L

∂λj
= hj (7.7b)

(7.7a) are the equations of motion including the constraining forces, and (7.7b) are the
constraints.

(a) Method works because constrainting forces are perpendiculat for surface of con-

straint ~Fconstraint ∝ ~∇h; the λj are proportional to the constraining forces.

(b) WARNING! Do not impose constraints when constructing Lagrangian in La-
grange multiplier method. E.g., include 1

2
mẏ2 in Lagrangian even if y = 0 is a

constraint.

(c) Constraints can also be handled by reduced Lagrangian with only f coördinates,
but then you don’t get the constraining forces.

3. Conservation Laws

(a) If Lagrangian is independent of a coördinate, the corresponding conjugate mo-
mentum is a constant of the motion.

i.e., if
∂L

∂qk
= 0, then

d

dt
pk =

d

dt

(
∂L

∂q̇k

)
= 0 as a result of Lagrange’s eqns

(7.8)

4Sometimes the constraints are written as hj({qk}, t) = aj where aj is some constant, but we can always
write them in the form (7.5) by constructing hnew({qk}, t) = hold({qk}, t)− aj = 0.
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(b) If the Lagrangian is independent of time (no explicit time dependence,
i.e.,

(
∂L
∂t

)
{qk},{q̇k}

= 0, then

H =

f∑
k=1

q̇k
∂L

∂q̇k
− L (7.9)

is a constant, i.e., dH
dt

= 0 (this is the total derivative along the trajectory which
satisfies Lagrange’s equations).

H is “usually” the total energy. specifically, if

i. V depends only on {qk} and t, not {q̇k}
ii. T is purely quadratic in the {q̇k}, i.e.,

T =

f∑
k=1

f∑
k′=1

1

2
Akk′({qk′′}, t) q̇k q̇k′ (7.10)

(the most general form also has
∑f

k=1Bk({qk′}, t) q̇k and T0({qk}, t) terms)

then
∑f

k=1 q̇k
∂L
∂q̇k

= 2T and H = T + V = E.

4. Hamiltonian Mechanics

Change of variables (Legendre transform) from L({qk}, {q̇k}, t) to H({qk}, {pk}, t).
Hamilton’s equations are

q̇k =
dqk
dt

=

(
∂H

∂pk

)
(7.11a)

ṗk =
dpk
dt

= −
(
∂H

∂qk

)
(7.11b)

(7.11a) is a derivative at constant {qk′}, t, and {pk′|k′ 6= k}; (7.11b) is a derivative at
constant {qk′ |k′ 6= k}, t, and {pk′}, not at constant {q̇k′} because H is not written as
a function of velocities.

There are 2k first-order equations which are equivalent to the k second-order Lagrange’s
equations.

(a) The Hamiltonian is defined by

H =

f∑
k=1

pkq̇k − L (7.12)

with a transformation of arguments via

pk({qk′}, {q̇k′}, t) =
∂L

∂q̇k
(7.13)

which can be inverted to get

q̇k({qk′}, {pk′}, t) (7.14)
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(b) The method is most easily derived by implicit differentiation:

dH =

f∑
k=1

(
∂H

∂qk
dqk +

∂H

∂pk
dpk

)
+
∂H

∂t
dt

=

f∑
k=1

(
pk dq̇kq̇k dpk −

∂L

∂qk
dqk −

∂L

∂q̇k
dq̇k

)
− ∂L

∂t
dt

=

f∑
k=1

[
− ∂L
∂qk︸ ︷︷ ︸

=−ṗk by
Lagrange

eqns

dqk + q̇k dpk +
��

��
�
��*

0 by defn of pk(
pk −

∂L

∂q̇k

)
dq̇k

]
− ∂L

∂t
dt

(7.15)

A Appendix: Correspondence to Class Lectures

Date Sections Pages Topics
2006 May 26 1–1.1.4 3–8 Motivation and Formalism
2006 May 30 1.1.5–1.2 9–14 Derivation and Application
2006 June 1 Prelim One

38


	Lagrangian Mechanics
	Derivation of the Lagrange Equations
	Newton's Second Law from Scalar Functions
	Non-Cartesian Examples
	Generalized Coördinates
	Coördinate Transformations and the Chain Rule
	Partial Derivatives of the Kinetic and Potential Energy

	Examples
	Polar Coördinates
	Rotating Coördinates
	Two-Body Problem


	Lagrangian Formulation with Constraints
	Recap
	The Springy Pendulum
	Constrained Systems in General
	Example: The Atwood Machine
	Lagrange Multiplier Approach
	Reduced Lagrangian Approach


	Velocity-Dependent Potentials
	Conservation Laws
	Conservation of Momentum and Ignorable Coördinates
	Conservation of Energy and Definition of the Hamiltonian
	When is the Hamiltonian the Total Energy?
	Examples


	Hamiltonian Mechanics
	Examples
	Cartesian Coördinates
	Polar Coördinates

	More Features of the Hamiltonian
	Example: 1-D Harmonic Oscillator
	Rotating Coördinates
	Time-Dependence of Hamiltonian


	Lightning Recap
	Review of Lagrangian Mechanics
	Appendix: Correspondence to Class Lectures

