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Tuesday, May 9, 2006

0 Preliminaries

0.1 Course Outline

1. Gravity and Moving Coördinate Systems

Ch. 6 Gravitation

Ch. 7 Moving Coördinate Systems

2. Lagrangian and Hamlionian Mechanics (Ch. 9)

3. Tensor Analysis and Rigid Body Motion

Ch. 10 Tensor Algebra

Ch. 11 Rotation of a Rigid Body

Subject to modification, as Carl Brans takes over after chapter 7.

0.2 Composite Properties in Curvilinear Coördinates

As a precursor to our analysis of the gravitational influence of extended bodies, let’s return
to the calculation of quantities such as total mass and center-of-mass position vector, for a
composite or extended body.

Recall from last semester the definitions of total mass M and the center-of-mass position
vector ~R for either a collection of point masses or an extended solid body:

Point Masses Mass Distribution

M =
N∑
k=1

mk M=
y

ρ(~r) d3V

~R =
1

M

N∑
k=1

mk~rk ~R =
1

M

y
~r ρ(~r) d3V

Recalling that the position vector can be written

~r = xx̂+ yŷ + zẑ (0.1)

and defining the Cartesian coördinates of the center of mass as (X, Y, Z), so that

~R = Xx̂+ Y ŷ + Zẑ (0.2)

it’s easy to see that

X =
1

M

y
x ρ(x, y, z) dx dy dz (0.3a)

Y =
1

M

y
y ρ(x, y, z) dx dy dz (0.3b)

Z =
1

M

y
z ρ(x, y, z) dx dy dz (0.3c)
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(A crucial step in the demonstration is the ability to pull the Cartesian basis vector–x̂, ŷ, or
ẑ–out of each integral, which is okay because the Cartesian basis vectors do not depend on
a location in space.)

The volume integrals in each case cover the solid in question. Last semester we looked at
solids like prisms and pyramids which were easily descriubed in Cartesian coördinates. Now
let’s consider a sphere of uniform density ρ and radius a centered at the origin. This can be
defined in Cartesian coördinates by

0 ≤ x2 + y2 + z2 ≤ a2 (0.4)

We could use the techniques from last semester to find the limits of integration needed in
Cartesian coördinates to calculate the mass, and the result would be:

M =

∫ a

−a

∫ √a2−z2
−
√
a2−z2

∫ √a2−y2−z2

−
√
a2−y2−z2

ρ dx dy dz (0.5)

The limits on the x and y integrals make the y and z integrals messy to evaluate. However, the
limits of integration are simple if we work in spherical coördinates (r, θ, φ) defined implicitly
by

x = r sin θ cosφ (0.6a)

y = r sin θ sinφ (0.6b)

z = r cos θ (0.6c)

Then the sphere is defined by

0 ≤ r ≤ a (0.7a)

0 ≤ θ ≤ π (0.7b)

0 ≤ φ ≤ 2π (0.7c)

However, the volume element d3V is no longer as simple as it is in Cartesian coördinates.

0.2.1 The Volume Element in Spherical Coördinates

The easiest way to work out, or remember, the form of d3!V in curvilinear coördinates is
to recall the infinitesimal change d~r in the position vector ~r associated with infinitesimal
changes in the coördinates. The position vector is

~r = xx̂+ yŷ + zẑ = rr̂ (0.8)

and its differential, which we worked out last semester, is

d~r = x̂ dx+ ŷ dy + ẑ dz = r̂ dr + θ̂ r dθ + φ̂ r sin θ dφ (0.9)

We derived this algebraically, but it also has a geometric interpretation.
This interpretation is somewhat simpler (and easier to draw) if we look at it in two

dimensions, where the forms of ~r and d~r in Cartesian and polar coördinates are

~r = xx̂+ yŷ = rr̂ (0.10)

and
d~r = x̂ dx+ ŷ dy = r̂ dr + φ̂ r dφ (0.11)
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The area of the cell with (x, y) and (x+ dx, y + dy) on the corners is

d2A = dx dy (0.12)

dx

dy

The area of the cell with (r, φ) and (r + dr, φ+ dφ) on the corners is

d2A = (dr)(r dφ) = r dr dφ (0.13)
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r dφ dr

So likewise, in 3 dimensions where

d~r = r̂ dr + θ̂ dθ + φ̂ r sinφ (0.14)

the volume element is

d3V = (dr)(r dθ)(r sin θ dφ) = r2 sin θ dr dθ dφ (0.15)

so the mass of a sphere with uniform density ρ and radius a is

M =

∫ 2π

0

∫ π

0

∫ a

0

ρ r2 sin θ dr dθ dφ = ρ

∫ a

0

r2 dr︸ ︷︷ ︸
r3

3

∣∣∣a
0
=a3

3

∫ π

0

sin θ dθ︸ ︷︷ ︸
2; see below

∫ 2π

0

dφ︸ ︷︷ ︸
2π

=
4π

3
ρa3 (0.16)

The θ integral is done with the substitution

µ = cos θ dµ = − sin θ dθ (0.17a)

µ : cos 0 −→ cosπ = 1 −→ −1 (0.17b)

so that ∫ π

0

sin θ dθ =

∫ −1
1

(−dµ) =

∫ 1

−1
dµ = 2 (0.18)

The substitution µ = cos θ is usually the best way to do the θ integral in spherical coördinates.
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0.3 Calculating the Center of Mass in Spherical Coördinates

How about the center of mass
~R =

1

M

y
ρ(~r)~r d3V (0.19)

of a sphere? Should we also use ~r = r r̂ to find the spherical coördinates of the center of
mass? There’s a problem with this! r̂ depends on θ and φ so it can’t be pulled out of the
integral like x̂, ŷ, and ẑ. Instead find the Cartesian coördinates X, Y , and Z, even if the
integrals are done in spherical (or cylindrical) coördinates:

X =
1

M

y
ρ(r, θ, φ)x r2 sin θ dr dθ dφ =

1

M

y
ρ(r, θ, φ) (r sin θ cosφ) (r2 sin θ) dr dθ dφ

(0.20a)

Y =
1

M

y
ρ(r, θ, φ) y r2 sin θ dr dθ dφ =

1

M

y
ρ(r, θ, φ) (r sin θ sinφ) (r2 sin θ) dr dθ dφ

(0.20b)

Z =
1

M

y
ρ(r, θ, φ) z r2 sin θ dr dθ dφ =

1

M

y
ρ(r, θ, φ) (r cos θ) (r2 sin θ) dr dθ dφ

(0.20c)

etc.
Now, for the sphere, X = 0, Y = 0, and Z = 0 (because of the symmetry of the problem

with a uniform density sphere centered at the origin). (Exercise: show this!)
Consider instead a different shape. Imagine a sphere, again of constant density ρ and

radius a and centered at the origin, but with a code of opening angle 45◦ taken out along
the negative z axis. Here’s the y = 0 cross-section:

-

6

�

?

@
@
@
@
@
@

�
�

�
�
�

� .
........................

.........................

..........................

..........................

..........................

..........................

..........................

.........................

.........................

..........................

..........................

..........................

..........................

..........................

.........................

........................

........................

.........................

..........................

..........................

..........................
..........................

................................................................................................................................
........................

..

...................
.......

................
..........

.............
............

...........
...........
..

..........
..........
....

..........
..........
.....

..........
..........
......

.........
.........
........

.........
.........
........

.........
.........
........

........

........

........

..

........

........

........

.

........

........

........

.

........

........

........

..

.........
.........
........

.........
.........
........

.........
.........
........

..........
..........
......

..........
..........
.....

..........
..........
....

What are its mass and center-of-mass position vector? Well, the range of r and φ values is
the same, but θ only runs from 0→ 3π

4
, so, using∫ 3π/4

0

sin θ dθ =

∫ 1

−1/
√
2

dµ = 1 +
1√
2

=
1 +
√

2√
2

=
2 +
√

2

2
(0.21)
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we have

M =

∫ 2π

0

∫ 3π/4

0

∫ a

0

ρ r2 sin θ dr dθ dφ = ρ

(
a3

3

)(
2 +
√

2

2

)
(2π) =

(2 +
√

2)πρa3

3
(0.22)

Again X = 0 = Y (exercise!) but

Z =
1

M

∫ 2π

0

∫ 3π/4

0

∫ a

0

ρ r cos θ r2 sin θ dr dθ dφ =
ρ

M
2π
a4

4

µ2

2

∣∣∣∣1
−1/
√
2

= 1
2(1− 1

2)= 1
4︷ ︸︸ ︷∫ 1

−1/
√
2

µ dµ

=
3

(2 +
√

2)πρa3
2πρa4

16
=

3π

(2 +
√

2)8
a

2−
√

2

2−
√

2
=

3π(2−
√

2)

(4− 2)8
=

3(2−
√

2)π

16
a

≈ 0.345a

(0.23)

so ~R ≈ 0.345a ẑ, which puts the center of mass about 1/3 of the way up the z axis.
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Thursday, May 11, 2006

1 The Gravitational Force

1.1 Force Between Two Point Masses

We’ve already introduced the gravitational force between two objects small enough to be
idealized as point masses, which is:

1. Proportional to the product of the masses

2. Inversely proportional to the square of the distance between them

3. Attractive and directed on a line from one mass to the other

To represent this mathematically in a vector equation, we consider the gravitational force
on a mass m2 with position vector r2 due to a mass m1 with position vector r1. The key
geometrical quantity is the vector

~r1→2 = ~r2 − ~r1 (1.1)

which points from one to the other:

O

tm1 tm2

�
�
�
�
�
�
�
��

~r2

-~r1→2

A
A
A
A
A
A
A
AK

~r1

The distance between the two masses is

r1→2 = |~r1→2| (1.2)

and the unit vector pointing from mass 1 to mass 2 is

r̂1→2 =
~r1→2

r1→2

(1.3)

We this write the force on mass 2 due to mass 1 as

~F1→2 = −Gm1m2

r21→2

r̂1→2 (1.4)

Some important features of this force:

1. It satisfies Newton’s third law

~F2→1 = −Gm2m1

r22→1

r̂2→1 = G
m1m2

r21→2

r̂1→2 = −~F1→2 (1.5)
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2. Because the gravitational “charge” is just the same as the inertial mass, the acceleration
experienced by particle 2 is

~a2 =
~F2→1

m2

= −G m1

r21→2

r̂1→2 (1.6)

which depends on particle 2’s location but not any properties of the particle itself.
This is called the Equivalence Principle and was instrumental in the development
of Einstein’s General Theory of Relativity, which describes gravity in terms of the
geometry of spacetime.

3. The coupling constant has been numerically determined as

G = 6.673× 10−11
m3

kg s2
(1.7)

We can check the units on this by considering two one-kilogram masses located one
meter away from each other:∣∣∣~F ∣∣∣ = 6.673× 10−11

m3

kg s2
1 kg× 1 kg

(1 m)2
= 6.673× 10−11

kg m

s2
= 6.673× 10−11 N (1.8)

We see not only that Newton’s constant G has the right units, but that the gravitational
force between everyday objects is very small. This is why it is still difficult to determine
Newton’s constant to the same accuracy as other constants of nature. Most things
which are big enough to exert an appreciable gravitational force (like moons, planets,
and stars) are too big to have their masses directly compared to everyday objects whose
masses we know in kilograms. So we know the combination GM pretty well for things
like the Earth and the Sun, from e.g., Kepler’s third law, but to get an independent
measure of G (and hence of the masses of planet-sized things) required sophisticated
experiments to measure the gravitational forces exerted by laboratory-sized objects.

While the form (1.4) emphasizes that the magnitude of the gravitational force is inversely
proportional to the square of the distance between the masses, for practical calculations, it’s
more useful to replace r̂1→2 using (1.3) and say

~F1→2 = −Gm1m2
~r1→2

r31→2

= −Gm1m2
~r2 − ~r1
|~r2 − ~r1|3

(1.9)

which is the form of Symon’s equation (6.3).1 The extra factor of r1→2 in the denominator
serves to cancel out the factor of distance in the vector ~r1→2.

For the sake of completeness, we spell out the form of the gravitational interaction in
terms of the x, y, and z coördinates of the masses involved. The position vectors are

~r1 = x1x̂+ y1ŷ + z1ẑ (1.10a)

~r2 = x2x̂+ y2ŷ + z2ẑ (1.10b)

1Symon puts the minus sign in a different place by talking about ~r1 − ~r2, but the two expressions are
equivalent.
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which makes the displacement vector from object 1 to object 2

~r1→2 = ~r2 − ~r1 = (x2 − x1)x̂+ (y2 − y1)ŷ + (z2 − z1)ẑ (1.11)

The distance r1→2 between the objects is the length of this vector

r1→2 = |~r1→2| =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (1.12)

So we can write the gravitational force in gory detail as

~F1→2 = −Gm1m2
~r2 − ~r1
|~r2 − ~r1|3

= −Gm1m2
(x2 − x1)x̂+ (y2 − y1)ŷ + (z2 − z1)ẑ

[(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2]3/2
(1.13)

1.2 Force Due to a Distribution of Masses

Because Newtonian gravity obeys the principle of superposition, we can build up the gravita-
tional force on a point mass due to a collection of other point masses, or due to a continuous
mass distribution, by adding up the effects due to all of the individual source masses.

We’re interested in the gravitational force on a point mass, located at a location often
referred to as the field point. When the source of the gravitational force was also a point
mass, we called the mass at the field point m2 and its position vector ~r2. Now we refer to it
simply as m, and its position vector as ~r. Instead of a single source mass m1 at a location ~r1,
we now have a set of N source masses {mi|i = 1 . . . N} located at positions {~ri|i = 1 . . . N},
respectively. The force on our mass m due to the ith source mass is, by analogy with (1.9),

~Fdue to i = −Gmmi
~r − ~ri
|~r − ~ri|3

(1.14)

which makes the total force

~F =
N∑
i=1

~Fdue to i = −
N∑
i=1

Gmmi
~r − ~ri
|~r − ~ri|3

(1.15)

which is equivalent to Symon’s equation (6.6). As we did when calculating centers of mass in
Chapter 5, we can replace the sum over point masses with an integral over a mass distribution
of density ρ(~r ′), with the infinitesimal mass ρ(~r ′)d3V ′:

~F = −
y

Gmρ(~r ′)
~r − ~r ′

|~r − ~r ′|3
d3V ′ (1.16)

The integral is over the volume occupied by the mass distribution, although as Symon points
out, it can be thought of as an integral over all space if we define ρ(~r ′) = 0 for points ~r ′

outside the mass distribution.
Note that there are two position vectors in the expression (1.16): the source point

~r ′ = x̂x′ + ŷy′ + ẑz′ (1.17)

which is integrated over (in Cartesian coördinates, d3V ′ = dx′dy′dz′), and the field point

~r = x̂x+ ŷy + ẑz (1.18)

9



which is not. When evaluating (1.16) for particular mass distributions, one should note
that the answer cannot depend on the “primed” coördinates x′, y′, and z′, but only on the
unprimed ones x, y, and z. For a given mass distribution, we can often find the force which
would be experienced by a point particle at an arbitrary position ~r and consider this to be
a function of ~r and the mass m of the particle:

~F (~r) =

{
−
∑N

i=1Gmmi
~r−~ri
|~r−~ri|3

collection of point masses

−
t

Gmρ(~r ′) ~r−~r ′
|~r−~r ′|3d

3V ′ continuous mass distribution
(1.19)

This is a force field, just like we considered last semester.

2 Gravitational Field and Potential

2.1 Gravitational Field

As we noted in the case of a single point source, the acceleration experienced by a point
particle due to gravitational forces is actually independent of the particle’s mass.2 It is
useful to think of acceleration, dependent on the position but not the mass of the particle
in question, as a vector field, which we call the gravitational field

~g(~r) =
~F (~r)

m
=

{
−
∑N

i=1Gmi
~r−~ri
|~r−~ri|3

collection of point masses

−
t

Gρ(~r ′) ~r−~r ′
|~r−~r ′|3d

3V ′ continuous mass distribution
(2.1)

2.2 Gravitational Potential

The force field ~F (~r) defined by (1.19) is conservative, as one could demonstrate by explicitly

calculating the curl ~∇× ~F in Cartesian coördinates. However, it’s easier just to write down
a potential energy V (~r) which satisfies

~F = −~∇V (2.2)

In fact, we’ve already worked out the gravitational potential energy associated with a point
source (see our study of central force motion, in particular Symon’s equation (3.229), or
problem 2 on Problem Set 10 from last semester). In the language of Section 1.1 of these
notes, it’s

V (~r2) = −Gm1m2

r1→2

(2.3)

which generalizes to the superposition case as

V (~r) =

{
−
∑N

i=1
Gmmi
|~r−~ri| collection of point masses

−
t Gmρ(~r ′)d3V ′

|~r−~r ′| continuous mass distribution
(2.4)

2The one caveat is that the gravitational force of the “test particle” back on the source masses might
cause them to move. But we can typically assume they are held in place by some other forces and consider
their locations to be fixed.
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Just as it’s useful to divide out the mass m and produce a vector field ~g(~r) which depends
only on the source masses, one can similarly define a gravitational potential

ϕ(~r) =
V (~r)

m
=

{
−
∑N

i=1
Gmi
|~r−~ri| collection of point masses

−
t Gρ(~r ′)d3V ′

|~r−~r ′| continuous mass distribution
(2.5)

In practice, it is often easier to calculate the potential ϕ with (2.5) and then differentiate it
to get the gravitational field

~g = −~∇ϕ (2.6)

than it is to calculate the field ~g(~r) directly using (2.1).

2.2.1 Warnings about Symon

1. There is a typo in equation (6.11). The left-hand side should read Vmmi rather than
V mmi.

2. Symon defines a “gravitational field” G(~r) = −V (~r)/m with the opposite sign to ϕ(~r)
and claims this sign convention is standard. Perhaps it was in 1971, but I’ve never
seen it before. We’ll work with ϕ(~r) instead, since the sign convention preserves the

symmetrical relationship among ~F , ~g, V , and ϕ.
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Friday, May 12, 2006

2.3 Example: Gravitational Field of a Spherical Shell

Let S be a spherical shell of constant density and total mass M with inner radius a and
outer radius b, centered on the origin. Find the gravitational field ~g(~r) resulting from this
shell, at an arbitrary position ~r.

This is slightly different than the example given in Symon, since we allow the shell to
have finite thickness, and we solve the problem by a slightly different method, integrating
for the gravitational field directly rather than finding the potential first.

For economy of notation, we’ll call the density ρ. We can relate ρ to M by performing a
volume integral:

M =
y

S

ρ d3V = 4π
b3 − a3

3
ρ (2.7)

In the calculations, we’ll just work with a constant ρ and then relate it to M at the end.
Now, the gravitational field is given by the integral

~g(~r) = −
y

Gρ(~r ′)
~r − ~r ′

|~r − ~r ′|3
d3V ′ (2.8)

In general, we’d need to perform a triple integral over ~r ′ for each of the three components gx,
gy, and gz, but in this case we can take advantage of the spherical symmetry of the problem
to restrict the form of ~g(~r). Because no direction is preferred over any other direction, the
magnitude of the field must depend only on the radial coördinate r = |~r| and not on the
direction of the position vector ~r. Likewise, the field must point in the radial direction,
because there’s nothing to pick out one direction over another. (When we do the integral,
there will be non-radial components of the gravitational field due to little pieces of the shell,
but they will integrate to zero.) So the field must have the form

~g(~r) = gr(r)r̂ (2.9)

and we just need to find the radial component

gr(r) = r̂ ·
(
−

y
Gρ(~r ′)

~r − ~r ′

|~r − ~r ′|3
d3V ′

)
(2.10)

If we write ~r = rr̂, this becomes

gr(r) = −
y

Gρ(~r ′)
r − r̂ · ~r ′

|rr̂ − ~r ′|3
d3V ′ (2.11)

where the magnitude in the denominator is

|rr̂ − ~r ′| =
√
r2 + r′2 − 2rr̂ · ~r ′ (2.12)

So the crucial piece of geometry is the dot product r̂ · ~r ′. Due to the geometry, we want to
do the integral d3V ′ in spherical coördinates, but the choice of axis with which to define the

12



θ′ and φ′ coördinates is basically arbitrary. So we choose the axis to lie along r̂ (which is
fine because it’s ~r ′ and not ~r which is varying in the integral) which means r̂ · ~r ′ = r′ cos θ′.

This makes the integral

gr(r) = −Gρ
∫ 2π

0

∫ π

0

∫ b

a

(r − r′ cos θ′)

[r2 + r′2 − 2rr′ cos θ′]3/2
r′

2
dr′ sin θ′ dθ′ dφ′

= −2πGρ

∫ b

a

∫ π

0

(r − r′ cos θ′)

[r2 + r′2 − 2rr′ cos θ′]3/2
sin θ′ dθ′ r′

2
dr′

(2.13)

The quantity inside the square brackets is

r′
2

+ r2 − 2r′r cos θ′ (2.14)

Note that this is always a positive number, which is equal to (r′ − r)2 at θ′ = 0, increasing
with θ′ all the way to (r′ + r)2 at θ′ = π. So we can change variables, replacing θ′ with

u =
√
r′2 + r2 − 2r′r cos θ′ (2.15)

to get the differential, we note that

2u du = d(u2) = d(r′
2

+ r2 − 2r′r cos θ′) = 2r′r sin θ′dθ′ (2.16)

so

sin θ′dθ′ =
u du

r′r
(2.17)

We also note that

r′ cos θ′ =
r′2 + r2 − u2

2r
(2.18)

which tells us

gr(r) = −2πGρ

∫ b

a

∫ r+r′

|r−r′|

(
r − r′2 + r2 − u2

2r

)
u−3

u du

r′r
r′

2
dr′

= −2πGρ

r2

∫ b

a

(∫ r+r′

|r−r′|

r2 − r′2 + u2

2u2
du

)
︸ ︷︷ ︸

I(r′)

r′ dr′
(2.19)

Looking at the integral

I(r′) =
1

2

∫ r+r′

|r−r′|

(
r2 − r′2

u2
+ 1

)
du =

1

2

[
r′2 − r2

u
+ u

]r+r′
|r−r′|

(2.20)

we see the value depends on whether r′ is greater or less than r. Considering each case
separately, we find

I(r′ > r) =
1

2

(
(r′ + r)(r′ − r)

r′ + r
+ (r′ + r)− (r′ + r)(r′ − r)

r′ − r
− (r′ − r)

)
= 0 (2.21)
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and

I(r′ < r) =
1

2

(
−(r + r′)(r − r′)

r + r′
+ (r + r′) +

(r + r′)(r − r′)
r − r′

− (r − r′)
)

=
−r + r′ + r + r′ + r + r′ − r + r′

2
= 2r′

(2.22)

Armed with the result that

I(r′) =

{
2r′ r′ < r

0 r′ > r
(2.23)

we need to think about how the possible values of r′ compare to r in the integral

gr(r) = −2πGρ

r2

∫ b

a

I(r′)r′ dr′ (2.24)

There are three cases, depending on the value of r

0 < r < a In this case, all of the values a ≤ r′ ≤ b in the integral are larger than r, and
therefore

gr(r) = −2πGρ

r2

∫ b

a

(0)r′ dr′ = 0 when 0 < r < a (2.25)

r > b Here, all the possible values of r′ are smaller than r and thus

gr(r) = −2πGρ

r2

∫ b

a

(2r′)r′ dr′ = −4πGρ

r2
b3 − a3

3
= −GM

r2
when r > b (2.26)

a < r < b In this case, r′ can be larger or smaller than r, but the only non-zero contribu-
tions are from r′ < r so the integral becomes

gr(r) = −2πGρ

r2

∫ r

a

(2r′)r′ dr′ = −4πGρ

r2
r3 − a3

3
= −GM

r2
r3 − a3

b3 − a3
when a < r < b

(2.27)
Putting it all together, we get

~g(~r) =


0 0 ≤ r ≤ a

−GM
r2

r3−a3
b3−a3 r̂ a ≤ r ≤ b

−GM
r2
r̂ r ≥ b

(2.28)

where r = |~r| and r̂ = ~r/r as usual.
Note that this means that outside a spherical shell of matter, the gravitational field is the

same as if the whole mass were concentrated at the center, while inside a spherical shell, there
is no gravitational field due to the shell. And since any spherically symmetric distribution
can be described as a superposition of spherical shells, it means the gravitational field due
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to such a spherically symmetric distribution, a distance r from the center, is just the field
due to the mass closer to the center:

~g(r) = −GM(r)

r2
r̂ (2.29)

where

M(r) = 4π

∫ r

0

ρ(r′) r′2 dr′ (2.30)

is the mass inside a sphere of radius r.

3 Gauss’s Law

Section 6.3 of Symon concerns “gravitational field theory” which is analogous to electrostatic
field theory. Here we derive one of the key results, which concerns the flux of the gravitational
field through a closed surface. The notation we’ll use refers to the surface as ∂V , and the
volume it encloses as V . The flux through ∂V is thus

{

∂V

~g ·
−→
d2A (3.1)

where the vector-valued area element for the surface is

−→
d2A = ~n d2A (3.2)

with ~n being an outward-directed unit vector normal (perpendicular) to the surface ∂V .
Symon uses geometrical arguments to evaluate the integral, but we’ll rely on a result from
vector calculus, the divergence theorem, which says

{

∂V

~g ·
−→
d2A =

y

V

(~∇ · ~g)d3V (3.3)

which we can apply whenever the divergence ~∇ · ~g is well-defined.
First, we consider the flux of the gravitational field due to a point mass M . If we define

our coördinates so this point source is at the origin, the field is

~g(~r) = −GM
r2

r̂ (3.4)

At any point other than the origin (at which r = 0) we can calculate the divergence:

~∇ · ~g =

(
∂

∂r
+

1

r

∂

∂θ
+

1

r sin θ

∂

∂φ

)
· (gr(r)r̂) (3.5)

Now, we could look up the form of the divergence in spherical coördinates, but the relatively
simple form of ~g means we can also just work with the derivative operators, if we recall how
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the unit vector r̂ varies from point to point:

∂r̂

∂r
= ~0 (3.6a)

∂r̂

∂θ
= θ̂ (3.6b)

∂r̂

∂φ
= sin θφ̂ (3.6c)

Using this and the product rule, we have

~∇ · ~g =
dgr
dr

(r̂ · r̂) + gr

(
1

r
(θ̂ · θ̂) +

1

r sin θ
(φ̂ · sin θφ̂)

)
=
dgr
dr

+
2

r
gr = −GM

(
−2r−3 +

2

r
r2
)

= 0 if r 6= 0

(3.7)

So, if the volume V enclosed by the surface ∂V does not include the origin (where the point
source is located), we can use the divergence theorem to show that the gravitational flux
through ∂V vanishes.

If V does include the origin, there must be some minimum radius a such that a ball of
radius a centered on the origin (which we call Ba) is entirely inside ∂V . Then we can split
up V into Ba and V ′, which is the volume V with a ball of radius a removed from it. If we’re
careful about the geometry, we can show that

{

∂V

~g ·
−→
d2A =

{

∂Ba

~g ·
−→
d2A+

{

∂V ′
~g ·
−→
d2A (3.8)

since the contribution from the inner boundary of V ′ cancels out that through ∂Ba. At any
rate, it’s clear that

V = Ba ∪ V ′ (3.9)

and so, appealing to the divergence theorem,

{

∂V

~g ·
−→
d2A =

y

V

(~∇ · ~g)d3V =
y

Ba

(~∇ · ~g)d3V +
y

V ′
(~∇ · ~g)︸ ︷︷ ︸

=0 for ~r∈V ′

d3V =
{

∂Ba

~g ·
−→
d2A (3.10)

The flux through a sphere of radius a we can calculate directly, since r = a and n̂ = r̂
everywhere on the sphere, and thus

{

∂Ba

~g ·
−→
d2A

∫ 2π

0

∫ π

0

(
−GM

a2
r̂

)
·
(
r̂ a2 sin θ dθ dφ

)
= −4πGM (3.11)

So in general the flux through a closed surface due to a point source is zero if the source
is not enclosed in the surface and −4πG times the mass, if it is. But any mass distribution
can be built up out of point sources, so the general result is

{

∂V

~g ·
−→
d2A = −4πGMenc (3.12)
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where Menc is the enclosed mass

Menc =
y

V

ρ(~r ′)d3V ′ (3.13)

This can be written in differential form as

~∇ · ~g = −4πGρ (3.14)

which is analogous to Gauss’s law in electrostatics.

A Appendix: Correspondence to Class Lectures

Date Sections Pages Topics
2006 May 9 0 2–6 Outline; Volume in Spherical Coördinates
2006 May 11 1–2.2 7–11 Grav. Force, Field & Potential
2006 May 12 2.3–3 12–17 Spherical Shell; Gauss’s Law
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