Physics A300: Classical Mechanics I

Problem Set 10

Assigned 2006 April 10 Due 2006 April 17

1 Decomposition of Angular Momentum

- a) Substitute Symon's (4.19), the definition of angular momentum of particle k about a point Q, into Symon's (4.23), the total angular momentum of a system about Q. Expand the cross product $(\vec{r}_k \vec{r}_Q) \times (\dot{\vec{r}}_k \dot{\vec{r}}_Q)$ appearing inside the sum in the resulting expression for \vec{L}_Q and use the definitions of the total mass M, center of mass \vec{R} , and total momentum \vec{P} of the system to simplify your expression for \vec{L}_Q so that only one of the four terms still explicitly contains the sum over k, and the rest only contain $M, \vec{R}, \vec{P}, \vec{r}_Q$, and $\dot{\vec{r}}_Q$.
- b) Simplify the result of part a) in the special case where the point Q is the origin of coördinates $(\vec{r}_Q = \vec{0})$. Call this the total angular momentum \vec{L} .
- c) Simplify the result of part a) in the special case where the point Q is the center of mass $(\vec{r}_Q = \vec{R})$. Call this the angular momentum \vec{L}_{com} relative to the center of mass.
- d) Use the results of parts b) and c) to find an expression for the total angular momentum \vec{L} in terms of \vec{R} , \vec{P} , and \vec{L}_{com} .

2 Internal and External Potential Gravitational Forces

The gravitational potential energy of two point masses m_1 and m_2 moving in the external gravitational field of a point mass m_0 fixed at the origin is

$$V(\vec{r}_1, \vec{r}_2) = \underbrace{-\frac{Gm_0m_1}{r_1}}_{V_1^e(\vec{r}_1)} + \underbrace{-\frac{Gm_0m_2}{r_2}}_{V_2^e(\vec{r}_2)} + \underbrace{-\frac{Gm_1m_2}{r_2}}_{V^i(\vec{r}_1, \vec{r}_2)}$$
(2.1)

where

$$r_1 = |\vec{r_1}| = \sqrt{x_1^2 + y_1^2 + z_1^2}$$
(2.2a)

$$r_2 = |\vec{r}_2| = \sqrt{x_2^2 + y_2^2 + z_2^2} \tag{2.2b}$$

$$r = |\vec{r_1} - \vec{r_2}| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$
(2.2c)

a) Make a sketch of the locations of the three masses and the vectors $\vec{r_1}$, $\vec{r_2}$, and $\vec{r} = \vec{r_1} - \vec{r_2}$. Indicate the distances r_1 , r_2 , r.

- b) Calculate the gradients $\vec{\nabla}_1 r_1$, $\vec{\nabla}_1 r_2$, $\vec{\nabla}_1 r$, $\vec{\nabla}_2 r_1$, $\vec{\nabla}_2 r_2$, and $\vec{\nabla}_2 r$. Express your answers both in Cartesian coördinates and then in terms of the vectors \vec{r}_1 , \vec{r}_2 , \vec{r} and the magnitudes r_1 , r_2 , r.
- c) Find the internal forces $\vec{F}_1^i = -\vec{\nabla}_1 V^i$ and $\vec{F}_2^i = -\vec{\nabla}_2 V^i$ and verify that the strong form of Newton's third law holds, i.e., that the vectors \vec{F}_1^i and \vec{F}_2^i are equal in magnitude, opposite in direction, and directed along the line connecting the locations of masses 1 and 2.
- d) Find the external forces $\vec{F}_1^e = -\vec{\nabla}_1 V_1^e$ and $\vec{F}_2^e = -\vec{\nabla}_2 V_2^e$.
- e) Using the formalism of the two-body problem, find an exact expression for $M\vec{R}$ in terms of $m_0, m_1, m_2, \vec{r_1}, \text{ and } \vec{r_2}, \text{ and their magnitudes.}$ (Here $M = m_1 + m_2$ is the total mass and $\vec{R} = (m_1\vec{r_1} + m_2\vec{r_2})/M$ is the center of mass vector of the two freely-moving particles.)
- f) Using the formalism of the two-body problem, find an exact expression for $\mu \ddot{\vec{r}}$, where $\mu = m_1 m_2/M$ is the reduced mass of the two freely-moving particles. Note that Symon's equation (4.96) does *not* hold, and you will need to retain a term

$$\vec{F}^t(\vec{r}_1, \vec{r}_2) = \mu \left(\frac{\vec{F}_1^e}{m_1} - \frac{\vec{F}_2^e}{m_2} \right)$$
(2.3)

Evaluate \vec{F}^t explicitly in terms of $\vec{r_1}$ and $\vec{r_2}$.

- g) (bonus) In the limit that particles 1 and 2 are much closer to each other than they are to the origin, $R = \left| \vec{R} \right| \gg r$, things simplify somewhat. Using Symon's (4.92–4.93), expand your result for $M\vec{R}$ to zeroth order and your result for $\vec{F^t}$ to first order in the small parameter $\xi = r/R$. Explicitly, this means
 - i) In your expression for $M\vec{R}$, just replace $\vec{r_1}$ and $\vec{r_2}$ with \vec{R} (and similarly for their magnitudes) and you should get an answer which depends only on the properties of the 1-2 system as a whole (M and \vec{R}). What does this correspond to physically?
 - ii) In your expression for $\vec{F^t}$, you'll need to substitute in Symon's (4.92–4.93) with $\vec{r} = \xi R \hat{r}$ and $r = \xi R$ into the results of part f) and then Taylor expand the result and keep the terms linear in ξ . Then you should be able to replace ξ with r/R and end up with an expression which depends on M, μ , \vec{r} , and \vec{R} . This describes the effects of the tidal field of the mass m_0 on the two-body system of masses 1 and 2.

3 Properties of a Mass Distribution

Consider the right triangular pyramid defined by

- $x \ge 0 \tag{3.1a}$
- $y \ge 0 \tag{3.1b}$
- $z \ge 0 \tag{3.1c}$

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} \le 1 \tag{3.1d}$$

with a constant density ρ .

- a) Sketch a (two-dimensional) constant-z cross-section of the pyramid. Indicate the x and y axes and label the coördinates of any points on the edges of the pyramid. (Some of these will depend upon z.)
- b) Calculate the total mass M of this pyramid by evaluating a triple integral over the volume of the pyramid. (Do *not* just use a formula for the volume of a pyramid.)
- c) By performing triple integrals, calculate X, Y, and Z, the coördinates of the center of mass of the pyramid.