Physics A300: Classical Mechanics I

Problem Set 10

Assigned 2006 April 10
Due 2006 April 17

1 Decomposition of Angular Momentum

a) Substitute Symon's (4.19), the definition of angular momentum of particle k about a point \mathcal{Q}, into Symon's (4.23), the total angular momentum of a system about \mathcal{Q}. Expand the cross product $\left(\vec{r}_{k}-\vec{r}_{\mathcal{Q}}\right) \times\left(\dot{\vec{r}}_{k}-\dot{\vec{r}}_{\mathcal{Q}}\right)$ appearing inside the sum in the resulting expression for $\vec{L}_{\mathcal{Q}}$ and use the definitions of the total mass M, center of mass \vec{R}, and total momentum \vec{P} of the system to simplify your expression for $\vec{L}_{\mathcal{Q}}$ so that only one of the four terms still explicitly contains the sum over k, and the rest only contain $M, \vec{R}, \vec{P}, \vec{r}_{\mathcal{Q}}$, and $\dot{\vec{r}}_{\mathcal{Q}}$.
b) Simplify the result of part a) in the special case where the point \mathcal{Q} is the origin of coördinates $\left(\vec{r}_{\mathcal{Q}}=\overrightarrow{0}\right)$. Call this the total angular momentum \vec{L}.
c) Simplify the result of part a) in the special case where the point \mathcal{Q} is the center of mass $\left(\vec{r}_{\mathcal{Q}}=\vec{R}\right)$. Call this the angular momentum $\vec{L}_{\text {com }}$ relative to the center of mass.
d) Use the results of parts b) and c) to find an expression for the total angular momentum \vec{L} in terms of \vec{R}, \vec{P}, and $\vec{L}_{\text {com }}$.

2 Internal and External Potential Gravitational Forces

The gravitational potential energy of two point masses m_{1} and m_{2} moving in the external gravitational field of a point mass m_{0} fixed at the origin is

$$
\begin{equation*}
V\left(\vec{r}_{1}, \vec{r}_{2}\right)=\underbrace{-\frac{G m_{0} m_{1}}{r_{1}}}_{V_{1}^{e}\left(\vec{r}_{1}\right)}+\underbrace{-\frac{G m_{0} m_{2}}{r_{2}}}_{V_{2}^{e}\left(\vec{r}_{2}\right)}+\underbrace{-\frac{G m_{1} m_{2}}{r}}_{V^{i}\left(\overrightarrow{\left.r_{1}, \vec{r}_{2}\right)}\right.} \tag{2.1}
\end{equation*}
$$

where

$$
\begin{align*}
r_{1} & =\left|\vec{r}_{1}\right|=\sqrt{x_{1}^{2}+y_{1}^{2}+z_{1}^{2}} \tag{2.2a}\\
r_{2} & =\left|\vec{r}_{2}\right|=\sqrt{x_{2}^{2}+y_{2}^{2}+z_{2}^{2}} \tag{2.2b}\\
r & =\left|\vec{r}_{1}-\vec{r}_{2}\right|=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}} \tag{2.2c}
\end{align*}
$$

a) Make a sketch of the locations of the three masses and the vectors \vec{r}_{1}, \vec{r}_{2}, and $\vec{r}=\vec{r}_{1}-\vec{r}_{2}$. Indicate the distances r_{1}, r_{2}, r.
b) Calculate the gradients $\vec{\nabla}_{1} r_{1}, \vec{\nabla}_{1} r_{2}, \vec{\nabla}_{1} r, \vec{\nabla}_{2} r_{1}, \vec{\nabla}_{2} r_{2}$, and $\vec{\nabla}_{2} r$. Express your answers both in Cartesian coördinates and then in terms of the vectors $\vec{r}_{1}, \vec{r}_{2}, \vec{r}$ and the magnitudes r_{1}, r_{2}, r.
c) Find the internal forces $\vec{F}_{1}^{i}=-\vec{\nabla}_{1} V^{i}$ and $\vec{F}_{2}^{i}=-\vec{\nabla}_{2} V^{i}$ and verify that the strong form of Newton's third law holds, i.e., that the vectors \vec{F}_{1}^{i} and \vec{F}_{2}^{i} are equal in magnitude, opposite in direction, and directed along the line connecting the locations of masses 1 and 2.
d) Find the external forces $\vec{F}_{1}^{e}=-\vec{\nabla}_{1} V_{1}^{e}$ and $\vec{F}_{2}^{e}=-\vec{\nabla}_{2} V_{2}^{e}$.
e) Using the formalism of the two-body problem, find an exact expression for $M \ddot{\vec{R}}$ in terms of $m_{0}, m_{1}, m_{2}, \vec{r}_{1}$, and \vec{r}_{2}, and their magnitudes. (Here $M=m_{1}+m_{2}$ is the total mass and $\vec{R}=\left(m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}\right) / M$ is the center of mass vector of the two freely-moving particles.)
f) Using the formalism of the two-body problem, find an exact expression for $\mu \ddot{\vec{r}}$, where $\mu=$ $m_{1} m_{2} / M$ is the reduced mass of the two freely-moving particles. Note that Symon's equation (4.96) does not hold, and you will need to retain a term

$$
\begin{equation*}
\vec{F}^{t}\left(\vec{r}_{1}, \vec{r}_{2}\right)=\mu\left(\frac{\vec{F}_{1}^{e}}{m_{1}}-\frac{\vec{F}_{2}^{e}}{m_{2}}\right) \tag{2.3}
\end{equation*}
$$

Evaluate \vec{F}^{t} explicitly in terms of \vec{r}_{1} and \vec{r}_{2}.
g) (bonus) In the limit that particles 1 and 2 are much closer to each other than they are to the origin, $R=|\vec{R}| \gg r$, things simplify somewhat. Using Symon's (4.92-4.93), expand your result for $M \ddot{\vec{R}}$ to zeroth order and your result for \vec{F}^{t} to first order in the small parameter $\xi=r / R$. Explicitly, this means
i) In your expression for $M \ddot{\vec{R}}$, just replace \vec{r}_{1} and \vec{r}_{2} with \vec{R} (and similarly for their magnitudes) and you should get an answer which depends only on the properties of the 1-2 system as a whole (M and \vec{R}). What does this correspond to physically?
ii) In your expression for \vec{F}^{t}, you'll need to substitute in Symon's (4.92-4.93) with $\vec{r}=\xi R \hat{r}$ and $r=\xi R$ into the results of part f$)$ and then Taylor expand the result and keep the terms linear in ξ. Then you should be able to replace ξ with r / R and end up with an expression which depends on M, μ, \vec{r}, and \vec{R}. This describes the effects of the tidal field of the mass m_{0} on the two-body system of masses 1 and 2 .

3 Properties of a Mass Distribution

Consider the right triangular pyramid defined by

$$
\begin{align*}
x & \geq 0 \tag{3.1a}\\
y & \geq 0 \tag{3.1b}\\
z & \geq 0 \tag{3.1c}\\
\frac{x}{a}+\frac{y}{b} & +\frac{z}{c} \leq 1 \tag{3.1d}
\end{align*}
$$

with a constant density ρ.
a) Sketch a (two-dimensional) constant- z cross-section of the pyramid. Indicate the x and y axes and label the coördinates of any points on the edges of the pyramid. (Some of these will depend upon z.)
b) Calculate the total mass M of this pyramid by evaluating a triple integral over the volume of the pyramid. (Do not just use a formula for the volume of a pyramid.)
c) By performing triple integrals, calculate X, Y, and Z, the coördinates of the center of mass of the pyramid.

