Physics A300: Classical Mechanics I

Problem Set 9

Assigned 2006 April 3
Due 2006 April 10

1 Conic Sections (Kepler's First Law)

Demonstrate that the orbit

$$
\begin{equation*}
r(1+\varepsilon \cos \phi)=\alpha \tag{1.1}
\end{equation*}
$$

with constants $\alpha>0$ and $\varepsilon \geq 0$ is indeed a conic section with eccentricity ε, semimajor axis $\alpha /\left(1-\varepsilon^{2}\right)$, and one focus at $r=0$ as follows:
a) Consider the points $\mathcal{P} \equiv(x, y), \mathcal{O} \equiv(0,0), \mathcal{F}_{ \pm} \equiv(\pm 2 c, 0)$, (where $\left.c>0\right)$ and the line $\mathcal{L} \equiv x=2 p>0$. Calculate the following distances in Cartesian coördinates, then convert your results into the standard polar coördinates using $x=r \cos \phi$ and $y=r \sin \phi$, simplifying as much as possible. (It may be useful to sketch these objects in the $x-y$ plane.)
i) the length $d_{\mathcal{O P}}$ of the straight line segment from \mathcal{O} to \mathcal{P}
ii) the length $d_{\mathcal{F}_{ \pm} \mathcal{P}}$ of the straight line segment from $\mathcal{F}_{ \pm}$to \mathcal{P}
iii) the distance $d_{\mathcal{L P}}$ between the point \mathcal{P} and the line \mathcal{L}
b) A circle of radius a centered at \mathcal{O} is the set of all points a distance a from \mathcal{O} :

$$
\begin{equation*}
d_{\mathcal{O P}}=a \tag{1.2}
\end{equation*}
$$

Show that when $\varepsilon=0,(1.1)$ is equivalent to (1.2) for a suitable choice of a, and find this a in terms of α.
c) An ellipse of semimajor axis $a>0$ with foci at \mathcal{F}_{-}and \mathcal{O} is the set of all points such that the sum of their distances from the two foci is $2 a$:

$$
\begin{equation*}
d_{\mathcal{F}_{-} \mathcal{P}}+d_{\mathcal{O P}}=2 a \tag{1.3}
\end{equation*}
$$

Show that when $0<\varepsilon<1$, (1.1) is equivalent to (1.3) for a suitable choice of a and c, and find these values in terms of α and ε. (Hint: this is easiest if you solve (1.3) for $d_{\mathcal{F}_{-} \mathcal{P}}$, square it, and set it equal to the square of the result from part a)ii), using (1.1) to eliminate $\cos \phi$, and requiring equality for any value of r.)
d) A parabola with focus \mathcal{O} and directrix \mathcal{L} is the set of all points equidistant from \mathcal{O} and \mathcal{L} :

$$
\begin{equation*}
d_{\mathcal{L P}}=d_{\mathcal{O P}} \tag{1.4}
\end{equation*}
$$

Show that when $\varepsilon=1,(1.1)$ is equivalent to (1.4) for a suitable choice of p, and find this p in terms of α.
e) The left branch of a hyperbola of semimajor axis $a<0$ with foci at \mathcal{O} and \mathcal{F}_{+}is the set of all points such that the difference of their distances from the two foci is $-2 a>0$:

$$
\begin{equation*}
d_{\mathcal{F}_{+} \mathcal{P}}-d_{\mathcal{O P}}=-2 a \tag{1.5}
\end{equation*}
$$

Show that when $\varepsilon>1$, (1.1) is equivalent to (1.5) for a suitable choice of a and c, and find these values in terms of α and ε. (Hint: this is easiest if you solve (1.5) for $d_{\mathcal{F}_{+} \mathcal{P}}$, square it, and set it equal to the square of the result from part a)ii), using (1.1) to eliminate $\cos \phi$, and requiring equality for any value of r.)

2 Cartesian Form of Ellipse (Kepler's Third Law-sort of)

The demonstration of Kepler's third law in section 3.15 of Symon rests on the fact that the area of an ellipse is $\pi a b$, which essentially comes down to the fact that an ellipse is the shape you get when you stretch a circle by different amounts in perpendicular directions. This in turn is apparent from the standard equation for an ellipse of semiäxes a and b centered at the point $\left(x_{c}, y_{c}\right)$:

$$
\begin{equation*}
\frac{\left(x-x_{c}\right)^{2}}{a^{2}}+\frac{\left(y-y_{c}\right)^{2}}{b^{2}}=1 \tag{2.1}
\end{equation*}
$$

Show that this is indeed satisfied, with $\left(x_{c}, y_{c}\right)=(-a \varepsilon, 0)$, for any point on the curve

$$
\begin{equation*}
r=\frac{a\left(1-\varepsilon^{2}\right)}{1+\varepsilon \cos \phi} \tag{2.2}
\end{equation*}
$$

where $0 \leq \varepsilon<1$, and the semiminor axis is given by $b=a \sqrt{1-\varepsilon^{2}}$.

3 Properties of a Mass Distribution

Consider four identical particles, each of mass m, each moving in counter-clockwise around a circle of radius a in the $x-y$ plane, centered at the origin, at constant angular velocity $\Omega>0$, with their positions evenly spaced around the circle.
a) Sketch this situation, and label the particles 1 through 4 .
b) Write the position vectors $\vec{r}_{1}(t), \vec{r}_{2}(t), \vec{r}_{3}(t)$, and $\vec{r}_{4}(t)$ if particle 1 crosses the positive x axis at $t=0$. (Assume the orbital plane is $z=0$.)
c) Calculate the velocities $\dot{\vec{r}}_{1}(t), \dot{\vec{r}}_{2}(t), \dot{\vec{r}}_{3}(t)$, and $\dot{\vec{r}}_{4}(t)$.
d) Calculate explicitly
i) the total mass M;
ii) the total momentum \vec{P};
iii) the position vector \vec{R} of the center of mass;
iv) the total angular momentum \vec{L};
v) the total kinetic energy T

You don't need to calculate any components of vectors which vanish as a result of the motion being confined to a plane, but you should calculate all other components of the relevant vectors, even if they turn out to be zero due to symmetry.

