1 Vector Calculus in Cartesian Coördinates

a) Starting with an arbitrary scalar field $U(x,y,z)$, define $\vec{A} = \vec{\nabla}U$ and write the Cartesian components of

$$\vec{A} = A_x \hat{x} + A_y \hat{y} + A_z \hat{z} \quad (1.1)$$

in terms of derivatives of U.

b) Using your result to part a), work out the components of $\vec{\nabla} \times \vec{A}$ and verify that they vanish. Justify carefully any simplifications you use.

c) Calculate the curl of each of these vector fields, and state whether it represents a conservative or non-conservative force field:

i) $\vec{F}_1 = k_1(y \hat{x} - x \hat{y})$

ii) $\vec{F}_2 = k_2(x \hat{x} + y \hat{y} + z \hat{z})(x^2 + y^2 + z^2)^{-3/2}$

iii) $\vec{F}_3 = k_3[3x^2y \hat{x} + (x^3 + y^3) \hat{y}]$

Assume k_1, k_2, and k_3 are all constants.

2 The Curl

a) If $a(\vec{r})$ is a scalar field and $\vec{B}(\vec{r})$ is a vector field, show, by explicit evaluation of the left- and right-hand sides in Cartesian coördinates, that

$$\vec{\nabla} \times (a \vec{B}) = (\vec{\nabla}a) \times \vec{B} + a(\vec{\nabla} \times \vec{B}) \quad (2.1)$$

b) Writing the “del operator” in spherical coördinates according to Symon’s Eq. (3.124) allows us to write the curl of a vector as

$$\vec{\nabla} \times \vec{A} = \hat{r} \times \frac{\partial A}{\partial r} + \hat{\theta} \times \frac{\partial A}{\partial \theta} + \hat{\phi} \times \frac{\partial A}{\partial \phi} \quad (2.2)$$

Use this, along with Symon’s Eq. (3.99), to calculate

i) $\vec{\nabla} \times \hat{r}$;
ii) $\vec{\nabla} \times \hat{\theta}$;
iii) $\vec{\nabla} \times \hat{\phi}$.
c) Using the results of parts a) and b), and writing a vector field \(\vec{A}(\vec{r}) \) as
\[
\vec{A}(\vec{r}) = A_r(r, \theta, \phi) \hat{r} + A_\theta(r, \theta, \phi) \hat{\theta} + A_\phi(r, \theta, \phi) \hat{\phi} \tag{2.3}
\]
show that the curl in spherical coordinates is
\[
\vec{\nabla} \times \vec{A} = \left(\frac{1}{r} \partial_\theta A_\phi - \frac{1}{r \sin \theta} \partial_\phi A_\theta + \cos \theta \frac{\partial}{r \sin \theta} A_\phi \right) \hat{r} + \left(\frac{1}{r} \frac{\partial_\phi A_r - \partial_r A_\phi - \frac{1}{r} A_\phi}{\sin \theta} \right) \hat{\theta} + \left(\partial_r A_\theta - \frac{1}{r} \partial_\theta A_r + \frac{1}{r} A_\theta \right) \hat{\phi} \tag{2.4}
\]

3 Force, Potential and Torque

Consider the force field
\[
\vec{F}(\vec{r}) = V_0 \frac{x \hat{x} + y \hat{y}}{x^2 + y^2} \tag{3.1}
\]

a) By explicitly calculating the (three-dimensional) curl \(\vec{\nabla} \times \vec{F} \), verify that this is a conservative force.

b) Obtain expressions for \(\hat{x} \), \(\hat{y} \) and \(\hat{z} \) in terms of the cylindrical coordinates \(q, \phi \) and \(z \) and the basis vectors \(\hat{q}, \hat{\phi}, \) and \(\hat{z} \). (This can be done either by inverting Symon’s Eq. (3.89) or directly from geometric considerations.) Simplify your answer as much as possible.

c) Use Symon’s Eq. (3.87) and the results of part b) to write \(\vec{F} \) above entirely in terms of the cylindrical coordinates \(q, \phi \) and \(z \) and the basis vectors \(\hat{q}, \hat{\phi}, \) and \(\hat{z} \) (and the constant \(V_0 \)). Simplify your answer as much as possible.

d) Working in cylindrical coordinates, find the potential energy \(V(q, \phi, z) \) such that \(\vec{F} = -\vec{\nabla} V \). Include in your result an arbitrary constant (so that you capture the entire family of possible potentials) and indicate its units.

e) Calculate the vector torque \(\vec{N} \) due to this force (in either Cartesian or cylindrical coordinates), and verify that the torque about the \(z \) axis vanishes.