Physics A300: Classical Mechanics I

Problem Set 5
Assigned 2006 February 21
Due 2006 March 3

Show your work on all problems!

1 Fourier Analysis

Consider a square wave of period T and amplitude x_{0}, which is given inside the interval $0<t<T$ by

$$
F(t)= \begin{cases}F_{0} & \text { when } 0<t<T / 2 \\ -F_{0} & \text { when } T / 2<t<T\end{cases}
$$

and which is defined outside that interval by its periodicity: $F(t+T)=F(t)$.
a) Use the methods described in section 2.11 of Symon to find the coëfficients A_{n} and B_{n} in the Fourier series

$$
F(t)=\frac{1}{2} A_{0}++\sum_{n=1}^{\infty}\left(A_{n} \cos \frac{2 \pi n t}{T}+B_{n} \sin \frac{2 \pi n t}{T}\right)
$$

Express your answers in a form involving no sines or cosines. (To do this, you'll need to write different expressions for odd and even n.)
b) Use the coëfficients $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ to write the force in the form

$$
F(t)=\sum_{n=0}^{\infty} A_{0 n} \cos \left(\omega_{n} t+\theta_{0 n}\right)
$$

What are $A_{0 n}, \omega_{n}$, and $\theta_{0 n}$?
c) If the square wave is applied to a harmonic oscillator of natural frequency ω_{0} and damping parameter γ, i.e.:

$$
\ddot{x}+2 \gamma \dot{x}+\omega_{0}^{2} x=F(t),
$$

use the principle of superposition to find the values of $A_{s n}$, and β_{n} in the expansion

$$
x(t)=\sum_{n=0}^{\infty} A_{s n} \sin \left(\omega_{n} t+\theta_{0 n}+\beta_{n}\right)
$$

of the steady-state solution.

2 Vector Practice

When doing the following problems from Symon, be sure to put an arrow over each vector (except for unit vectors, which get a hat). Symon uses boldface, but that's easy to lose track of, so for this course we'll insist on the arrow notation. So for example, Symon writes his equation (3.10) as

$$
\mathbf{A}=A_{x} \hat{\mathbf{x}}+A_{y} \hat{\mathbf{y}}+A_{z} \hat{\mathbf{z}}
$$

while we will write

$$
\vec{A}=A_{x} \hat{x}+A_{y} \hat{y}+A_{z} \hat{z}
$$

2.1 Explicit Calculation

Consider the vectors

$$
\vec{A}=\hat{x}+2 \hat{y}-\hat{z} \quad \vec{B}=-2 \hat{x}+3 \hat{y}+\hat{z}
$$

Calculate:
a) $\vec{A}-\vec{B}$ and its magnitude $|\vec{A}-\vec{B}|$
b) $\vec{B} \cdot \vec{A}$
c) The angle between \vec{A} and \vec{B}
d) $\vec{A} \times \vec{B}$
e) $(\vec{A}-\vec{B}) \times(\vec{A}-\vec{B})$

2.2 Symon Chapter Three Problem 2

2.3 Symon Chapter Three Problem 5

