Physics A300: Classical Mechanics I

Supplemental Exercises on Fourier Series

Fall 2002

1 Trigonometric Fourier Series

Consider a function $h(t)$ defined for $-\frac{T}{2}<t<\frac{T}{2}$. Assume it can be described by the expansion

$$
h(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{2 \pi n t}{T}\right)+\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{2 \pi n t}{T}\right)
$$

1. Write the complex conjugate $h^{*}(t) .{ }^{1}$ If $h(t)$ is a real function $\left(h^{*}(t)=h(t)\right)$, what conditions must the coëfficients $\left\{a_{n} \mid n=0, \ldots \infty\right\}$ and $\left\{b_{n} \mid n=1, \ldots \infty\right\}$ satisfy? What if it's an imaginary function $\left(h^{*}(t)=-h(t)\right)$?
2. Write $h(-t)$, using the symmetry properties of the sine and cosine to express it as a Fourier series with different coëfficients. If $h(t)$ is an even function $(h(-t)=h(t)$), which coëfficients must vanish? Are there any restrictions on the others? What if it's an odd function $(h(-t)=$ $-h(t))$?
3. Using the identities

$$
\begin{aligned}
\cos \left(\theta_{1}+\theta_{2}\right) & =\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2} \\
\cos \left(\theta_{1}-\theta_{2}\right) & =\cos \theta_{1} \cos \theta_{2}+\sin \theta_{1} \sin \theta_{2} \\
\sin \left(\theta_{1}+\theta_{2}\right) & =\sin \theta_{1} \cos \theta_{2}+\cos \theta_{1} \sin \theta_{2} \\
\sin \left(\theta_{1}-\theta_{2}\right) & =\sin \theta_{1} \cos \theta_{2}-\cos \theta_{1} \sin \theta_{2}
\end{aligned}
$$

find expressions for

$$
\begin{aligned}
& \cos \left(\frac{2 \pi m t}{T}\right) \cos \left(\frac{2 \pi n t}{T}\right) \\
& \sin \left(\frac{2 \pi m t}{T}\right) \sin \left(\frac{2 \pi n t}{T}\right) \\
& \cos \left(\frac{2 \pi m t}{T}\right) \sin \left(\frac{2 \pi n t}{T}\right) \\
& \sin \left(\frac{2 \pi m t}{T}\right) \cos \left(\frac{2 \pi n t}{T}\right)
\end{aligned}
$$

as sums and differences of trig functions.

[^0]4. Using these expressions, calculate the integrals
\[

$$
\begin{array}{cc}
\int_{-T / 2}^{T / 2} \cos \left(\frac{2 \pi m t}{T}\right) \cos \left(\frac{2 \pi n t}{T}\right) d t & m \neq n \\
\int_{-T / 2}^{T / 2} \sin \left(\frac{2 \pi m t}{T}\right) \sin \left(\frac{2 \pi n t}{T}\right) d t & m \neq n \\
\int_{-T / 2}^{T / 2} \cos \left(\frac{2 \pi m t}{T}\right) \sin \left(\frac{2 \pi n t}{T}\right) d t & m \neq n \\
\int_{-T / 2}^{T / 2} \cos ^{2}\left(\frac{2 \pi n t}{T}\right) d t & \\
\int_{-T / 2}^{T / 2} \sin ^{2}\left(\frac{2 \pi n t}{T}\right) d t & \\
\int_{-T / 2}^{T / 2} \cos \left(\frac{2 \pi n t}{T}\right) \sin \left(\frac{2 \pi n t}{T}\right) d t &
\end{array}
$$
\]

The results can be expressed more compactly using the "Kronecker delta"

$$
\delta_{m n}= \begin{cases}1 & m=n \\ 0 & m \neq n\end{cases}
$$

Notice that setting $m=0$ in the above expressions also gives expressions for

$$
\begin{aligned}
& \int_{-T / 2}^{T / 2} \cos \left(\frac{2 \pi n t}{T}\right) d t \\
& \int_{-T / 2}^{T / 2} \sin \left(\frac{2 \pi n t}{T}\right) d t
\end{aligned}
$$

5. Use the previous results to calculate the integrals

$$
\begin{aligned}
& \int_{-T / 2}^{T / 2} h(t) \cos \left(\frac{2 \pi n t}{T}\right) d t \\
& \int_{-T / 2}^{T / 2} h(t) \sin \left(\frac{2 \pi n t}{T}\right) d t \\
& \int_{-T / 2}^{T / 2} h(t) d t
\end{aligned}
$$

and thus obtain expressions for $\left\{a_{n} \mid n=0, \ldots \infty\right\}$ and $\left\{b_{n} \mid n=1, \ldots \infty\right\}$.

1.1 Answers

1.

$$
h^{*}(t)=\frac{a_{0}^{*}}{2}+\sum_{n=1}^{\infty} a_{n}^{*} \cos \left(\frac{2 \pi n t}{T}\right)+\sum_{n=1}^{\infty} b_{n}^{*} \sin \left(\frac{2 \pi n t}{T}\right)
$$

If $h(t)$ is real, all the $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are real. If $h(t)$ is imaginary, all the $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are imaginary.
2.

$$
h(-t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{2 \pi n t}{T}\right)-\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{2 \pi n t}{T}\right)
$$

If $h(t)$ is even, all the b_{n} vanish, and the a_{n} are unrestricted. If $h(t)$ is odd, all the a_{n} vanish, and the b_{n} are unrestricted.
3.

$$
\begin{aligned}
\cos \left(\frac{2 \pi m t}{T}\right) \cos \left(\frac{2 \pi n t}{T}\right) & =\frac{1}{2}\left[\cos \left(\frac{2 \pi(m-n) t}{T}\right)+\cos \left(\frac{2 \pi(m+n) t}{T}\right)\right] \\
\sin \left(\frac{2 \pi m t}{T}\right) \sin \left(\frac{2 \pi n t}{T}\right) & =\frac{1}{2}\left[\cos \left(\frac{2 \pi(m-n) t}{T}\right)-\cos \left(\frac{2 \pi(m+n) t}{T}\right)\right] \\
\cos \left(\frac{2 \pi m t}{T}\right) \sin \left(\frac{2 \pi n t}{T}\right) & =\frac{1}{2}\left[\sin \left(\frac{2 \pi(m+n) t}{T}\right)-\sin \left(\frac{2 \pi(m-n) t}{T}\right)\right] \\
\sin \left(\frac{2 \pi m t}{T}\right) \cos \left(\frac{2 \pi n t}{T}\right) & =\frac{1}{2}\left[\sin \left(\frac{2 \pi(m+n) t}{T}\right)+\sin \left(\frac{2 \pi(m-n) t}{T}\right)\right]
\end{aligned}
$$

4.

$$
\begin{aligned}
& \int_{-T / 2}^{T / 2} \cos \left(\frac{2 \pi m t}{T}\right) \cos \left(\frac{2 \pi n t}{T}\right) d t=\delta_{m n} \frac{T}{2} \\
& \int_{-T / 2}^{T / 2} \sin \left(\frac{2 \pi m t}{T}\right) \sin \left(\frac{2 \pi n t}{T}\right) d t=\delta_{m n} \frac{T}{2} \\
& \int_{-T / 2}^{T / 2} \cos \left(\frac{2 \pi m t}{T}\right) \sin \left(\frac{2 \pi n t}{T}\right) d t=0 \\
& \int_{-T / 2}^{T / 2} \sin \left(\frac{2 \pi m t}{T}\right) \cos \left(\frac{2 \pi n t}{T}\right) d t=0
\end{aligned}
$$

5.

$$
\begin{aligned}
& \int_{-T / 2}^{T / 2} h(t) \cos \left(\frac{2 \pi n t}{T}\right) d t=a_{n} \frac{T}{2} \\
& \int_{-T / 2}^{T / 2} h(t) \sin \left(\frac{2 \pi n t}{T}\right) d t=b_{n} \frac{T}{2} \\
& a_{n}=\frac{2}{T} \int_{-T / 2}^{T / 2} h(t) \cos \left(\frac{2 \pi n t}{T}\right) d t \\
& b_{n}=\frac{2}{T} \int_{-T / 2}^{T / 2} h(t) \sin \left(\frac{2 \pi n t}{T}\right) d t
\end{aligned}
$$

2 Complex Fourier Series

Putting aside for the moment your previous results with trigonometric Fourier series, consider once again a function $h(t)$ defined for $-\frac{T}{2}<t<\frac{T}{2}$. Now assume it can be described by the expansion

$$
h(t)=\sum_{n=-\infty}^{\infty} c_{n} \exp \left(-i \frac{2 \pi n t}{T}\right)
$$

($\exp (x)$ is just another way of writing e^{x} which is more legible if x is a complicated expression.) Note that now n ranges over negative as well as positive integers.

1. Write the complex conjugate $h^{*}(t) .{ }^{2}$ By redefining the summation index (e.g., to be $m=-n$), write $h^{*}(t)$ as a complex Fourier series with the same exponentials and different coëfficients. If $h(t)$ is a real function $\left(h^{*}(t)=h(t)\right)$, what conditions must the coëfficients $\left\{c_{n} \mid n=-\infty, \ldots \infty\right\}$ satisfy? What if it's an imaginary function $\left(h^{*}(t)=-h(t)\right)$? What can you say about c_{0} in each case?
2. Write $h(-t)$, once again changing the index to express it as a Fourier series with different coëfficients. If $h(t)$ is an even function $(h(-t)=h(t)$), what conditions does this set on the coëfficients $\left\{c_{n} \mid n=-\infty, \ldots \infty\right\}$? What if it's an odd function $(h(-t)=-h(t))$? How does this differ from the conditions in the previous exercise?
3. Apply the rule $e^{\alpha} e^{\beta}=e^{\alpha+\beta}$ for products of exponentials to obtain an expression for

$$
\exp \left(i \frac{2 \pi m t}{T}\right) \exp \left(-i \frac{2 \pi n t}{T}\right)
$$

4. Using the Euler relation $e^{i \theta}=\cos \theta+i \sin \theta$, calculate $e^{i 2 \pi}$. Use this to obtain an expression for $e^{i(\theta+2 \pi N)}$, where N is any integer.

[^1]5. Using the last two results, calculate the integrals
\[

$$
\begin{array}{ll}
\int_{-T / 2}^{T / 2} \exp \left(i \frac{2 \pi m t}{T}\right) \exp \left(-i \frac{2 \pi n t}{T}\right) d t & m \neq n \\
\int_{-T / 2}^{T / 2} \exp \left(i \frac{2 \pi m t}{T}\right) \exp \left(-i \frac{2 \pi n t}{T}\right) d t & m=n
\end{array}
$$
\]

where m and n are integers.
Combine both results into a single expression for

$$
\int_{-T / 2}^{T / 2} \exp \left(i \frac{2 \pi m t}{T}\right) \exp \left(-i \frac{2 \pi n t}{T}\right) d t
$$

using the "Kronecker delta"

$$
\delta_{m n}= \begin{cases}1 & m=n \\ 0 & m \neq n\end{cases}
$$

6. Consider the sum

$$
\sum_{n=-\infty}^{\infty} A_{n} \delta_{m n}
$$

If m is an integer, there must be one term in the sum where $n=m$. What is the value of this term? What is the value of any term with $n \neq m$? Use the results to obtain a simple expression for the entire sum, assuming m is an integer.
7. Use the previous results to calculate the integral

$$
\int_{-T / 2}^{T / 2} h(t) \exp \left(i \frac{2 \pi m t}{T}\right) d t
$$

where m is any integer. Use this result to obtain an expression for c_{m}.
8. Suppose the same function $h(t)$ can be written as a complex exponential Fourier series and a trigonometric Fourier series:

$$
\begin{aligned}
h(t) & =\sum_{n=-\infty}^{\infty} c_{n} \exp \left(-i \frac{2 \pi n t}{T}\right) \\
& =\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{2 \pi n t}{T}\right)+\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{2 \pi n t}{T}\right)
\end{aligned}
$$

Using the Euler relation $e^{i \theta}=\cos \theta+i \sin \theta$, rewrite the first expression as a sum of sines and cosines, and by matching up coëfficients obtain expressions for $a_{0},\left\{a_{n} \mid n=0, \ldots \infty\right\}$ and $\left\{b_{n} \mid n=1, \ldots \infty\right\}$ in terms of $\left\{c_{n} \mid n=-\infty, \ldots \infty\right\}$.

2.1 Answers

1.

$$
\begin{aligned}
h^{*}(t) & =\sum_{n=-\infty}^{\infty} c_{n}^{*} \exp \left(i \frac{2 \pi n t}{T}\right) \\
& =\sum_{n=-\infty}^{\infty} c_{-n}^{*} \exp \left(-i \frac{2 \pi n t}{T}\right)
\end{aligned}
$$

If $h(t)$ is real, we must have $c_{n}=c_{-n}^{*}$ for all integer n. In particular, this means $c_{0}=c_{0}^{*}$, or c_{0} is real. If $h(t)$ is imaginary, we must have $c_{n}=-c_{-n}^{*}$ for all integer n. In particular, this means $c_{0}=-c_{0}^{*}$, or c_{0} is imaginary.
2.

$$
\begin{aligned}
h(-t) & =\sum_{n=-\infty}^{\infty} c_{n} \exp \left(i \frac{2 \pi n t}{T}\right) \\
& =\sum_{n=-\infty}^{\infty} c_{-n} \exp \left(-i \frac{2 \pi n t}{T}\right)
\end{aligned}
$$

If $h(t)$ is even, we must have $c_{n}=c_{-n}$ for all integer n. If $h(t)$ is odd, we must have $c_{n}=-c_{-n}$ for all integer n. These conditions differ from the previous one in that they don't involve the complex conjugate.
3.

$$
\exp \left(i \frac{2 \pi m t}{T}\right) \exp \left(-i \frac{2 \pi n t}{T}\right)=\exp \left(i \frac{2 \pi(m-n) t}{T}\right)
$$

4. $e^{i 2 \pi}=1$, so $e^{i(\theta+2 \pi N)}=e^{i \theta}$.
5.

$$
\int_{-T / 2}^{T / 2} \exp \left(i \frac{2 \pi m t}{T}\right) \exp \left(-i \frac{2 \pi n t}{T}\right) d t=T \delta_{m n}
$$

6. When $n=m, A_{n} \delta_{m n}=A_{m}$, and when $n \neq m, A_{n} \delta_{m n}=0$, so

$$
\sum_{n=-\infty}^{\infty} A_{n} \delta_{m n}=A_{m}
$$

7.

$$
\int_{-T / 2}^{T / 2} h(t) \exp \left(i \frac{2 \pi m t}{T}\right) d t=T c_{m}
$$

so

$$
c_{m}=\frac{1}{T} \int_{-T / 2}^{T / 2} h(t) \exp \left(i \frac{2 \pi m t}{T}\right) d t
$$

8.

$$
\begin{array}{rlrl}
a_{0} & =2 c_{0} & \\
a_{n} & =c_{n}+c_{-n} & n=1, \ldots, \infty \\
b_{n} & =\frac{c_{n}-c_{-n}}{i} & n=1, \ldots, \infty
\end{array}
$$

[^0]: ${ }^{1}$ If $z=x+i y$ is a complex number (x and y are both real numbers), the complex conjugate is defined as $z^{*}=x-i y$; a real number ($y=0$ in this representation) is thus unchanged by complex conjugation (thus $x^{*}=x$); a pure imaginary number $(x=0)$ changes sign under complex conjugation $\left((i y)^{*}=-i y\right)$.

[^1]: ${ }^{2}$ A shortcut to taking complex conjugates is to change every i you see to $-i$ and to put a star on every complex parameter or variable you see. So for instance, if z is complex and θ is real, $\left(z e^{i \theta}\right)^{*}=z^{*} e^{-i \theta}$

