1 Partial Derivatives of the Hamiltonian

Note: when taking partial derivatives of the Hamiltonian, we usually consider it to be a function of coordinates and momenta rather than of velocities. In this problem, we will explicitly consider \(H \) as a function of different sets of arguments and compare the partial derivatives with different quantities held constant.

Consider the Lagrangian
\[
L(q, \dot{q}, t) = \frac{aq^2}{2} + b\dot{q}\sin\omega t - \frac{kq^2}{2}
\]
where \(a, b, \omega \) and \(k \) are all constants included to get the dimensions right.

a) Take the partial derivatives \(\left(\frac{\partial L}{\partial q} \right)_{\dot{q}, t} \), \(\left(\frac{\partial L}{\partial \dot{q}} \right)_{q, t} \), and \(\left(\frac{\partial L}{\partial t} \right)_{q, \dot{q}} \).

b) Find the conjugate momentum \(p(q, \dot{q}, t) = \left(\frac{\partial L}{\partial \dot{q}} \right)_{q, t} \).

c) Invert the results of part b) to obtain \(\dot{q}(q, p, t) \).

d) Construct the Hamiltonian \(H(q, \dot{q}, t) = p(q, \dot{q}, t) \dot{q} - L(q, \dot{q}, t) \), writing it first as a function of the coordinate and velocity with no reference to the momentum. (This is not how we usually do it, but we’re trying to prove a point here.)

e) Take the partial derivatives \(\left(\frac{\partial H}{\partial q} \right)_{p, t} \), \(\left(\frac{\partial H}{\partial p} \right)_{q, t} \), and \(\left(\frac{\partial H}{\partial t} \right)_{q, p} \). Show that \(\left(\frac{\partial H}{\partial q} \right)_{\dot{q}, t} \neq -\left(\frac{\partial L}{\partial q} \right)_{\dot{q}, t} \) and \(\left(\frac{\partial H}{\partial t} \right)_{q, \dot{q}} = -\left(\frac{\partial L}{\partial t} \right)_{q, \dot{q}} \).

f) Use the results of parts c) and d) to rewrite the Hamiltonian as a function \(H(q, p, t) \) of the coordinate and momentum with no reference to the velocity.

g) Take the partial derivatives \(\left(\frac{\partial H}{\partial q} \right)_{p, t} \), \(\left(\frac{\partial H}{\partial p} \right)_{q, t} \), and \(\left(\frac{\partial H}{\partial t} \right)_{q, p} \). These will be functions of \(q, p, \) and \(t \).

h) Use the results of part b) to write all three partial derivatives from part g) as functions of \(q, \dot{q}, \) and \(t \), and show that \(\left(\frac{\partial H}{\partial q} \right)_{p, t} = -\left(\frac{\partial L}{\partial q} \right)_{\dot{q}, t} \) and \(\left(\frac{\partial H}{\partial t} \right)_{q, p} = -\left(\frac{\partial L}{\partial t} \right)_{q, \dot{q}} \).
2 Two-Body Problem Revisited

Consider the Lagrangian
\[L = \frac{M \dot{X}^2}{2} + \frac{M \dot{Y}^2}{2} + \frac{M \dot{Z}^2}{2} + \frac{\mu r^2 \dot{\theta}^2}{2} + \frac{\mu r^2 \sin^2 \theta \dot{\phi}^2}{2} + \frac{GM\mu}{r} - MgZ \]
which you found in problem 2 on problem set 5.

a) Construct the six conjugate momenta \(p_X, p_Y, p_Z, p_r, p_\theta, \) and \(p_\phi \) as functions of the coördinates \(\{X, Y, Z, r, \theta, \phi\} \) and velocities \(\{\dot{X}, \dot{Y}, \dot{Z}, \dot{r}, \dot{\theta}, \dot{\phi}\} \).

b) Invert those relationships to find the six generalized velocities \(\dot{X}, \dot{Y}, \dot{Z}, \dot{r}, \dot{\theta}, \) and \(\dot{\phi} \) in terms of the coördinates and momenta.

c) Construct the Hamiltonian as a function of the coördinates and momenta with no reference to any of the velocities in your final result.

d) Write all twelve of Hamilton’s equations. Which coördinates are ignorable?

3 Principle of Least Action

Consider a family of curves \(x_\alpha(t) = x(t) + \alpha \xi(t) \), where \(\xi(t) \) is an otherwise arbitrary function which vanishes at times \(t_i \) and \(t_f \) [i.e., \(\xi(t_i) = 0 = \xi(t_f) \)].

a) Calculate the derivatives \(\frac{\partial x_\alpha}{\partial \alpha} \) and \(\frac{\partial \dot{x}_\alpha}{\partial \alpha} \) where \(\dot{x}_\alpha \) is the time derivative of \(x_\alpha(t) \) (implicitly at constant \(\alpha \), since \(\alpha \) is a single number and not a function of time).

b) Consider a function \(L(x, \dot{x}, t) \), from which we can derive a function \(L_\alpha(t) = L(x_\alpha(t), \dot{x}_\alpha(t), t) \). Use the chain rule to write \(\frac{\partial L_\alpha}{\partial \alpha} \) in terms of the partial derivatives \(\frac{\partial L}{\partial x} \bigg|_{x=x_\alpha} \) and \(\frac{\partial L}{\partial \dot{x}} \bigg|_{x=x_\alpha} \).

c) Define the function
\[S(\alpha) = \int_{t_i}^{t_f} L_\alpha(t) \, dt \]
and use the results of the previous two parts to write \(S'(\alpha) \) as an integral containing \(\xi, \dot{\xi}, \frac{\partial L}{\partial x} \bigg|_{x=x_\alpha} \) and \(\frac{\partial L}{\partial \dot{x}} \bigg|_{x=x_\alpha} \).

d) Use integration by parts (i.e., \(\int_{t_i}^{t_f} x \frac{dy}{dx} \, dt = xy\bigg|_{t_i}^{t_f} - \int_{t_i}^{t_f} y \frac{dx}{dy} \, dt \)) to convert the term involving \(\dot{\xi} \) into a term involving \(\xi \).

e) Show that if \(x(t) \) satisfies the Lagrange equation \(\frac{d}{dt} \frac{\partial L}{\partial \dot{x}} = \frac{\partial L}{\partial x} \), then \(S(\alpha) \) has a local extremum at \(\alpha = 0 \).

\(S \) is called the action, and Lagrange’s equations are equivalent to the condition that the action be smaller for the classical trajectory than for any “nearby” trajectory.