Show your work on all problems! Be sure to give credit to any collaborators, or outside sources used in solving the problems.

1 Periodically Accelerating Reference Frame

Symon Chapter Seven, Problem Two.

2 Rotational Oblateness of the Earth

Consider the Earth, rotating at a fixed angular velocity \(\vec{\omega} \). Define two sets of Cartesian coördinates, \((x, y, z)\) and \((x^*, y^*, z^*)\), each with its origin at the center of the Earth and its positive \(z \) (or \(z^* \)) axis pointed towards the North Pole along the Earth’s rotation axis, so that \(\vec{\omega} = \omega \hat{z} = \omega \hat{z}^* \). Let the unstarrred coördinate axes be fixed in space while the starred ones rotate along with the Earth.

a) Define spherical coördinates, \((r, \theta, \phi)\) and \((r^*, \theta^*, \phi^*)\), respectively, corresponding to the non-rotating and rotating Cartesian coördinate systems. Explain (or show) why \(r^* = r \) and \(\theta^* = \theta \), and also \(\hat{r}^* = \hat{r} \) and \(\hat{\theta}^* = \hat{\theta} \).

b) Assume that most of the matter in the Earth is spherically symmetric about its center, so that the gravitational field is well approximated by

\[
\vec{g} = -g(r) \hat{r} \tag{2.1}
\]

where the magnitude \(g(r) \) is a function of \(r \) alone. Find the effective gravitational field \(\vec{g}^{\text{eff}} \) including centrifugal effects in the co-rotating coördinate system, in terms of \(g(r) \), \(\omega \), \(r \), \(\theta \), and the basis vectors \(\hat{r} \) and \(\hat{\theta} \).

c) In the limit \(\omega \to 0 \), the Earth is just a sphere of radius \(R \) and mass \(M \), and the gravitational acceleration at its surface is

\[
g_0 = \frac{GM}{R^2}. \tag{2.2}
\]

Construct the dimensionless combination of \(\omega, g_0, \) and \(R \) which is proportional to \(\omega^2 \), and call this \(\varepsilon \).
d) Let the actual shape of the surface of the rotating Earth be given by

\[r = R + \delta R(\theta) \]

(2.3)

where \(\delta R(\theta) \) is a small correction of order \(\varepsilon \). If \(\vec{n} \) is a vector normal (perpendicular) to this surface, what is the ratio of components \(n_\theta/n_r \)?

e) Using the results of part b), construct the ratio \(g^\text{eff}_\theta/g^\text{eff}_r \). This should be proportional to \(\omega^2 \) and therefore also of order \(\varepsilon \).

f) In your answer to part e), set \(r \) to \(R \) and neglect the \(\omega^2 \) term appearing in the denominator. (These approximations are justified because anything more accurate would just add a correction of order \(\varepsilon^2 \).) Express this approximate ratio in terms of \(g_0 \), \(R \), \(\omega \), and \(\theta \). Verify that you get sensible results at the North Pole (\(\theta = 0 \)), the Equator (\(\theta = \pi/2 \)) and the South Pole (\(\theta = \pi \)).

g) By requiring \(g^\text{eff} \) to be normal to the surface of the Earth, obtain and solve a differential equation for \(\delta R(\theta) \). (Don’t forget to include the integration constant in the solution.) What is the difference between the polar and equatorial radii, in terms of \(g_0, R, \) and \(\omega \)?

h) Using the actual values for the Earth (\(g_0 = 9.8 \text{ m/s}^2 \), \(\omega = 2\pi/(24 \text{ hr}) \), and \(R = 6.4 \times 10^3 \text{ km} \)), evaluate the following ratios to two significant figures:

i) \(\varepsilon \), the “small” parameter defined in part c);
ii) The fractional decrease of the magnitude of \(g^\text{eff} \) at the equator relative to the poles;
iii) \(\frac{\delta R(\pi/2) - \delta R(0)}{R} \), the size of the equatorial bulge as a fraction of the Earth’s radius.

3 Deflection of a Falling Object Due to Coriolis Force

Do Symon Chapter Seven, Problem Seven. Also evaluate your expression for the displacement, for an object dropped from a height of 20 meters at a latitude of 30°N, and specify the direction of the deflection.