1 Central Force with Quadratic Potential

Consider a potential \(V(r) = \frac{1}{2}kr^2 \).

a) For a particle of mass \(m \) moving in this potential, with angular momentum \(L \), construct the effective potential \(V_{\text{eff}}(r) \) and sketch a plot of \(V_{\text{eff}}(r) \) versus \(r \).

b) For what values of total energy are there two turning points \(r_{\min} \) and \(r_{\max} \)? Find \(r_{\min} \) and \(r_{\max} \) in terms of the energy \(E \).

c) Use the function \(V_{\text{eff}}(r) \) to find the radius \(r_{\text{circ}} \) of a circular orbit with angular momentum \(L \). What is the total energy \(E_{\text{circ}} \) of this orbit?

d) For an energy only slightly larger than \(E_{\text{circ}} \), calculate the frequency \(\omega_R \) of the small radial oscillations about \(r_{\text{circ}} \). Calculate the angular frequency \(\omega_\Phi \) of the angular oscillations when \(r \approx r_{\text{circ}} \) and compare the two frequencies quantitatively. (Both frequencies should be expressed in terms of the parameters \(k, m, \) and \(L \), and not in terms of e.g., \(r_{\text{circ}} \) or \(E_{\text{circ}} \).)

2 Conic Sections

Demonstrate that the orbit
\[
 r(1 + \varepsilon \cos \phi) = \alpha
\]
with constants \(\alpha > 0 \) and \(\varepsilon \geq 0 \) is indeed a conic section with eccentricity \(\varepsilon \), semimajor axis \(\alpha/(1 - \varepsilon^2) \), and one focus at \(r = 0 \) as follows:

a) Consider the points \(\mathcal{P} \equiv (x, y), \mathcal{O} \equiv (0,0), \mathcal{F}_\pm \equiv (\pm 2c, 0) \), (where \(c > 0 \)) and the line \(\mathcal{L} \equiv x = 2p > 0 \). Calculate the following distances in Cartesian coordinates, then convert your results into the standard polar coordinates using \(x = r \cos \phi \) and \(y = r \sin \phi \), simplifying as much as possible.

i) the length \(d_{\mathcal{OP}} \) of the straight line segment from \(\mathcal{O} \) to \(\mathcal{P} \)

ii) the length \(d_{\mathcal{F}_\pm \mathcal{P}} \) of the straight line segment from \(\mathcal{F}_\pm \) to \(\mathcal{P} \)

iii) the distance \(d_{\mathcal{LP}} \) between the point \(\mathcal{P} \) and the line \(\mathcal{L} \)

b) A circle of radius \(a \) centered at \(\mathcal{O} \) is the set of all points a distance \(a \) from \(\mathcal{O} \):
\[
 d_{\mathcal{OP}} = a
\]

Show that when \(\varepsilon = 0 \), (2.1) is equivalent to (2.2) for a suitable choice of \(a \), and find this \(a \) in terms of \(\alpha \).
c) An ellipse of semimajor axis $a > 0$ with foci at F_- and O is the set of all points such that the sum of their distances from the two foci is $2a$:

$$d_{F_-P} + d_{OP} = 2a \quad (2.3)$$

Show that when $0 < \varepsilon < 1$, (2.1) is equivalent to (2.3) for a suitable choice of a and c, and find these values in terms of α and ε. (Hint: this is easiest if you solve (2.3) for d_{F_-P}, square it, and set it equal to the square of the result from part a), using (2.1) to eliminate $\cos \phi$, and requiring equality for any value of r.)

d) A parabola with focus O and directrix L is the set of all points equidistant from O and L:

$$d_{LP} = d_{OP} \quad (2.4)$$

Show that when $\varepsilon = 1$, (2.1) is equivalent to (2.4) for a suitable choice of p, and find this p in terms of α.

e) The left branch of a hyperbola of semimajor axis $a < 0$ with foci at O and F_+ is the set of all points such that the difference of their distances from the two foci is $-2a > 0$:

$$d_{F_+P} - d_{OP} = -2a \quad (2.5)$$

Show that when $\varepsilon > 1$, (2.1) is equivalent to (2.5) for a suitable choice of a and c, and find these values in terms of α and ε. (Hint: this is easiest if you solve (2.5) for d_{F_+P}, square it, and set it equal to the square of the result from part a), using (2.1) to eliminate $\cos \phi$, and requiring equality for any value of r.)

3 Circular Orbits in a Gravitational Field

Note: None of your answers to this problem should involve the constant K; you should use the relationship $K = -GMm$ to express them in terms of the masses of the attracting body and the test particle.

Consider a test particle of mass m moving in a circular orbit of radius R under the gravitational attraction of a body of mass M fixed at the center of the circle.

a) Use Kepler’s third law to calculate the orbital speed v as a function of R.

b) Express the total energy E and angular momentum L as functions of the radius R of the orbit (and not of each other or v).

c) Use the result of part a) to find the kinetic energy K as a function of R.

d) Write the potential energy $V(R)$ and verify that $T + V = E$.

e) Suppose we reduce the orbital energy from a satellite in such a way that it changes from one circular orbit to another. Do the following quantities increase or decrease?

i) orbital radius; ii) orbital speed; iii) orbital period

iv) kinetic energy; v) potential energy; vi) orbital angular momentum