Physics A301: Classical Mechanics II

Problem Set 10

Assigned 2003 April 28 Due 2003 May 5

Show your work on all problems! Be sure to give credit to any collaborators, or outside sources used in solving the problems.

1 Moment of Inertia of an Ellipsoid

Consider an ellipsoid \mathcal{E} defined by¹

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1 \tag{1.1}$$

with constant density ρ . In this problem, you will work out the components $\{I_{ij}\}$ of the inertia tensor for this solid.

- a) Calculate the mass M in terms of ρ and the semiaxes a, b, and c of the ellipsoid as follows:
 - i) Write the mass of the ellipsoid as a triple integral over x, y, and z. Don't write the limits of integration for the three integrals explicitly, but leave it as an "integral over \mathcal{E} ".
 - ii) Change variables in this integral from x to $\xi = x/a$, from y to $\eta = y/b$, and from z to $\zeta = z/c$. Write out the condition on ξ , η and ζ which describes the region of integration. (This should be a single equation analogous to (1.1).)
 - iii) Change variables again from ξ , η , and ζ to σ , ϑ , and φ defined so that

$$\xi = \sigma \sin \vartheta \cos \varphi$$
$$\eta = \sigma \sin \vartheta \sin \varphi$$
$$\zeta = \sigma \cos \vartheta$$

(As a reminder, the implied volume element is $d\xi \, d\eta \, d\zeta = \sigma^2 \sin \vartheta \, d\sigma \, d\vartheta \, d\varphi$.) Now you should be able to set explicit limits of integration for your σ , ϑ and φ integrals.

- iv) Evaluate the triple integral to obtain M as a function of ρ and the dimensions (a, b, and c) of the ellipsoid.
- b) Calculate the integral

$$\iiint_{\mathcal{E}} z^2 \, dx \, dy \, dz$$

by the same method used in part a) of this problem.

¹The lengths a, b, and c are called the *semiaxes* of the ellipsoid.

c) Find the values of the integrals

 $\iiint_{\mathcal{E}} x^2 \, dx \, dy \, dz$ $\iiint y^2 \, dx \, dy \, dz$

and

either explicitly or by analogy to the result of part b). (If you use the latter approach, be sure to explain your reasoning fully.)

- d) Explain why the "mixed" integrals $\iiint_{\mathcal{E}} xy \, dx \, dy \, dz$, $\iiint_{\mathcal{E}} yz \, dx \, dy \, dz$, and $\iiint_{\mathcal{E}} xz \, dx \, dy \, dz$ all vanish.
- e) Use the results of this problem to find the components

$$\begin{pmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{yx} & I_{yy} & I_{yz} \\ I_{zx} & I_{zy} & I_{zz} \end{pmatrix}$$

of the inertia tensor for \mathcal{E} about its center of mass in terms of M and the dimensions of the ellipsoid. (Note that this will mean substituting in for ρ using the results of part a).)

2 Principal Axes of Inertia

Consider a rigid body which consists of two point masses, each of mass M/2, separated by a massless rigid rod of length 2a.

a) Let the body coördinates (x, y, z) be chosen so that the masses are located at $\vec{x}_A = (0, a/2, a\sqrt{3}/2)$ and $\vec{x}_B = (0, -a/2, -a\sqrt{3}/2)$. Work out (by direct calculation) the components $\{I_{ij}\}$ of the inertia tensor and write them as a matrix

$$\mathbf{I} = \begin{pmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{yx} & I_{yy} & I_{yz} \\ I_{zx} & I_{zy} & I_{zz} \end{pmatrix}$$
(2.1)

b) Define an alternate set of coördinates $(\overline{x}, \overline{y}, \overline{z})$ according to

$$\begin{pmatrix} \overline{x} \\ \overline{y} \\ \overline{z} \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & \sqrt{3}/2 & -1/2 \\ 0 & 1/2 & \sqrt{3}/2 \end{pmatrix}}_{\mathcal{R}} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
(2.2)

- i) What are the coördinates $(\overline{x}_A, \overline{y}_A, \overline{z}_A)$ and $(\overline{x}_B, \overline{y}_B, \overline{z}_B)$ of the two point masses?
- ii) Using the results of part i), calculate directly the components $\{I_{k\ell}\}$ of the inertia tensor in this new basis and write them as a matrix

$$\bar{\mathbf{I}} = \begin{pmatrix} I_{\overline{xx}} & I_{\overline{xy}} & I_{\overline{xz}} \\ I_{\overline{yx}} & I_{\overline{yy}} & I_{\overline{yz}} \\ I_{\overline{zx}} & I_{\overline{zy}} & I_{\overline{zz}} \end{pmatrix}$$
(2.3)

c) Calculate $\mathbf{RIR}^{\mathrm{T}}$ and verify it is equal to $\overline{\mathbf{I}}$.

3 Angular Momentum and Rotational Energy

Consider a rigid body with body axes \vec{e}_x , \vec{e}_y , and \vec{e}_z chosen to lie along the principal axes of inertia so that the inertia tensor is diagonal.

- a) Write the angular velocity components ω_x , ω_y , and ω_z in terms of the angular momentum components L_x , L_y , and L_z and the moments of inertia I_{xx} , I_{yy} , and I_{zz} .
- b) Use the results of part a) to write the rotational kinetic energy (which we'll call E since it's the only form of energy we're worrying about in this problem) in terms of L_x , L_y , L_z , I_{xx} , I_{yy} , and I_{zz} , without reference to any of the angular velocity components.
- c) Limit attention to the case where two of the moments of inertia are equal, $I_{xx} = I_{yy} = I_1 \neq I_{zz} = I_3$. Let α be the angle between the angular momentum vector \vec{L} and the symmetry axis \vec{e}_z , so that $L_z = L \cos \alpha$ where $L = \sqrt{L_x^2 + L_y^2 + L_z^2}$ is the magnitude of the angular velocity vector. Use this to write E as a function of L and α (and the body parameters I_1 and I_3), eliminating all references to L_x , L_y , and L_z .
- d) Calculate $\left(\frac{\partial E}{\partial \alpha}\right)_L$ and indicate for what values of $\alpha \in (0, \pi/2)$ it is positive, negative, or zero²
 - i) for an oblate object $(I_3 > I_1)$
 - ii) for a prolate object $(I_1 > I_3)$
- e) Many interactions with the outside world and/or small corrections to the assumption of rigid body motion will reduce the rotational energy of an object while leaving its angular momentum unchanged. Assuming $0 < \alpha < \pi/2$, use your results from the previous part to determine whether such interactions will cause the angle between the symmetry axis and the angular momentum vector to increase or decrease
 - i) for an oblate object $(I_3 > I_1)$
 - ii) for a prolate object $(I_1 > I_3)$

 $^{^2\}alpha \in (0,\pi/2)$ means α in the open interval defined by $0 < \alpha < \pi/2$