Physics A301: Classical Mechanics II

Problem Set 6

Assigned 2003 March 7 Due 2003 March 14

Show your work on all problems! Be sure to give credit to any collaborators, or outside sources used in solving the problems.

1 Central Force with Quadratic Potential

Consider a potential $U(r) = \frac{1}{2}kr^2$.

- a) For a particle of mass μ moving in this potential, with angular momentum ℓ , construct the effective potential V(r) and sketch a plot of V(r) versus r.
- b) Use the function V(r) to find the radius of a circular orbit with angular momentum ℓ . What is the total energy E of this orbit?
- c) For what values of total energy are there two turning points r_{\min} and r_{\max} ? Find r_{\min} and r_{\max} in terms of the energy E.
- d) Calculate the angle

$$\Delta \phi = 2 \int_{r_{\rm min}}^{r_{\rm max}} \frac{\dot{\phi}}{\dot{r}} dr$$

through which the particle moves during a complete radial cycle. Under what circumstances will this be a rational multiple of 2π ?

2 Inverse-Cube Correction to Inverse Square Force

Consider the force $\vec{F} = \left(-\frac{k}{r^2} - \frac{\lambda}{r^3}\right) \vec{e_r}$ arising from a potential

$$U(r) = -\frac{k}{r} - \frac{\lambda}{2r^2}$$

- a) Use the effective potential V(r) to describe qualitatively the radial motion of a particle with total energy E < 0 and angluar momentum $\ell > 0$ moving in this potential. For what values of λ does the radial motion have two turning points?
- b) Take λ to lie in the range for which the radial motion has two turning points.
 - i) Calculate $\Delta \phi$ for a full cycle of the radial motion.

ii) Find the orbital equation relating r and ϕ . (Hint: the calculation is very similar to the one for a pure inverse-square law.) How does this result differ from the result for a pure inverse-square force?

3 Conic Sections

Demonstrate that the orbit

$$r(1 + \varepsilon \cos \phi) = \alpha \tag{3.1}$$

with constants $\alpha > 0$ and $\varepsilon \ge 0$ is indeed a conic section with eccentricity ε , semimajor axis $\alpha/(1-\varepsilon^2)$, and one focus at r=0 as follows:

- a) Consider the points $\mathcal{P} \equiv (x, y)$, $\mathcal{O} \equiv (0, 0)$, $\mathcal{F}_{\pm} \equiv (\pm 2c, 0)$, (where c > 0) and the line $\mathcal{L} \equiv x = 2p > 0$. Calculate the following distances in Cartesian coördinates, then convert your results into the standard polar coördinates using $x = r \cos \phi$ and $y = r \sin \phi$, simplifying as much as possible.
 - i) the length $d_{\mathcal{OP}}$ of the straight line segment from \mathcal{O} to \mathcal{P}
 - ii) the length $d_{\mathcal{F}_{\pm}\mathcal{P}}$ of the straight line segment from \mathcal{F}_{\pm} to \mathcal{P}
 - iii) the distance $d_{\mathcal{LP}}$ between the point \mathcal{P} and the line \mathcal{L}
- b) A circle of radius a centered at \mathcal{O} is the set of all points a distance a from \mathcal{O} :

$$d_{\mathcal{OP}} = a \tag{3.2}$$

Show that when $\varepsilon = 0$, (3.1) is equivalent to (3.2) for a suitable choice of a, and find this a in terms of α .

c) An ellipse of semimajor axis a > 0 with foci at \mathcal{F}_{-} and \mathcal{O} is the set of all points such that the sum of their distances from the two foci is 2a:

$$d_{\mathcal{F}_{-\mathcal{P}}} + d_{\mathcal{OP}} = 2a \tag{3.3}$$

Show that when $0 < \varepsilon < 1$, (3.1) is equivalent to (3.3) for a suitable choice of a and c, and find these values in terms of α and ε . (Hint: this is easiest if you solve (3.3) for $d_{\mathcal{F}_{\mathcal{P}}}$, square it, and set it equal to the square of the result from part a), using (3.1) to eliminate $\cos \phi$, and requiring equality for any value of r.)

d) A parabola with focus \mathcal{O} and directrix \mathcal{L} is the set of all points equidistant from \mathcal{O} and \mathcal{L} :

$$d_{\mathcal{LP}} = d_{\mathcal{OP}} \tag{3.4}$$

Show that when $\varepsilon = 1$, (3.1) is equivalent to (3.2) for a suitable choice of p, and find this p in terms of α .

e) The left branch of a hyperbola of semimajor axis a < 0 with foci at \mathcal{O} and \mathcal{F}_+ is the set of all points such that the difference of their distances from the two foci is -2a > 0:

$$d_{\mathcal{F}_+\mathcal{P}} - d_{\mathcal{O}\mathcal{P}} = -2a \tag{3.5}$$

Show that when $\varepsilon > 1$, (3.1) is equivalent to (3.5) for a suitable choice of a and c, and find these values in terms of α and ε . (Hint: this is easiest if you solve (3.5) for $d_{\mathcal{F}_+\mathcal{P}}$, square it, and set it equal to the square of the result from part a), using (3.1) to eliminate $\cos \phi$, and requiring equality for any value of r.)