Physics A301: Classical Mechanics II

Problem Set 6

Assigned 2003 March 7
Due 2003 March 14

Show your work on all problems! Be sure to give credit to any collaborators, or outside sources used in solving the problems.

1 Central Force with Quadratic Potential

Consider a potential $U(r)=\frac{1}{2} k r^{2}$.
a) For a particle of mass μ moving in this potential, with angular momentum ℓ, construct the effective potential $V(r)$ and sketch a plot of $V(r)$ versus r.
b) Use the function $V(r)$ to find the radius of a circular orbit with angular momentum ℓ. What is the total energy E of this orbit?
c) For what values of total energy are there two turning points $r_{\text {min }}$ and $r_{\text {max }}$? Find $r_{\text {min }}$ and $r_{\text {max }}$ in terms of the energy E.
d) Calculate the angle

$$
\Delta \phi=2 \int_{r_{\min }}^{r_{\max }} \frac{\dot{\phi}}{\dot{r}} d r
$$

through which the particle moves during a complete radial cycle. Under what circumstances will this be a rational multiple of 2π ?

2 Inverse-Cube Correction to Inverse Square Force

Consider the force $\vec{F}=\left(-\frac{k}{r^{2}}-\frac{\lambda}{r^{3}}\right) \vec{e}_{r}$ arising from a potential

$$
U(r)=-\frac{k}{r}-\frac{\lambda}{2 r^{2}}
$$

a) Use the effective potential $V(r)$ to describe qualitatively the radial motion of a particle with total energy $E<0$ and angluar momentum $\ell>0$ moving in this potential. For what values of λ does the radial motion have two turning points?
b) Take λ to lie in the range for which the radial motion has two turning points.
i) Calculate $\Delta \phi$ for a full cycle of the radial motion.
ii) Find the orbital equation relating r and ϕ. (Hint: the calculation is very similar to the one for a pure inverse-square law.) How does this result differ from the result for a pure inverse-square force?

3 Conic Sections

Demonstrate that the orbit

$$
\begin{equation*}
r(1+\varepsilon \cos \phi)=\alpha \tag{3.1}
\end{equation*}
$$

with constants $\alpha>0$ and $\varepsilon \geq 0$ is indeed a conic section with eccentricity ε, semimajor axis $\alpha /\left(1-\varepsilon^{2}\right)$, and one focus at $r=0$ as follows:
a) Consider the points $\mathcal{P} \equiv(x, y), \mathcal{O} \equiv(0,0), \mathcal{F}_{ \pm} \equiv(\pm 2 c, 0)$, (where $\left.c>0\right)$ and the line $\mathcal{L} \equiv x=2 p>0$. Calculate the following distances in Cartesian coördinates, then convert your results into the standard polar coördinates using $x=r \cos \phi$ and $y=r \sin \phi$, simplifying as much as possible.
i) the length $d_{\mathcal{O P}}$ of the straight line segment from \mathcal{O} to \mathcal{P}
ii) the length $d_{\mathcal{F}_{ \pm} \mathcal{P}}$ of the straight line segment from $\mathcal{F}_{ \pm}$to \mathcal{P}
iii) the distance $d_{\mathcal{L} \mathcal{P}}$ between the point \mathcal{P} and the line \mathcal{L}
b) A circle of radius a centered at \mathcal{O} is the set of all points a distance a from \mathcal{O} :

$$
\begin{equation*}
d_{\mathcal{O P}}=a \tag{3.2}
\end{equation*}
$$

Show that when $\varepsilon=0,(3.1)$ is equivalent to (3.2) for a suitable choice of a, and find this a in terms of α.
c) An ellipse of semimajor axis $a>0$ with foci at \mathcal{F}_{-}and \mathcal{O} is the set of all points such that the sum of their distances from the two foci is $2 a$:

$$
\begin{equation*}
d_{\mathcal{F}_{-} \mathcal{P}}+d_{\mathcal{O P}}=2 a \tag{3.3}
\end{equation*}
$$

Show that when $0<\varepsilon<1$, (3.1) is equivalent to (3.3) for a suitable choice of a and c, and find these values in terms of α and ε. (Hint: this is easiest if you solve (3.3) for $d_{\mathcal{F}_{-} \mathcal{P}}$, square it, and set it equal to the square of the result from part a), using (3.1) to eliminate $\cos \phi$, and requiring equality for any value of r.)
d) A parabola with focus \mathcal{O} and directrix \mathcal{L} is the set of all points equidistant from \mathcal{O} and \mathcal{L} :

$$
\begin{equation*}
d_{\mathcal{L P}}=d_{\mathcal{O P}} \tag{3.4}
\end{equation*}
$$

Show that when $\varepsilon=1,(3.1)$ is equivalent to (3.2) for a suitable choice of p, and find this p in terms of α.
e) The left branch of a hyperbola of semimajor axis $a<0$ with foci at \mathcal{O} and \mathcal{F}_{+}is the set of all points such that the difference of their distances from the two foci is $-2 a>0$:

$$
\begin{equation*}
d_{\mathcal{F}_{+} \mathcal{P}}-d_{\mathcal{O P}}=-2 a \tag{3.5}
\end{equation*}
$$

Show that when $\varepsilon>1$, (3.1) is equivalent to (3.5) for a suitable choice of a and c, and find these values in terms of α and ε. (Hint: this is easiest if you solve (3.5) for $d_{\mathcal{F}_{+} \mathcal{P}}$, square it, and set it equal to the square of the result from part a), using (3.1) to eliminate $\cos \phi$, and requiring equality for any value of r.)

