Physics A301: Classical Mechanics II

Problem Set 5

Assigned 2003 February 24 Due 2003 March 7

Show your work on all problems! Be sure to give credit to any collaborators, or outside sources used in solving the problems.

1 Lorentz Force Law from an Action Principle

Consider the Lagrangian

$$L = \sum_{j=1}^{3} \frac{1}{2} m \dot{x}_{j}^{2} - Q\varphi(t, \vec{x}) + Q \sum_{j=1}^{3} \dot{x}_{j} A_{j}(t, \vec{x})$$

where $\varphi(t, \vec{x})$ is some scalar field and $\vec{A}(t, \vec{x})$ is some vector field.

- a) Calculate the partial derivatives $\frac{\partial L}{\partial x_i}$ and $\frac{\partial L}{\partial \dot{x}_i}$.
- b) Work out the total derivatives $\dot{\varphi} = \frac{d\varphi}{dt}$ and $\dot{A}_i = \frac{dA_i}{dt}$ in terms of the partial derivatives $\frac{\partial\varphi}{\partial t}$, $\frac{\partial\varphi_i}{\partial x_j}$, $\frac{\partial A_i}{\partial t}$ and $\frac{\partial A_i}{\partial x_j}$.
- c) Write the Euler-Lagrange equation

$$\frac{\partial L}{\partial x_i} - \frac{d}{dt} \frac{\partial L}{\partial \dot{x}_i} = 0$$

using the results of part b) to expand all total time derivatives.

- d) Solve the Euler-Lagrange equations for $m\ddot{x}_i$, simplifying as much as possible.
- e) Show that the resulting equation of motion is just the Lorentz force law

$$m\ddot{x}_i = Q\left(E_i + \sum_{j=1}^3 \sum_{k=1}^3 \epsilon_{ijk} \dot{x}_j B_k\right)$$

where ϵ_{ijk} is the Levi-Civita symbol (see Chapter One) and the electric and magnetic fields are defined from our scalar and vector potential fields by

$$E_{i} = -\frac{\partial\varphi}{\partial x_{i}} - \frac{\partial A_{i}}{\partial t}$$
$$B_{k} = \sum_{\ell=1}^{3} \sum_{m=1}^{3} \epsilon_{k\ell m} \frac{\partial A_{m}}{\partial x_{\ell}}$$

In order to show that $\sum_{j=1}^{3} \sum_{k=1}^{3} \epsilon_{ijk} \dot{x}_{j} B_{k}$ equals the corresponding term in the equations of motion, you'll need to use several properties of the Levi-Civita symbol from last semester (and Chapter One), notably that

$$\sum_{k=1}^{3} \epsilon_{kij} \epsilon_{k\ell m} = \delta_{i\ell} \delta_{jm} - \delta_{im} \delta_{j\ell}$$

2 Two-Body System in an External Gravitational Field

Assume that two point masses m_1 and m_2 , whose position vectors are \vec{x}_1 and \vec{x}_2 , respectively, move under the influence not only of a central force interaction described by a potential $U_{\text{int}}(|\vec{x}_1 - \vec{x}_2|)$, but also a constant gravitational field $\vec{g} = -g\vec{e}_z$ in the negative z-direction.

- a) Write the gravitational potential energies $U_1(\vec{x}_1)$ and $U_2(\vec{x}_2)$ of the two masses due to the external gravitational field, and construct the Lagrangian.
- b) Show that the change of coördinates to

$$\vec{X} = \frac{m_1 \vec{x}_1 + m_2 \vec{x}_2}{m_1 + m_2}$$
$$\vec{x} = \vec{x}_1 - \vec{x}_2$$

once again allows the separation of the Lagrangian into two non-interacting pieces:

$$L = L_X(\vec{X}, \vec{X}) + L_x(\vec{x}, \dot{\vec{x}})$$

- c) Find the equations of motion for the center of mass \vec{X} and describe its motion in words.
- d) How would this procedure break down if the gravitational field were not constant?

3 Mass Ratios in Two-Body Motion

- a) Consider the motion of two point-like objects mass m_1 and m_2 , respectively, under the influence only of a central force between the two objects. If the first object is moving in a circular orbit of radius r_1 , what is the radius of the second object's orbit?
- b) The nature of a two-body problem is often described by the reduced mass ratio $\nu = \mu/M$. Write ν as a function of the ratio m_1/m_2 and plot ν versus m_1/m_2 . What is the range of possible values of ν ? When is it a minimum or maximum, and what are those values?
- c) Calculate ν for the following systems
 - i) The Sun and the Earth
 - ii) The Sun and Jupiter
 - iii) The Earth and the Moon
 - iv) Saturn and Titan
 - v) Pluto and Charon
 - vi) A hypothetical system of identical twin planets orbiting each other

A good place to look up planetary bodies is at http://www.nineplanets.org/