Physics A301: Classical Mechanics II

Problem Set 5

Assigned 2003 February 24
Due 2003 March 7

Show your work on all problems! Be sure to give credit to any collaborators, or outside sources used in solving the problems.

1 Lorentz Force Law from an Action Principle

Consider the Lagrangian

$$
L=\sum_{j=1}^{3} \frac{1}{2} m \dot{x}_{j}{ }^{2}-Q \varphi(t, \vec{x})+Q \sum_{j=1}^{3} \dot{x}_{j} A_{j}(t, \vec{x})
$$

where $\varphi(t, \vec{x})$ is some scalar field and $\vec{A}(t, \vec{x})$ is some vector field.
a) Calculate the partial derivatives $\frac{\partial L}{\partial x_{i}}$ and $\frac{\partial L}{\partial \dot{x}_{i}}$.
b) Work out the total derivatives $\dot{\varphi}=\frac{d \varphi}{d t}$ and $\dot{A}_{i}=\frac{d A_{i}}{d t}$ in terms of the partial derivatives $\frac{\partial \varphi}{\partial t}$, $\frac{\partial \varphi}{\partial x_{j}}, \frac{\partial A_{i}}{\partial t}$ and $\frac{\partial A_{i}}{\partial x_{j}}$.
c) Write the Euler-Lagrange equation

$$
\frac{\partial L}{\partial x_{i}}-\frac{d}{d t} \frac{\partial L}{\partial \dot{x}_{i}}=0
$$

using the results of part b) to expand all total time derivatives.
d) Solve the Euler-Lagrange equations for $m \ddot{x}_{i}$, simplifying as much as possible.
e) Show that the resulting equation of motion is just the Lorentz force law

$$
m \ddot{x}_{i}=Q\left(E_{i}+\sum_{j=1}^{3} \sum_{k=1}^{3} \epsilon_{i j k} \dot{x}_{j} B_{k}\right)
$$

where $\epsilon_{i j k}$ is the Levi-Civita symbol (see Chapter One) and the electric and magnetic fields are defined from our scalar and vector potential fields by

$$
\begin{aligned}
E_{i} & =-\frac{\partial \varphi}{\partial x_{i}}-\frac{\partial A_{i}}{\partial t} \\
B_{k} & =\sum_{\ell=1}^{3} \sum_{m=1}^{3} \epsilon_{k \ell m} \frac{\partial A_{m}}{\partial x_{\ell}}
\end{aligned}
$$

In order to show that $\sum_{j=1}^{3} \sum_{k=1}^{3} \epsilon_{i j k} \dot{x}_{j} B_{k}$ equals the corresponding term in the equations of motion, you'll need to use several properties of the Levi-Civita symbol from last semester (and Chapter One), notably that

$$
\sum_{k=1}^{3} \epsilon_{k i j} \epsilon_{k \ell m}=\delta_{i \ell} \delta_{j m}-\delta_{i m} \delta_{j \ell}
$$

2 Two-Body System in an External Gravitational Field

Assume that two point masses m_{1} and m_{2}, whose position vectors are \vec{x}_{1} and \vec{x}_{2}, respectively, move under the influence not only of a central force interaction described by a potential $U_{\text {int }}\left(\left|\vec{x}_{1}-\vec{x}_{2}\right|\right)$, but also a constant gravitational field $\vec{g}=-g \vec{e}_{z}$ in the negative z-direction.
a) Write the gravitational potential energies $U_{1}\left(\vec{x}_{1}\right)$ and $U_{2}\left(\vec{x}_{2}\right)$ of the two masses due to the external gravitational field, and construct the Lagrangian.
b) Show that the change of coördinates to

$$
\begin{aligned}
\vec{X} & =\frac{m_{1} \vec{x}_{1}+m_{2} \vec{x}_{2}}{m_{1}+m_{2}} \\
\vec{x} & =\vec{x}_{1}-\vec{x}_{2}
\end{aligned}
$$

once again allows the separation of the Lagrangian into two non-interacting pieces:

$$
L=L_{X}(\vec{X}, \dot{\vec{X}})+L_{x}(\vec{x}, \dot{\vec{x}})
$$

c) Find the equations of motion for the center of mass \vec{X} and describe its motion in words.
d) How would this procedure break down if the gravitational field were not constant?

3 Mass Ratios in Two-Body Motion

a) Consider the motion of two point-like objects mass m_{1} and m_{2}, respectively, under the influence only of a central force between the two objects. If the first object is moving in a circular orbit of radius r_{1}, what is the radius of the second object's orbit?
b) The nature of a two-body problem is often described by the reduced mass ratio $\nu=\mu / M$. Write ν as a function of the ratio m_{1} / m_{2} and plot ν versus m_{1} / m_{2}. What is the range of possible values of ν ? When is it a minimum or maximum, and what are those values?
c) Calculate ν for the following systems
i) The Sun and the Earth
ii) The Sun and Jupiter
iii) The Earth and the Moon
iv) Saturn and Titan
v) Pluto and Charon
vi) A hypothetical system of identical twin planets orbiting each other

A good place to look up planetary bodies is at http://www.nineplanets.org/

