Physics A301: Classical Mechanics II

Problem Set 4

Assigned 2003 February 7
Due 2003 February 14

Show your work on all problems! Be sure to give credit to any collaborators, or outside sources used in solving the problems.

1 The Atwood Machine

Consider an Atwood machine, which consists of two blocks of mass m_{1} and m_{2} connected by a massless rope which hangs over a pulley suspended from a fixed point in a constant gravitational field (see figure 2-11(a) of M\&T). Let x_{1} and x_{2} be the distances of the two blocks below the pulley, and let the rope have total length ℓ.
a) Construct the modified Lagrangian for the system, with x_{1} and x_{2} as the generalized coördinates, and with a Lagrange multiplier λ to enforce the constraint $x_{1}+x_{2}=\ell$ which says that the total length of the rope doesn't change.
b) Find all three modified Euler-Lagrange equations (two equations of motion and one constraint).
c) Eliminate λ from the equations of motion to obtain a single equation containing x_{1}, x_{2}, and their time derivatives.
d) Use the constraint (and its time derivatives) to eliminate x_{2} and its time derivatives from the equation you found in part b) and produce a single differential equation in x_{1}.
e) Compare this approach to the balance of forces used to attack this problem in example 2.9; how is the Lagrange multiplier λ of this problem related to the tension T in the rope?

2 Time-Dependent Lagrangian

Consider the Lagrangian from the accelerated-pendulum problem

$$
L(\theta, \dot{\theta}, t)=\frac{1}{2} m \ell^{2} \dot{\theta}^{2}+m\left(v_{0}+a t\right) \ell \dot{\theta} \cos \theta+\frac{1}{2} m\left(v_{0}+a t\right)^{2}+m g \ell \cos \theta
$$

a) Calculate the partial derivatives $\frac{\partial L}{\partial \theta}, \frac{\partial L}{\partial \theta}$, and $\frac{\partial L}{\partial t}$.
b) Calculate the total derivative

$$
\frac{d}{d t} L(\theta(t), \dot{\theta}(t), t)=\frac{\partial L}{\partial \theta} \frac{d \theta}{d t}+\frac{\partial L}{\partial \dot{\theta}} \frac{d \dot{\theta}}{d t}+\frac{\partial L}{\partial t}
$$

c) Use the equation of motion

$$
\ddot{\theta}=-\frac{g}{\ell} \sin \theta-\frac{a}{\ell} \cos \theta
$$

to replace $\ddot{\theta}$ in your expression for the total derivative $\frac{d L}{d t}$ and demonstrate that $\frac{d L}{d t} \neq \frac{\partial L}{\partial t}$
d) Construct the Hamiltonian

$$
H=\dot{\theta} \frac{\partial L}{\partial \dot{\theta}}-L
$$

as a function of $\theta, \dot{\theta}$, and t.
e) Using the kinetic and potential energies

$$
\begin{gathered}
T=\frac{1}{2} m \ell^{2} \dot{\theta}^{2}+m\left(v_{0}+a t\right) \ell \dot{\theta} \cos \theta+\frac{1}{2} m\left(v_{0}+a t\right)^{2} \\
U=m g \ell \cos \theta
\end{gathered}
$$

construct the total energy $E=T+U$, and calculate $E-H$.

3 Hamilton's Equations of Motion

Consider a particle of mass m moving in the gravitational field of a point source of mass M which is fixed at the origin of coördinates. Use spherical coördinates (r, θ, ϕ) throughout the problem.
a) Write the potential energy $U(r, \theta, \phi)$ of the orbiting particle, with the zero of potential energy defined to lie at $r \rightarrow \infty$.
b) Using the line element in Appendix F.3, write the kinetic energy $T(r, \theta, \phi, \dot{r}, \dot{\theta}, \dot{\phi})$ in spherical coördinates.
c) Write the Lagrangian $L(r, \theta, \phi, \dot{r}, \dot{\theta}, \dot{\phi})$ for the problem.
d) Find the canonically conjugate momenta $p_{r}=\frac{\partial L}{\partial \dot{r}}, p_{\theta}=\frac{\partial L}{\partial \dot{\theta}}$, and $p_{\phi}=\frac{\partial L}{\partial \dot{\phi}}$ as functions of $(r, \theta, \phi, \dot{r}, \dot{\theta}, \dot{\phi})$.
e) Invert those functions to write the generalized velocities $\dot{r}, \dot{\theta}$, and $\dot{\phi}$ as functions of ($r, \theta, \phi, p_{r}, p_{\theta}, p_{\phi}$).
f) Construct the Hamiltonian

$$
H\left(r, \theta, \phi, p_{r}, p_{\theta}, p_{\phi}\right)=p_{r} \dot{r}+p_{\theta} \dot{\theta}+p_{\phi} \dot{\phi}-L
$$

where all the velocities appearing on the right-hand side have been replaced by the functions you found in part e).
g) Calculate $\frac{\partial H}{\partial p_{r}}, \frac{\partial H}{\partial p_{\theta}}$, and $\frac{\partial H}{\partial p_{\phi}}$ and verify that the results are just the expressions you got in part e) for $\dot{r}, \dot{\theta}$, and ϕ, respectively.
h) Use the other three Hamilton's equations to find expressions for $\dot{p}_{r}, \dot{p}_{\theta}$, and \dot{p}_{ϕ} in terms of $\left(r, \theta, \phi, p_{r}, p_{\theta}, p_{\phi}\right)$.

