Physics A301: Classical Mechanics II

Problem Set 2

Assigned 2003 January 22
Due 2003 January 29

Show your work on all problems! Be sure to give credit to any collaborators, or outside sources used in solving the problems.

1 Shortest Distance in Three Dimensions

Consider paths connecting two points $\left(x_{i}, y_{i}, z_{i}\right)$ and $\left(x_{f}, y_{f}, z_{f}\right)$ in three-dimensional space. In particular, limit attention to paths which are single-valued in z so they can be described by functions $x(z)$ and $y(z)$.
a) What are $x\left(z_{i}\right), y\left(z_{i}\right), x\left(z_{f}\right), y\left(z_{f}\right)$ (the boundary conditions on $x(z)$ and $\left.y(z)\right)$?
b) What is the infinitesimal distance $d \ell$ between $\left(x_{0}, y_{0}, z_{0}\right)$ and $\left(x_{0}+d x, y_{0}+d y, z_{0}+d z\right)$?
c) If $\left(x_{0}, y_{0}, z_{0}\right)$ and $\left(x_{0}+d x, y_{0}+d y, z_{0}+d z\right)$ both lie on the path described by functions $x(z)$ and $y(z)$, write $d x$ and $d y$ in terms of $d z$ and those functions.
d) Write the infinitesimal distance $d \ell$ between the points on the path for which $z=z_{0}$ and $z=z_{0}+d z$.
e) What is the rate $d \ell / d z$ at which the distance along the path given by $x(z)$ and $y(z)$ increases with z ?
f) Write, as an integral over the coördinate z which parametrizes the path $(x(z), y(z), z)$, the total length $L[x, y]$ of that path from z_{i} to z_{f}. This should be expressed in terms of the functions $x(z)$ and $y(z)$ and their derivatives $x^{\prime}(z)$ and $y^{\prime}(z)$.
g) Using this result, identify the integrand $\mathcal{L}\left(x, y, x^{\prime}, y^{\prime}, z\right)$ in the functional

$$
L[x, y]=\int_{z_{i}}^{z_{f}} \mathcal{L}\left(x(z), y(z), x^{\prime}(z), y^{\prime}(z), z\right) d z
$$

h) Calculate the partial derivatives $\frac{\partial \mathcal{L}}{\partial x}, \frac{\partial \mathcal{L}}{\partial y}, \frac{\partial \mathcal{L}}{\partial x^{\prime}}$, and $\frac{\partial \mathcal{L}}{\partial y^{\prime}}$.
i) Using Euler's equations, find the differential equations satisfied by $x(z)$ and $y(z)$.
j) Find the particular solution to these differential equations subject to the boundary conditions in part a)

2 The Double Pendulum

Consider the system illustrated in the figure below: a mass m hangs from a fixed suspension point by a rod of length ℓ, and a second mass, also of mass m, hangs from the first mass by another rod, also of length ℓ.
a) Define a coördinate system in which the origin is at the suspension point of the first pendulum, the x direction is to the right, and the y direction is up. Let the position the first mass be given by Cartesian coördinates $\left(x_{1}(t), y_{1}(t)\right)$ and the second by Cartesian coördinates $\left(x_{2}(t), y_{2}(t)\right)$. Write the kinetic energies T_{1} and T_{2} and potential energies U_{1} and U_{2} in terms of the Cartesian coördinates and velocities.
b) If the first rod makes an angle $\theta_{1}(t)$ with the vertical and the second rod makes an angle $\theta_{2}(t)$ with the vertical, write
i) $x_{1}(t)$ and $y_{1}(t)$ in terms of ℓ and $\theta_{1}(t)$;
ii) $x_{2}(t)$ and $y_{2}(t)$ in terms of $\ell, \theta_{2}(t), x_{1}(t)$, and $y_{1}(t)$;
iii) $x_{2}(t)$ and $y_{2}(t)$ in terms of $\ell, \theta_{2}(t)$, and $\theta_{1}(t)$.
iv) $\dot{x}_{1}(t), \dot{y}_{1}(t), \dot{x}_{2}(t)$, and $\dot{y}_{2}(t)$ in terms of $\ell, \theta_{1}(t), \theta_{2}(t), \dot{\theta}_{1}(t)$, and $\dot{\theta}_{2}(t)$,
c) Write the kinetic energies T_{1} and T_{2} and potential energies U_{1} and U_{2} in terms of the parameters ℓ and m, the angles $\theta_{1}(t)$ and $\theta_{2}(t)$, and their derivatives $\dot{\theta}_{1}(t)$ and $\dot{\theta}_{2}(t)$.
d) Write the Lagrangian $L\left(\theta_{1}, \dot{\theta}_{1}, \theta_{2}, \dot{\theta}_{2}, t\right)$ describing the system, with θ_{1} and θ_{2} taken as the generalized coördinates.
e) Use the Euler-Lagrange equations to find the equations of motion satisfied by $\theta_{1}(t)$ and $\theta_{2}(t)$.

You should not assume either angle is small at any point in this problem.

3 Accelerated Pendulum

Marion \& Thornton Problem 7-2.

