Physics A301: Classical Mechanics II

Problem Set 1

Assigned 2003 January 15 Due 2003 January 22

Show your work on all problems! Be sure to give credit to any collaborators, or outside sources used in solving the problems.

1 More Fermat's Principle

Use Fermat's Principle that light travels along the path which takes the minimum time, together with the fact that the speed of light in a medium with an index of refraction n is c/n, to determine the path y(x) a light ray will take from an initial position $(x_i, y(x_i)) = (-a, a)$ to a final position $(x_f, y(x_f)) = (a, a)$ when the index of refraction is:

- a) $n(x, y) = e^{y/a}$
- b) $n(x,y) = \frac{y-b}{c}$

2 Geodesic on a Cylinder

Consider the path $z(\phi)$ connecting two points $(\phi_i, z(\phi_i) = z_i)$ and $(\phi_f, z(\phi_i) = z_f)$ on the surface of a right cylinder of radius R.

- a) Construct an integral expression for the length of the path
- b) Use the Euler equation to find the equation satisfied by the $z(\phi)$ which gives a local extremum of the length.
- c) Solve this equation to obtain $z(\phi)$ in terms of ϕ_i , ϕ_f , z_i , and z_f .
- d) Because of the periodicity of the cylindrical coördinate ϕ , each point on the surface of the cylinder can be described by infinitely many (z, ϕ) pairs. Explicitly, $(z, \phi + 2\pi n)$ is the same point, for any n. As a consequence, your answer for part c) actually refers to only one member of this family; replace it with a $z_n(\phi)$ which enumerates all the members of the family.
- e) If $\phi_f = \phi_i$, calculate the length of a general member $z_n(\phi)$ of the family of locally minimum paths. Which value of n gives the absolute minimum?

3 Brachistochrone Through the Earth

Consider a tunnel drilled between two points on the surface of a spherical planet of uniform density, mass M, and radius R.

- a) Inside the tunnel, at a distance r from the center of the planet, what is the magnitude and direction of the gravitational force on a particle of mass $m \ll M$?
- b) What is the potential energy of such a particle, as a function of distance?
- c) If this particle is dropped into the tunnel from the surface of the planet, assuming no friction, what is the speed with which it travels through the tunnel as a function of r?
- d) Choose spherical coördinates so that both ends of the tunnel lie on the equator ($\theta = 0$) and assume that the entire tunnel lies in the equatorial plane ($\theta = 0$). If the path is written as $r(\phi)$, construct an integral expression for the time taken to traverse the entire tunnel, subject to the assumptions of part c).
- e) Let the tunnel be constructed so that the transit time is a minumum. Find (but don't solve) the differential equation satisfied by $r(\phi)$.