The Radiative Efficiency of Thin Accretion Disks

Scott C. Noble (JHU) Julian H. Krolik (JHU), John F. Hawley (UVa) 24th Texas Symposium in Vancouver December 12th, 2008 accepted ApJ, arXiv:0808.3140

Outline

How do we "see" black holes?
Disk Emission -> Spacetime Lighthouses
Measure properties of black hole (M,a)

Standard (thin) disk model

How can we improve upon these models?
Dynamical MHD Disks in GR.

Radiative Efficiency of Disks

Narayan & Quataert (2005)

2

log R (km)

3

-30

og M (g s⁻¹)

-20

-10

Relativistic Iron-Lines

Also, see talk by Brenneman this session

Electromagnetic BH Measurements

Directly Resolving Event Horizon:
 (e.g., Sgr A*)

1mm synchrotron emission from 3D GRMHD simulation

a=0.9M, i = 45°

Electromagnetic BH Measurements

• Variability: $P = 2 \pi \Omega^{-1}(M, a)$ • e.g. QPOs, short-time scale var.

 Spectral Fitting of Thermal Emission

 $L = A R_{in}^2 T_{max}^4$

 $T \sim (H/r)^2 r^{-1}$ $R_{in} = R_{in}(M, a)$

Shafee et al. (2006), McClintock et al. (2006)

Thin Disk Model: Novikov & Thorne (1973)

Assumptions:

Stationary gravity 1) **Equatorial Keplerian Flow** 2) Thin, cold disks Time-independent 3) Work done by stress is locally 4) dissipated into heat and radiated instantly Conservation of M, E, L 5) 6) Zero Stress at ISCO Eliminated d.o.f. 0 Condition thought to be 0 suspect from very start (Thorne 1974, Page & Thorne 1974)

Steady-State Models: Novikov & Thorne (1973)

Dynamical Global GRMHD Disk Models

Realistic Hydrodynamic shear viscosities cannot explain observed accretion rates

De Villiers, Hawley, Hirose, Krolik (2003-2006)

Magneto-Rotational Instability (MRI) develops from weak initial field, efficiently transports angular momentum outward.

Significant field within ISCO up to the horizon.

Hirose, Krolik, De Villiers, Hawley (2004)

Dynamical Global GRMHD Disk Models

Our Method: Simulations

HARM: Gammie, McKinney, Toth (2003)

Axisymmetric (2D)

 $\nabla_{\nu}^{*} F^{\mu\nu} = 0$

Total energy conserving (dissipation \rightarrow heat)

 $\nabla_{\mu} \left(\rho u^{\mu} \right) = 0$

Stationary Metric Modern Shock Capturing techniques

$$\nabla_{\mu}T^{\mu}{}_{\nu}=0$$

mag

Improvements:

- 3D
- More accurate (parabolic interp. In reconstruction and constraint transport schemes)
 - Assume flow is isentropic when $P_{gas} << P$

Our Method: Simulations

Improvements:

- 3D
- More accurate (higher effective resolution)
- Stable low density flows

$$\nabla_{\nu}^{*} F^{\mu\nu} = 0$$

- Cooling function:
 - Control energy loss rate
 - Parameterized by H/R
 - $t_{cool} \sim t_{orb}$
 - Only cool when T > T_{target}
 - Passive radiation
 - Radiative flux is stored for selfconsistent post-simulation radiative transfer calculation

 $\nabla_{\mu} \left(\rho u^{\mu} \right) = 0$

 $\nabla_{\mu}T^{\mu}{}_{\nu} = -\mathcal{F}_{\mu}$

 $H/R \sim 0.08$ $a_{BH} = 0.9M$

Cooling Function

Optically-thin radiation:

Isotropic emission:

 $T^{\mu}_{\nu:\mu} = -F_{\nu}$

 $F_{v} = f_{c} u_{v}$

 $T(r) = \left(\frac{H}{R}r\Omega\right)^{2}$

 Cool only when fluid's temperature too high:

 $f_c = s \Omega u (\Delta - 1 + |\Delta - 1|)^q = 0 \text{ for } \Delta < 0$

$$\Delta = \frac{u}{\rho T}$$

GRMHD Disk Simulations

GRMHD Disk Simulations

Target Temperature

Disk Thickness

HARM3D vs. $dVH \log(\rho)$

Uncooled

HARM3D vs. dVH $\rho \rho_{max}^{-1}(r)$

Uncooled

Cooled

dVH

Accretion Rate

Departure from Keplerian Motion

Magnetic Stress

Radiative Transfer: From Disk to Observer

- Full GR radiative transfer
 - GR geodesic integration
 - Doppler shifts
 - Gravitational redshift
 - Relativistic beaming
 - Uses simulation's fluid vel.
 - Inclination angle survey
 - Time domain survey

Observer-Frame Intensity: Inclination

Observer Frame Luminosity: Angle+Time Average

If disk emitted retained heat: $\Delta \eta / \eta \sim 20$ %

Assume NT profile for r > 12M.

 $\eta_{H3D} = 0.151$ $\eta_{NT} = 0.143$ $\Delta \eta / \eta = 6 \%$ $\Delta R_{in}/R_{in} \sim 80\%$ $\Delta T_{max}/T_{max}=30\%$

Summary & Conclusions

We now have the tools to self-consistently measure dL/dr from GRMHD disks

- 3D Conservative GRMHD simulations
- GR Radiative Transfer

 Similarity to previous simulation with different algorithm implies robustness of our results.

Luminosity from within ISCO diminished by

- Photon capture by the black hole
- Gravitational redshift

Possibly greater difference for $a_{BH} < 0.9$ when ISCO is further out of the potential well.

Future Work

- More spins
- More H/R 's
- More H(R) 's

Time variability analysis Impossible with steady-state models

Variability of Dissipated Flux

 $\theta = 5 deg.$ $\theta = 35 deg.$ $\theta = 65 deg.$ $\theta = 89 deg.$

HARM3D vs. dVH $\gamma(\phi - avg)$

Uncooled

HARM3D vs. dVH $\log(\rho)$

HARM3D vs. dVH $\log(P)$

HARM3D vs. dVH $\log(P_{mag})$

Cooled #1 vs. Cooled #2 $\log(P)$

HARM3D vs. dVH $\log(P_{mag})$

-3

-4

-5

-6

-7

Uncooled

HARM3D vs. dVH log(B)

t/M = 14000

t/M = 14000

Uncooled

HARM3D vs. $dVH \log(P)$

Uncooled

HARM3D vs. dVH

Cooling Methods

Cooling Methods

30

20

10

0

-10

-20

-30

 \mathbf{O}

5

rom

 $\log(P_{mag})$

Cooling Efficacy

Cooled from t=0M Cooled from t=4000M Uncooled

Spectral Fits for BH Spin

TABLE 1 Black Hole Spin Estimates Using the Mean Observed Values of M , D , and i						
Candidate	Observation Date	Satellite	Detector	a _* (D05)	a _* (ST95)	
GRO J1655-40	1995 Aug 15 1997 Feb 25–28	ASCA ASCA	GIS2 GIS3 GIS2	~ 0.85 ~ 0.80 $\sim 0.75^{a}$	~0.8 ~0.75 ~0.70	
4U 1543-47	1997 Feb 26 1997 (several) 2002 (several)	RXTE RXTE RXTE	GIS3 PCA PCA PCA	$\sim 0.75^{a}$ $\sim 0.75^{a}$ $0.65-0.75^{a}$ $0.75-0.85^{a}$	~ 0.7 ~ 0.65 0.55-0.65 0.55-0.65	

^a Values adopted in this Letter.

Shafee et al. (2006)

	Power Law		
Object	Mean	Standard Deviation	
GRS 1915+105 ^a GRS 1915+105 ^b	0.998 0.998	0.001 0.001	

McClintock et al. (2006)

HARM3D vs. dVH $\log(P_{mag})$

Uncooled

Cooled

Fluid Frame Flux

Agol & Krolik (2000) model $\Delta \eta = 0.01$ $\Delta \eta / \eta = 7\%$ 0.020

Observer-Frame Intensity: Time Average

 $i=5^{\circ}$

i=65°