Accretion onto Black Holes

Scott C. Noble

with Julian Krolik JHU

John Hawley UVa

&

Charles Gammie

PCTS Comput. Rel. Astroph. 10/24/2009

Astrophysical Disks

Disk Type	Gravity Model			
Galaxies, Stellar Disks	Newtonian			
X-ray binaries, AGN, Stellar Tidal Disruptions by SMBHs	Stationary metric			
Collapsars, GRBs, NS/?? Mergers, SN fall-back disks, Wet BBH Mergers	Full GR			

Astrophysical Disks

Disk Type	Gravity Model			
Galaxies, Stellar Disks	Newtonian			
X-ray binaries, AGN, Stellar Tidal Disruptions by SMBHs	Stationary metric			
Collapsars, GRBs, NS/?? Mergers, SN fall-back disks, Wet BBH Mergers	Full GR			

Initial Conditions Are Important!!

Radiative Efficiency of Disks

Radiatively Efficient (thin disks)

 Radiatively Inefficient (thick disks)

Illustration by C. Gammie

Probing the Spacetime of BHs

Variability:
 e.g. QPOs, short-time scale fluctuations

•Spectral Fitting Thermal Emission $L = A R_{in}^2 T_{max}^4 R_{in} = R_{in} (M, a)$ • Relativistic Iron Lines

Directly Resolving Event Horizo (e.g., Sgr A*)
Silhouette size = D(M,a)

(See Doeleman et al. (2008) for sub-mm VLBI)

Accretion States of XRBs

 $L = A R_{in}^2 T_{max}^4$

 $R_{in} = R_{in}(M, a) \sim R_{isco}$

Spectral Fits for BH Spin

TABLE 1 Black Hole Spin Estimates Using the Mean Observed Values of M, D , and i							
Candidate	Observation Date	Satellite	Detector	a _* (D05)	a _* (ST95)		
GRO J1655-40	1995 Aug 15	ASCA	GIS2 GIS3	~0.85 ~0.80	~0.8 ~0.75		
	1997 Feb 25-28	ASCA	GIS2 GIS3	$\sim 0.75^{a}$ $\sim 0.75^{a}$	~ 0.70 ~ 0.7		
	1997 Feb 26 1997 (several)	RXTE RXTE	PCA PCA	~0.75* 0.65–0.75*	~ 0.65 0.55-0.65		
4U 1543-47	2002 (several)	RXTE	PCA	$0.75 - 0.85^{a}$	0.55 - 0.65		

^a Values adopted in this Letter.

Shafee et al. (2006)

	Power Law		
Object	Mean	Standard Deviation	
GRS 1915+105 ^a	0.998	0.001	
GRS 1915+105 ^b	0.998	0.001	

McClintock et al. (2006)

Steady-State Models: Novikov & Thorne (1973)

Assumptions:

- 1) Stationary gravity
- 2) Equatorial Keplerian Flow
 - Thin, cold disks
- 3) Time-independent
- Work done by stress locally dissipated into heat
- 5) Conservation of M, E, L
- 6) Zero Stress at ISCO
 - o Eliminated d.o.f.
 - Condition thought to be suspect from very start
 (Thorne 1974, Page & Thorne 1974)

 $\eta = 1 - \dot{E} / \dot{M}$ $= 1 - \epsilon_{ISCO}$

Steady-State Models: Novikov & Thorne (1973)

Assumptions:

- 1) Stationary gravity
- 2) Equatorial Keplerian Flow
 - Thin, cold disks
- 3) Time-independent
- Work done by stress locally dissipated into heat
- 5) Conservation of M, E, L
- 6) Zero Stress at ISCO
 - o Eliminated d.o.f.
- O Condition thought to be suspect from very start
 (Thorne 1974, Page & Thorne 1974)
 Magnetic Fields → Need dynamical evolution!!!

 $\eta = 1 - \dot{E} / \dot{M}$ $= 1 - \epsilon_{\rm ISCO}$

Steady-State Models: *a* Disks

Shakura & Sunyaev (1973):

 $T_{\phi}^{r} = -\alpha P$

 $P = \rho c_s^2 \qquad t_\phi^r = -\alpha c_s^2$

No stress at sonic point:

 $\rightarrow R_{in} = R_{s}$

e.g.:

Muchotrzeb & Paczynski (1982) Abramowicz, et al. (1988) Afshordi & Paczyncski (2003)

(Schwarzschild BHs)

Variable *(X)* e.g., Shafee, Narayan, McClintock (2008)

Abramowicz, et al. (1988)

 $\eta \sim 1 - \epsilon_{isco}$

Dynamical Global Disk Models

De Villiers, Hawley, Hirose, Krolik (2003-2006)

MRI develops from weak initial field.

Significant field within ISCO up to the horizon.

Hirose, Krolik, De Villiers, Hawley (2004)

Dynamical Global Disk Models

Beckwith, Hawley & Krolik (2008)

- Models dissipation stress as EM stress
- Large dissipation near horizon compensated partially by conturn looped and gravitational radabit
- by capture losses and gravitational redshift.
- Used (non-conserv.) int. energy code (dVH) assuming adiabatic flow

Our Method: Simulations with HARM3D

HARM:

Gammie, McKinney, Toth (2003)

Axisymmetric (2D)

$$\nabla_{\nu}^{*} F^{\mu\nu} = 0$$

Total energy conserving (dissipation \rightarrow heat)

$$\nabla_{\mu} \left(\rho u^{\mu} \right) = 0$$

Modern Shock Capturing techniques (greater accuracy)

$$\nabla_{\mu}T^{\mu}{}_{\nu}=0$$

 $T^{\mu}{}_{\nu} = \left(\rho + u + p + b^2\right) u^{\mu} u_{\nu} + \left(p + \frac{b^2}{2}\right) \delta^{\mu}{}_{\nu} - b^{\mu} b_{\nu}$

- Improvements in HARM3D:
- 3D
- More accurate

(parabolic interpolation in reconstruction and constraint transport)

mag

Assume flow is isentropic when P_{gas} << P

SCN, Krolik, Hawley (2009)

Our Method: Simulations with HARM3D

Improvements:

- 3D
- More accurate (higher effective resolution)
- Stable low density flows

$$\nabla_{\nu}^{*} F^{\mu\nu} = 0$$

- Cooling function:
 - Controls energy loss rate
 - Parameterized by H/R
 - $t_{cool} \sim t_{orb}$
 - Only cool when $T > T_{target}$
 - Passive radiation
 - Radiative flux is stored for selfconsistent post-simulation radiative transfer calculation

$$T(r) = \left(\frac{H}{R}r\Omega\right)^2$$

$$\nabla_{\mu} \left(\rho u^{\mu} \right) = 0$$

$$\nabla_{\mu}T^{\mu}{}_{\nu} = -\mathcal{F}_{\mu}$$

$$T^{\mu}{}_{\nu} = \left(\rho + u + p + b^2\right) u^{\mu} u_{\nu} + \left(p + \frac{b^2}{2}\right) \delta^{\mu}{}_{\nu} - b^{\mu} b_{\nu}$$

SCN, Krolik, Hawley (2009)

GRMHD Disk Simulations

GRMHD Disk Simulations

 $N_r \times N_{\theta} \times N_{\phi}$ t/M 14000 -2 $192 \times 192 \times 64$ 40 -4 20 6 $r \in [r_{hor}, 120M] \ge$ 0 $\theta \in \pi[0.05, 0.95]$ -8 -20 $\phi \in [0, \frac{\pi}{2}]$ -10-40a = 0.9 M12 0 20 40 60 80 100 ×/M

HARM3D vs. dVH $\log(\rho)$

Uncooled

Cooled

Disk Thickness

Accretion Rate

Magnetic Stress

Retained Heat → Stress Deficit
 Stress Continuity through ISCO

Agol & Krolik (2000) model $\Delta \eta = 0.01$ $\Delta \eta / \eta = 7\%$

Our Method: Radiative Transfer

- Full GR radiative transfer
 - GR geodesic integration
 - Doppler shifts
 - Gravitational redshift
 - Relativistic beaming
 - Uses simulation's fluid vel.
 - Inclination angle survey
 - Time domain survey

Observer Frame Luminosity: Angle/Time Average

Assume NT profile for r > 12M.

 $\eta_{H3D} = 0.151$ $\eta_{NT} = 0.143$ $\Delta \eta / \eta = 6 \%$ $\Delta R_{in}/R_{in} \sim 80\%$ $\Delta T_{max}/T_{max} = 30\%$

If disk emitted retained heat: $\Delta \eta / \eta \sim 20$ %

SCN, Krolik, Hawley (2009)

Counter Evidence

Counter Counter Evidence

	Theirs	Our Original	Thin1	Medium1	Thick1	Thin2	Medium2
BH Spin	a=0.0	a=0.9	a=0.0	a=0.0	a=0.0	a=0.0	a=0.0
Resolution	512x120x32	192x192x64	912x160x64	512x160x64	384x160x64	192x192x64	192x192x64
<pre></pre>	π/4	π/2	π/2	π/2	π/2	π/2	π/2
# of Loops	2	1	1	1	1	1	1
Actual H/R	0.05 - 0.07	0.07 - 0.13	0.06	0.10	~0.17	0.087	0.097
N _{cells} per H/r	~60	15 - 30	80	100	40 - 70	60	35
Initial Data	"V. 1"	V. 2	V. 1	V. 1	V. 1	V. 2	V. 2

V.1 : Initial disk starts:
At target thickness
With inner radius = 20M
With p_{max} at r = 35M
V.2 : Initial disk starts
At H/R ~ 0.15
With inner radius = 15M
With p_{max} at r = 25M

Trends in Scaleheight

Steady State and Mass Flow Equilibrium

Resolution of the MRI

$$\lambda_{\rm MRI} \equiv \frac{1}{\sqrt{4\pi\rho\Omega(R)}} b_{\mu}\hat{e}^{\mu}_{(\theta)}$$

$$\frac{\lambda_{\rm MRI}}{\Delta z} > 6$$

Sano et al. (2004)

Accreted Specific Angular Momentum

- Dependence is weak ~ (H/R)^(1/2) instead of "expected" (H/R)²
- Possible Dependence on Initial Field Topology
- Independent of Algorithm (modulo Shafee et al. 2008)
- Still need to transport radiated energy to infinity to find efficiency

- 3D HARM w/ 2 Poloidal Loops Shafee et al. (2008)
 - HARM3D 1 Poloidal Loop

GRMHD (dVH) 1 Poloidal Loop

Beckwith, Hawley, Krolik (2009)

X-ray Variability of Accretion

 X-ray var. always dominated by corona

XRB var. dependent on spectral state

 $P \sim v^{\alpha}$

 $-3 < \alpha < -1$

XRBs: Remillard & McClintock (2006)

AGN: Markowitz et al.(2003)

Variability Models

$$\tau_{\rm a} = \left[\alpha \left(\frac{H}{r} \right)^2 \Omega_{\rm K} \right]^{-1}$$

$$P \sim v^{\alpha}$$

Lyubarskii (1997)

Total variability is a superposition of independent variability from larger radii modulating interior annuli on inflow time scales

Churazov, Gilfanov, Revnivtsev (2001) Outer radius of corona may be cause of (temporal) spectral slope.

• Accretion rate modulation modeled as variability of α

Predict phase coherence at frequencies longer than inflow freq.

Armitage & Reynolds (2003) Machida & Matsumoto (2004) Schnittman et al. (2006) Reynolds & Miller (2009)

• Used accretion rate or stress as dissipation proxies • PLD breaks at local orbital frequency per annulus • $\alpha_{\omega < \Omega} \sim -1$ $\alpha_{\omega > \Omega} \sim -3$ • Composite PLD $\alpha \sim -2$

Our Variability Model Noble & Krolik (2009)

Simulation: a = 0.9M H/R = 0.07 - 0.13 •Assume Thomson Scattering •Optical depth set by $\dot{m} = L/\eta L_E$ •Integrate emission up to photosphere •Include effect of finite light speed •Parameterized by θ, \dot{m}

 $\theta = 41^{\circ}$

 $\dot{m} = 0.003$

Spectra of Annuli

 $F(t,r) = \frac{dL}{dr}(r,t)$

•No PL break at \varOmega •Each annulus $\alpha \sim -2$ •More power at smaller r •No feature at ISCO

$$\hat{F}(\nu, r) = \frac{1}{N} \sum_{n=0}^{N-1} F(t_n, r) e^{-2\pi i \nu t_n}$$

$$P(\nu, r) = \frac{2T}{\bar{F}^2} \left| \hat{F}(\nu, r) \right|^2$$

Origin of Variability

 $\theta = 5^{\circ}$

$$P_{diss}(v,r)/P_{\dot{M}}(v,r)$$

$$P_{inf}(v,r)/P_{diss}(v,r)$$

Epicyclic motion not dissipated

Dissipation not well proxied by M

Observed var. ~ local dissipation var.

Phase Coherence

Possible coherence below inflow frequency (ala Lyubarskii)
 Otherwise dissipation is incoherent over all scales

PLD Exponent vs. Parameter Space

Complete degeneracy!!

Degeneracy Explanation

Degeneracy Explanation

Summary & Conclusions

Closer to ab initio calculations of accretion disk dynamics

Magnetic stress is important within ISCO

- Stress does not vanish with disk height (at least for a = 0)
- Dissipation variability approximates observed coronal variability

What about

... other spins?

... other cooling models?

H = const., H = H(t,r) Hysterisis? State Transitions?

... other initial magnetic field topologies?

... radiation pressure? (ugh)

Near-merger BBH Disks ...

- are magnetized and different from gap-forming hydro disks
 - (magnetic stress can work over extended regions unlike visc.)
- ... most likely will **not** have large gaps

... will most likely be bright and variable before merger