A Numerical Study of Relativistic Fluid Collapse

Final Defense

Scott C. Noble

Co-supervisors: Philip Morrison , Matthew Choptuik

September 5, 2003

Dept. of Physics, UT-Austin and Dept. of Physics & Astronomy, UBC Supported by CIAR, NSERC, CFI/BCKDF

A Numerical Study of Relativistic Fluid Collapse – p.1/34

- Theoretical Model of Non-equilibrium Neutron Stars
- Methods for their Numerical Simulation
- Parameter Space Survey and Dynamical Scenarios
- Type I Critical Behavior
- Type II Critical Behavior
- Conclusion

Dynamic,
 spherically-symmetric
 systems

$$T_{ab} = (\rho_{\circ} + \rho_{\circ}\epsilon + P) u_a u_b + P g_{ab}$$

- Dynamic, spherically-symmetric systems
- Perfect fluid = isotropic fluid
 - Inviscid
 - No heat conduction

$$T_{ab} = (\rho_{\circ} + \rho_{\circ}\epsilon + P) u_a u_b + P g_{ab}$$

$$g_{ab} = -\alpha^2 dt^2 + a^2 dr^2 + r^2 \left(d\theta^2 + \sin^2 \theta d\phi^2 \right)$$

- Dynamic,
 spherically-symmetric
 systems
- Perfect fluid = isotropic fluid
 Inviscid
 - No heat conduction
- Polar-areal metric

$$T_{ab} = (\rho_{\circ} + \rho_{\circ}\epsilon + P) u_a u_b + P g_{ab}$$

$$g_{ab} = -\alpha^2 dt^2 + a^2 dr^2 + r^2 \left(d\theta^2 + \sin^2 \theta d\phi^2 \right)$$

 $G_{ab} = 8\pi T_{ab}$

- Dynamic,
 spherically-symmetric
 systems
- Perfect fluid = isotropic fluid
 Inviscid
 - Invisciu
 No boot conduct
 - No heat conduction
- Polar-areal metric
- Time-dependent spacetime governed by Einstein's Eq.

Fluid Equations of Motion

Local Conservation of Baryons Equation : $\nabla_{\mu}J^{\mu} = 0$

Local Conservation of Energy Equation : $\nabla_{\mu}T^{\mu}{}_{\nu} = 0$

$$\frac{\partial}{\partial t} \begin{bmatrix} D \\ S \\ \tau \end{bmatrix} + \frac{1}{r^2} \frac{\partial}{\partial r} \begin{pmatrix} r^2 \frac{\alpha}{a} \begin{bmatrix} Dv \\ Sv + P \\ v(\tau + P) \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 0 \\ \Sigma \\ 0 \end{bmatrix}$$
$$\mathbf{q} \qquad \mathbf{f} \qquad \mathbf{\psi}$$

 $v = \frac{au^r}{\alpha u^t}$, $W^2 = \frac{1}{1 - v^2}$, $D = a\rho_0 W$, $S = (\rho + P)W^2 v$, $\tau = S/v - D - P$

• $\Sigma = \Sigma(\alpha, a, \mathbf{q}) \neq \Sigma(\alpha, a, \mathbf{q}, \partial_r \mathbf{q}, \partial_t \mathbf{q}) \Rightarrow \mathsf{EOM} \text{ are hyperbolic!}$

■ Relativistic Ideal gas Equation of State : $P = (\Gamma - 1) \rho_{\circ} \epsilon$, $\Gamma = constant$

Metric Equations

Slicing Condition :

$$\frac{\alpha'}{\alpha} = a^2 \left[4\pi r \left(Sv + P \right) + \frac{1}{2r} \left(1 - 1/a^2 \right) \right]$$

Hamiltonian Constraint :

$$\frac{a'}{a} = a^2 \left[4\pi r \left(\tau + D \right) - \frac{1}{2r} \left(1 - 1/a^2 \right) \right]$$

Mass Aspect Function :

$$m(r,t) = \frac{r}{2} \left(1 - 1/a^2\right)$$

Mass of Spherical Shell :

$$\frac{dm}{dr} = 4\pi r^2 \left(\tau + D\right)$$

 Tolman-Oppenheimer-Volkoff (TOV) solutions:
 Static, spherical solutions to Einstein's Eq. w/ perfect fluid;

- Tolman-Oppenheimer-Volkoff (TOV) solutions:
 Static, spherical solutions to Einstein's Eq. w/ perfect fluid;
- **Parameterized by** $\rho_c = \rho_o(0,0)$

- Tolman-Oppenheimer-Volkoff (TOV) solutions:
 Static, spherical solutions to Einstein's Eq. w/ perfect fluid;
- **Parameterized by** $\rho_c = \rho_o(0,0)$
- Stable & Unstable Solutions

- Tolman-Oppenheimer-Volkoff (TOV) solutions:
 Static, spherical solutions to Einstein's Eq. w/ perfect fluid;
- **Parameterized by** $\rho_c = \rho_o(0,0)$
- Stable & Unstable Solutions
- Isentropic State Equations: $P = K ρ_{\circ}^{\Gamma} , P = (\Gamma 1) ρ_{\circ} ε$ $\Gamma = 2$

- Solve TOV Eq.'s $(\dot{g}_{\mu\nu} = \dot{T}_{\mu\nu} = v = 0)$
- Add in-going coordinate velocity: $U(\tilde{r} = r/R_*) = \frac{u^r}{u^t} = p \tilde{r} \left(\tilde{r}^2 - b\right)$

Match to U = 0

- Solve TOV Eq.'s $(\dot{g}_{\mu\nu} = \dot{T}_{\mu\nu} = v = 0)$
- Add in-going coordinate velocity: $U(\tilde{r} = r/R_*) = \frac{u^r}{u^t} = p \tilde{r} \left(\tilde{r}^2 - b\right)$

• Match to U = 0

• Solve ($\alpha' = ...$) and (a' = ...) and find $v = aU/\alpha$

Tune to vary amount of kinetic energy

Initial Data : TOV Solution

Initial Data : TOV + In-going Velocity

Minimally-Coupled Massless Scalar Field

Einstein-massless-Klein-Gordon (EMKG) scalar field

$$T_{ab}^{\text{scalar}} = \nabla_a \phi \nabla_b \phi - \frac{1}{2} g_{ab} \left(\nabla_c \phi \nabla^c \phi \right)$$

 $\nabla^a \nabla_a \phi = 0$

Coupled only through the geometry

$$T_{ab} = T_{ab}^{\text{scalar}} + T_{ab}^{\text{fluid}} \quad , \quad G_{ab} = 8\pi T_{ab}$$

$$\frac{dm}{dr} = \frac{dm_{\text{scalar}}}{dr} + \frac{dm_{\text{fluid}}}{dr}$$

High-resolution shock-capturing methods:

- Conservative, finite volume methods, e.g. solves differences of integral equations;
- Shocks propagate at correct speeds;
- Resolve shocks with very little Gibbs phenomenon near discontinuities;
- 2^{nd} -order accuracy in smooth regions;

Adaptive, non-uniform discretization:

- $\Delta r(r) \propto e^r \rightarrow {\rm concentrates \ points \ near \ origin}$;
- Automatically adds points near origin when needed;

Advances in Numerical Techniques I

Primitive Variable Calculation:

$$D = a\rho_{\circ}W$$

•
$$S = (\rho_{\circ} + \rho_{\circ}\epsilon + P)W^2v$$

$$\tau \quad = \quad S/v - D - P$$

• Solve for
$$P, v, \rho_{\circ}$$

 \rightarrow Finding minimum of non-linear function

•
$$\operatorname{Err}(w) = \ln \left[\left(w_{\operatorname{calc}} - w_{\operatorname{exact}} \right) / w_{\operatorname{exact}} \right]$$

 $\operatorname{Err}(P), \quad \operatorname{Err}(v), \quad \operatorname{Err}(\rho_{\circ})$

Advances in Numerical Techniques II

New formulation of fluid equations of motion:

$$\Pi=\tau+S \quad,\quad \Phi=\tau-S$$

• Formulation improves accuracy of $\tau \pm S$ since $\tau \to |S|$ as $|v| \to 1$

Smoothing about sonic point in Type II collapse:

- Instability sets in as expansion shock develops;
- Dissipation subdues instability at discontinuity;
- Smoothing = Point-wise, nearest-neighbor averaging;

Parameter Space Survey

- Previous work:
 - S. Shapiro and Teukolsky (1980)
 - Gourgoulhon (1992)
 - Novak (2001)
- Parameterized by v_{\min} and ρ_c
- Dynamical scenarios:
 - Normal Oscillations (O)
 - Shock/Bounce/Oscillations (SBO)
 - Shock/Bounce/Dispersal (SBD)
 - Shock/Bounce/Collapse (SBC)
 - Prompt Collapse (PC)

Normal Oscillations (O)

- All stars, small v_{\min}
- Perturbed stable solution
- Normal, radial oscillations

Normal Oscillations (O)

- **9** All stars, small v_{\min}
- Perturbed stable solution
- Normal, radial oscillations
- Movies: $\ln (\rho_{\circ}(r,t)), \quad \rho_{\circ}(r,t), \quad v(r,t)$

Shock/Bounce/Oscillations (SBO)

- Moderately compact stars, intermediate v_{min}
- Bounce, Core's Rebound \rightarrow Mass Ejection
- Highly-damped oscillations about sparser star

Shock/Bounce/Oscillations (SBO)

- Moderately compact stars, intermediate v_{min}
- Bounce, Core's Rebound \rightarrow Mass Ejection
- Highly-damped oscillations about sparser star
- Movies:

 $\ln(
ho_{\circ}) \ \& \ \ln(\epsilon) \ \ \text{vs.} \ \{\ln(r/R_{*}), t\},$ $v \ \ \text{vs.} \ \ \{\ln(r/R_{*}), t\}$

Shock/Bounce/Dispersal (SBD)

- **9** Sparse stars, small—to—large v_{\min}
- $\textbf{ Bounce, Core's Rebound} \rightarrow \textbf{Dispersal}$
- Negligible mass left behind

Shock/Bounce/Dispersal (SBD)

- Sparse stars, small—to—large v_{\min}
- Sounce, Core's Rebound \rightarrow Dispersal
- Negligible mass left behind
- Movies:

$$egin{array}{lll} \ln{(
ho_\circ)} & \mathrm{vs.} & \left\{ \ln{(r/R_*)}, t
ight\} ext{,} \ v & \mathrm{vs.} & \left\{ \ln{(r/R_*)}, t
ight\} \end{array}$$

Shock/Bounce/Collapse (SBC)

- Sparse—to—semi-dense stars, medium—to—large v_{min}
- Bounce → Mass Ejection
- **•** Black hole formation, $M_{\rm BH} < M_*$

Shock/Bounce/Collapse (SBC)

- Sparse—to—semi-dense stars, medium—to—large v_{min}
- Bounce → Mass Ejection
- **9** Black hole formation, $M_{\rm BH} < M_*$
- Movies:

a(r,t) , $\alpha(r,t)$, $\rho_{\circ}(r,t)$, v(r,t) $r\in [0,R_{*}]$

Prompt Collapse (PC)

- Nearly all stars, large v_{\min}
- No mass ejection
- Black hole formation, $M_{\rm BH} \simeq M_*$

Prompt Collapse (PC)

- Nearly all stars, large v_{\min}
- No mass ejection
- Black hole formation, $M_{\rm BH} \simeq M_*$
- Movies:

a(r,t) , $\alpha(r,t)$, $\rho_{\circ}(r,t)$, v(r,t) $r\in [0,R_{*}]$

Type I Critical Phenomena

- Hawley & Choptuik (2000): Boson Stars
- Vary *p*: $\phi(r,0) = p \exp\left(-\left[r - r_{\circ}\right]^{2} / \Delta^{2}\right)$
- Large $p \rightarrow$ BLACK HOLE
- Small $p \rightarrow NO$ BLACK HOLE (e.g. perturbed star)
- Tuning away the only unstable mode

$$\Rightarrow T_{\circ} \propto \frac{1}{\omega_{Ly}} \ln |p - p^*|$$

Type I Critical Phenomena

$\rho_c = 0.15$

- Hawley & Choptuik (2000): Boson Stars
- Vary *p*: $\phi(r,0) = p \exp\left(-\left[r - r_{\circ}\right]^2 / \Delta^2\right)$
- **•** Large $p \rightarrow \mathsf{BLACK} \mathsf{HOLE}$
- Small $p \rightarrow NO$ BLACK HOLE (e.g. perturbed star)
- Tuning away the only unstable mode

$$\Rightarrow T_{\circ} \propto \frac{1}{\omega_{Ly}} \ln |p - p^*|$$

Movies:

dm/dr , $\ln(dm/dr)$ (wide view) , $\ln(dm/dr)$ (closeup)

Type I: Anomalous Case $\rho_c = 0.197$

Movie:

dm/dr

Type I: Anomalous Case $\rho_c = 0.27$

Movies:

dm/dr , $\ln(dm/dr)$

Critical Solution $\stackrel{?}{=}$ **Unstable TOV** ($\rho_c = 0.197$)

Scaling Behavior

Expected scaling relationship:

$$\Rightarrow T_{\circ} \propto \frac{1}{\omega_{Ly}} \ln |p - p^*|$$

Scaling Behavior

Expected scaling relationship:

$$\Rightarrow T_{\circ} \propto \frac{1}{\omega_{Ly}} \ln |p - p^*|$$

Type II Critical Phenomena: Motivation

- **J**. Novak (2001):
 - "Ideal-gas" EOS: $P = (\Gamma 1) \rho_{\circ} \epsilon$, $\Gamma = 2$
 - Tuning star's init. vel. \rightarrow Type II critical behavior;
 - $M_{BH} \propto |p-p^*|^\gamma$ with $\gamma \simeq 0.52$
- Neilsen and Choptuik (2000), Brady et al. (2002)
 - Studied ultra-relativistic fluid collapse;
 - A limit of "ideal-gas" case where $\rho \equiv (1 + \epsilon) \rho_{\circ} \simeq \rho_{\circ} \epsilon$
 - $P = (\Gamma 1) \rho$, only EOS to admit CSS soln's;
 - For Γ = 2, $\gamma \simeq 0.95 \pm 0.02$
- Neilsen and Choptuik (2000)
 - For $\Gamma = 1.4$: Ideal-gas Type II Sol'n. = Ultra-rel. Type II Sol'n.

Type II Critical Phenomena: Motivation

- **J**. Novak (2001):
 - "Ideal-gas" EOS: $P = (\Gamma 1) \rho_{\circ} \epsilon$, $\Gamma = 2$
 - Tuning star's init. vel. \rightarrow Type II critical behavior;
 - $M_{BH} \propto |p-p^*|^{\gamma}$ with
- $\gamma \simeq 0.52$ \checkmark
- Neilsen and Choptuik (2000), Brady et al. (2002)
 - Studied ultra-relativistic fluid collapse;
 - A limit of "ideal-gas" case where $\rho \equiv (1+\epsilon)\,\rho_\circ \simeq \rho_\circ \epsilon$
 - $P = (\Gamma 1) \rho$, only EOS to admit CSS soln's;
 - For $\Gamma = 2$,

$$\simeq 0.95 \pm 0.02$$

- Neilsen and Choptuik (2000)
 - For $\Gamma = 1.4$: Ideal-gas Type II Sol'n. = Ultra-rel. Type II Sol'n.

Critical Regime of Parameter Space

• $T_{\max} \equiv \text{Global Max.}(T^a{}_a)$

- Anticipated subcritical scaling behavior: $T_{\max} \propto |p - p^*|^{-2\gamma}$ $\gamma = 1/\omega_{Ly}$

CSS Solutions of Ideal-gas and Ultra-rel.

- Comparison of dimensionless quantities:
 - $\omega \equiv 4\pi r^2 a^2
 ho$

•
$$a = \sqrt{g_{rr}}$$

• $v = \frac{au^r}{\alpha u^t}$ = Eulerian Velocity (u^{μ} = Fluid's 4-velocity)

Star:
$$\rho_c = 0.05$$

Ultra-relativistic fluid:
 Initial profile = Gaussian

Scaling of T_{max} : Dependence on Fluid's Floor

γ	p^*	
0.9427	0.46875367383	
0.9436	0.46875350285	
0.9470	0.4687516089	

- Floor used to prevent $v \ge 1$, $P, \rho_{\circ} < 0$
- No significant effect;

Scaling of T_{max} : Different "Families"

γ	p^*	
0.9427	0.46875367383	
0.9423	0.42990315097	
0.9187	0.4482047429836	

- Suggests scaling is fairly independent of:
 - Functional form of perturbation;
 - Initial star configuration;

Scaling of T_{max} **: Different Flux Functions**

γ	p^*	
0.9427	0.46875367383	
0.9399	0.46876822118	

- Suggests scaling is independent of flux formula;
- Able to tune further with "Smoothed" Roe solver;

Comparison of Scaling Parameters

Noble and Choptuik	Ideal gas	$\gamma = 0.94 \pm 0.01$
Noble and Choptuik	Ultra-relativistic fluid	$\gamma = 0.9747$
Neilsen and Choptuik (2000) and Brady et al. (2002)	Ultra-relativistic fluid	$\gamma = 0.95 \pm 0.02$
Novak (2001)	Ideal gas	$\gamma \simeq 0.52$

Conclusion

- Parameter Space Survey:
 - Illuminated possible dynamical scenarios
 - Provided a backdrop for critical phenomena studies
- **J** Type I Behavior:
 - $\scriptstyle \bullet \,$ Critical solutions \simeq perturbed unstable TOV solutions
 - Found anticipated scaling behavior $T_{\circ} \propto \frac{1}{\omega_{Ly}} \ln |p p^*|$
 - $\omega_{Ly} \propto
 ho_c^*$
- Type II Behavior:
 - $\scriptstyle \bullet \,$ Ideal gas critical solution \simeq ultra-relativistic critical solution
 - $\gamma_{\rm ideal} \simeq \gamma_{\rm ultra-rel}$

Future Work

- Type I Phenomena:
 - ${\scriptstyle {\rm \bullet}}\,$ Compare results to ω_{Ly} of unstable TOV growing modes
 - Axially-symmetric collapse, effect of rotation
 - How $\omega_{Ly}(\rho_c^*)$ varies with Γ
 - Dependence on EOS
- Type II Phenomena:
 - Realistic equation of state
 - Axially-symmetric critical behavior
 - Develop general adaptive mesh refinement methods for relativistic fluids

- NSERC = National Sciences and Engineering Research Council of Canada
- CIAR = Canadian Institute for Advance Research
- CFI = Canada Foundation for Innovation
- BCKDF = British Columbia Knowledge Development Fund

Back to Title page