The Origins, Applications and Mysteries of the Fluorescent Iron Line

Scott C. Noble

November 3, 2004

CTA, Physics Dept., UIUC

The Origins, Applications and Mysteries of the Fluorescent Iron Line – p.1/29

Outline

- Who? When? How? (history)
- What? (fluorescence)
- Where? (origins, disk models)
- Why? (spacetime/disk probing, reverberation)
- Wassup? (problems...)
- Really? (resolutions...)
- Won't he ever stop talking? (conclusions...)

First Broad Iron Line

Cyg X-1

- Obs. by Barr, White, Page (1985) w/ EXOSAT
- Peak at 6.2keV
- EW $\sim 120 \mathrm{keV}$
- \blacksquare Variability $\sim t_{\rm orb}$
- Interpreted by Fabian et al.
 (1989)

First Broad Iron Line from AGN

<u>MCG-6-30-15</u>

- Seyfert Type-1
- Nandra, Pounds, Stewart, Fabian, Rees (1989)
- 2-day EXOSAT observation
- Not interpreted as relativistic broadening

ASCA Revolution

MCG-6-30-15

Tanaka et al. (1995)

ASCA 4-day observation

Beginning of detailed matching to models

X-ray Observatories

Table 1

Observatories and instruments that have been important for studies of X-ray reflection from black hole sources

Observatory (lifetime)	Instrument	Area (cm ²)	Band pass (keV)	Resolution $(E/\Delta E \text{ at } 6 \text{ keV})$
EXOSAT (ESA)	GS	100	2–20	10
May 1983-April 1986	ME	1600	1–50	10
Ginga (Japan) February 1987–November 1991	LAC	4000	1.5–37	10
ASCA (Japan+NASA)	GIS	2×50 @ 1 keV	0.8–11	10
February 1993-March 2001	SIS	$2 \times 100 @ 6 \text{ keV}$	0.5-10	50
RXTE (NASA)	PCA	6500	2-60	10
December 1995-present	HEXTE	2 imes 800	15-250	
BeppoSAX (IT+NL)	LECS	22 @ 0.28 keV	0.1–10	8
April 1996–April 2002	MECS	150 @ 6 keV	1.3–10	8
	PDS	600 @ 80 keV	15-300	-
Chandra (NASA)	ACIS	340 @ 1 keV	0.2–10	50
July 1999-present	HETG	59@1 keV	0.4–10	200
XMM-Newton (ESA)	EPIC-MOS	$2 \times 920 @ 1 \text{ keV}$	0.2–12	50
December 1999–present	EPIC-PN	1220@1 keV	0.2–12	50

[Reynolds & Nowak (2003)]

The Origins, Applications and Mysteries of the Fluorescent Iron Line - p.6/29

$K\alpha$ **Fluorescence**

X-ray Reflection Spectrum

[Reynolds, Ph.D. Thesis (1996)]

- Incident Flux: $F_N \propto E^{-\Gamma}$ (where $\Gamma = 2$ here);
- Cosmic Abundances:
 H+, He++, neutral metals;

•
$$K\alpha = 6.4 - 6.7 \text{ keV}$$

(Fe_I to Fe_{XXV});

•
$$K\beta = 7.1 \text{ keV} \text{ (Fe}_{\text{I}}\text{)};$$

• Abs.Edge = 7.1 - 7.8 keV (Fe_I to Fe_{XXV});

Accretion Disk Models

Accretion Disk Models

- Thermal, black-body spectrum from disk;
- Inverse Compton (IC) scattering up-scatters thermal γ 's into power-law X-ray;
- X-rays $\rightarrow K\alpha$ in disk;
- IC cut-off at $E \gtrsim 100 \text{keV}$ when $E_{\gamma} \simeq E_{e^-} \Rightarrow T_{\text{corona}}$
- IC cools corona

Corona Models

[Nowak astro-ph/0207624]

Types of Accretors

	AGN	GBHC's	
$\mathbf{M} =$	$10^6 - 10^9 M_{\odot}$	$1-100 M_{\odot}$	
$T \propto M^{-1/4} \sim$	$10^5 - 10^6 K$	$10^{7}K$	
Spectra	Opt./UV BB + P-L tail	X-ray BB + P-L tail	
$t_{ m dyn} \sim$	minutes to hours	$t_{\rm dyn} = {\rm milliseconds}$	
$t_{\rm obs} \sim 1 {\rm ks} \sim$	$t_{ m therm}$	$t_{ m visc}$	

 Thin disk, cosmic abundances...

The Origins, Applications and Mysteries of the Fluorescent Iron Line - p.12/29

 Thin disk, cosmic abundances...

• BH spin: $0 < a \le 0.998$

- Thin disk, cosmic abundances...
- BH spin: $0 < a \le 0.998$
- Inclination angle: i

- Thin disk, cosmic abundances...
- BH spin: $0 < a \le 0.998$
- Inclination angle: i
- Emissivity (β): $I_e \propto r_e^{-\beta}$

- Thin disk, cosmic abundances...
- **BH spin:** $0 < a \le 0.998$
- Inclination angle: i
- Emissivity (β): $I_e \propto r_e^{-\beta}$
- \checkmark Ionization Parameter ξ

Relativistic Effects

Dependence on BH Spin

Dependence on Inclination

Dependence on Emissivity

Dependence on Ionization

Appearance of Disk's Temperature

$$i = 85^{\circ}$$
 $i = 45^{\circ}$ $i = 5^{\circ}$

Appearance of Disk's Temperature

$$i = 85^{\circ}$$
 $i = 45^{\circ}$ $i = 5^{\circ}$

Reverberation

$\mathbf{a}\,=\,0.998\;,\;\mathbf{i}\,=\,30^\circ\;,\;\mathbf{h_{flare}}=7.5r_g$

[Reynolds et al. (1999)], [Young & Reynolds (2000)], [Young (2003)]

Reverberation

 $\mathbf{a}\,=\,\mathbf{0.998}\;,\;\mathbf{i}\,=\,\mathbf{30^\circ}\;,\;\mathbf{h_{flare}}=\mathbf{10r_g}$

[Reynolds http://constellation.gsfc.nasa.gov]

Variability Problem

- $F_{K\alpha}$ varies without F_{cont} variation
 - Mrk 841, Seyfert-1, $t_{\rm var} \sim 10 {\rm hours}$, [Petrucci et al. (2002)]
- F_{cont} varies without $F_{K\alpha}$
 - MCG-6-30-15, Seyfert-1, [Vaughan & Fabian (2004)]
- $F_{K\alpha}$ varies with F_{cont} (kinda):
 - IRAS 18325-5926, Seyfert-2, highly-ionized disk,
 [Iwasawa et al. (2004)]
- No long-term EW/F_{cont} correlation:
 - Sampling of 7 Seyfert-1 AGN, [Markowitz, Edelson, Vaughan (2003)]
 - Short-term (30 days) and Long-term (1000 days) RXTE obs.'s
 - Correlations between Γ and $F_{\rm cont}$

$F_{K\alpha}$ Variation

Mrk 841, Seyfert-1 [Petrucci et al. (2002)]

F_{cont} Variation

MCG-6-30-15, Seyfert-1

[Vaughan & Fabian (2004)]

Variation Resolutions: Disk Properties

- $F_{K\alpha}$ diminished in Radio-loud AGN
- Anti-correlation with increasing ionization effects [Ballantyne et al. (2002)];
- Photon Bubble Instability, [Gammie (1998)], [Ballantyne et al. (2004)]
 - ${}_{ullet}$ varying density structure $\sim t_{\rm dyn}$;
 - can explain Mrk 841 variability;
- Disk asymmetries \rightarrow modulations from orbit w/o modulating source
 - Spiral density/ionization profile [Karas et al. (2001), Hartnell & Blackman (2002)];
 - MHD Turbulence (non-rel., ZEUS, a = 0) [Armitage & Reynolds (2003)];
 - $F_{K\alpha}$ from material within ISCO [Reynolds & Begelman (1997)], [Reynolds et al. (2004)];
 - Ang. Mom. Transfer from material within ISCO [Gammie (1999)], [Reynolds et al. (2004)];

Variation Resolutions: Source Properties

- [Miniutti & Fabian (2004)]
- Source asymmetry \rightarrow disk bias;
- Rel. effects magnify bias;
- a = 0.998

Variation Resolutions: Source Geometry

Variation Resolutions: Source Geometry

- [Iwasawa, Miniutti & Fabian (astro-ph/0409293)]
- Rotating point source, $r = 6r_g$, $h = 9r_g$, $i = 20^\circ$, a = 0.998
- $M_{\rm sim} = 1 5 \times 10^7 M_{\odot}$
- $M_{\rm H\alpha} \simeq 1.68 \pm 0.33 \times 10^7 M_{\odot}$
- NGC 3516 Seyfert-1

Conclusions and the Future

- better spectroscopy + better models = real measurements
- more sophisticated models = more possibilities

- XEUS (ESA), Constellation-X (NASA), MAXIM
 - Measure iron-line for furthest known AGN
 - Resolve inner horizon
 - Greater time-resolved spectroscopy