Critical Phenomena and Driven Neutron Star Collapse

Scott C. Noble

with

Matthew Choptuik, UBC

October 22, 2003

CTA, Physics Dept., UIUC

- Introduction to Critical Phenomena
- Example: Primordial Black Holes and Crit. Phen.
- Theoretical Model of Non-equilibrium Neutron Stars
- Parameter Space Survey and Dynamical Scenarios
- Type I & II Critical Behavior
- Conclusions

A Decade of Critical Phenomena

- M. W. Choptuik "Universality and Scaling in Gravitational Collapse of a Massless Scalar Field", PRL 70, 1, January 4, 1993.
- Crit. Phen. observed anywhere you have (BH)/(No BH);
- General feature of gravitational collapse, observed in many different matter models (even w/o matter: Gravitational Waves!)
- "Tuning" of initial data to Critical Solution
 → eliminate the 1 unstable mode from solution;
- Some Crit. Solutions are "Naked Singularities"!
- Reviews: C. Gundlach, Physics Reports, 376, 339 (2003),
 C. Gundlach, *Living Reviews*, Irr-1999-4

Systems Exhibiting Critical Phenomena

Matter	Туре	Collapse	Critical	Perturbations
		simulations	solution	of crit. soln.
Perfect fluid $p = k\rho$	П	[69, 142]	CSS [69, 138, 142]	[138, 128, 93, 97]
Real scalar field:				
– massless, min. coupled	Π	[47, 48, 49]	DSS [89]	[90, 139]
– massive	I	[32]	oscillating [165]	
	Π	[49]	DSS [104, 99]	[104, 99]
- conformally coupled	Π	[48]	DSS	
- 4+1	Π	[16]		
- 5+1	Π	[77]		
Massive complex scalar field	I (II)	[110]	[165]	[110]
Massless scalar electrodynamics	Π	[117]	DSS [99]	[99]
2-d sigma model				
- complex scalar ($\kappa = 0$)	Π	[50]	DSS [90]	[90]
- axion-dilaton ($\kappa = 1$)	Π	[101]	CSS [67, 101]	[101]
- scalar-Brans-Dicke ($\kappa > 0$)	Π	[136, 133]	CSS, DSS	
– general κ including $\kappa < 0$	Π		CSS, DSS [115]	[115]
SU(2) Yang-Mills	I	[53]	$\mathbf{static} \ [12]$	[131]
	Π	[53]	DSS [92]	[92]
	"ПГ"	[55]	colored BH $[17, 173]$	[168, 172]
SU(2) Skyrme model	I	[19]	static [19]	[19]
	Π	[22]	static [22]	
SO(3) Mexican hat	Π	[134]	DSS	
Vlasov	I?	[160, 148]	[141]	

Туре І	Туре II
Discontinuous "Phase" Transition	Continuous "Phase" Transition
$M_{BH} \to M^* > 0$	$M_{BH} ightarrow 0$
Static or Oscillatory	Cont. or Discretely Self-similar
$t_{ m hang} \propto p-p^* ^{-\gamma}$	$M_{\rm BH} \propto p - p^* ^{\gamma}, T_{\rm max} \propto p - p^* ^{-2\gamma}$

Black Hole Mass Scaling

Cont. and Discrete Self-Similarity of Type-II

 $\mathcal{X} = \ln\left(R/T\right)$

CSS:

•
$$Z^{\star}\left(\mathcal{X}, \tau\right) = Z^{\star}\left(\mathcal{X}\right)$$

DSS:

•
$$Z^{\star}(\mathcal{X},\tau) = Z^{\star}(\mathcal{X},\tau+\Delta)$$

$$l \propto |p - p^{\star}|^{\gamma}$$
 , $\gamma = 1/\omega$

 $\Rightarrow M_{\rm BH} \propto R_{\rm BH} \propto l$

 $\Rightarrow \mathcal{R} \propto l^{-2}$

Ex.: Primordial Black Holes (PBH)

Niemeyer & Jedamzik, PRD, 59, (1999)

 ${\scriptstyle \bullet}$ Inhomogeneities in the early universe ${\scriptstyle \bullet}(M,R) \sim (M,R)_{\rm horizon} \ , \ P = \rho/3$

 $\bullet \delta = \Delta M / M_{\rm h}$

- $\bullet \delta < \delta_c$ Dispersal
- $\bullet \delta > \delta_c$ Collapse to PBH

Ex.: Primordial Black Holes (PBH)

Niemeyer & Jedamzik, PRD, 59, (1999)

 ${\scriptstyle \bullet}$ Inhomogeneities in the early universe ${\scriptstyle \bullet}(M,R) \sim (M,R)_{\rm horizon} \ , \ P = \rho/3$

 $\bullet \delta = \Delta M / M_{\rm h}$

- $\bullet \delta < \delta_c$ Dispersal
- $\delta > \delta_c$ Collapse to PBH

• $M_{\rm PBH} \propto (\delta - \delta_c)^{\gamma}$

Ex.: Primordial Black Holes (PBH)

Niemeyer & Jedamzik, PRD, 59, (1999)

 ${\scriptstyle \bullet}$ Inhomogeneities in the early universe ${\scriptstyle \bullet}(M,R) \sim (M,R)_{\rm horizon} \ , \ P = \rho/3$

 $\bullet \delta = \Delta M / M_{\rm h}$

- $\delta < \delta_c$ Dispersal
- $\bullet \delta > \delta_c$ Collapse to PBH
- $M_{\rm PBH} \propto (\delta \delta_c)^{\gamma}$
- $P(\delta) \propto \exp\left(-\delta^2/\sigma^2\right)$
 - $\Rightarrow \delta_{\rm PBH} \simeq \delta_c$
 - $\Rightarrow M_{\rm PBH} \rightarrow 0$ at any epoch

Diffuse Hawking Radiation

- $T \simeq 6 \times 10^{-8} \left(\frac{M_{\odot}}{M}\right) K$, $\frac{dM}{dt} = -\frac{\alpha(M)}{M^2}$
- $M_{PBH}^{\rm evap} < 5 \times 10^{14} {\rm g}$ if formed at $t \approx 0$
- Page, PRD 13, 198 (1976)
 - $M_{\rm PBH} \simeq 5 \times 10^{14} {\rm g}$, $T \simeq 20 {\rm MeV}$
 - $L \simeq 2.5 \times 10^{17} \mathrm{erg/s}$
 - ν 's (45%), e^{\pm} 's (45%), γ 's (9%), gravitons (1%)
 - $\frac{dn}{d(M_i/M_{\star})} = 10^4 \text{pc}^{-3} (M_i/M_{\star})^{-\beta}$
- Page & Hawking, ApJ, 206, 1 (1976) :
 - $\Omega_{\rm PBH} < 10^{-7}$
- γ-ray excess in Galactic Halo
 (E. L. Wright, ApJ, 459, 487 (1996))

Diffuse Hawking Radiation

EGRET, Compton γ -ray Obs., http://tigre.ucr.edu/halo/halo.html

- $T \simeq 6 \times 10^{-8} \left(\frac{M_{\odot}}{M}\right) K$, $\frac{dM}{dt} = -\frac{\alpha(M)}{M^2}$
- $M_{PBH}^{\rm evap} < 5 \times 10^{14} {\rm g}$ if formed at $t \approx 0$
 - Page, PRD 13, 198 (1976)

× 10⁻⁶ 10

8

- $M_{\rm PBH} \simeq 5 \times 10^{14} {\rm g}$, $T \simeq 20 {\rm MeV}$
- $L \simeq 2.5 \times 10^{17} \mathrm{erg/s}$
- ν 's (45%), e^{\pm} 's (45%), γ 's (9%), gravitons (1%)
- $\frac{dn}{d(M_i/M_{\star})} = 10^4 \text{pc}^{-3} (M_i/M_{\star})^{-\beta}$
- Page & Hawking, ApJ, 206, 1 (1976) :
 - $\Omega_{\rm PBH} < 10^{-7}$
- γ-ray excess in Galactic Halo
 (E. L. Wright, ApJ, 459, 487 (1996))

Sudden Hawking Evaporation

At $M \sim 10^{10} - 10^{13}$ g, Hawking Radiation \rightarrow Fireball: (D. B. Cline, Physics Reports, **307**, 173 (1998); D. B. Cline, et al., Astropart. Phys., **18**, 531 (2003))

- $\blacksquare~E\sim5\times10^{34}{\rm erg}$, $T\sim T_{\rm QGP}\sim160{\rm MeV}$, $t_{\rm rise}\sim1{\rm ms}$, $t\sim100{\rm ms}$, $R\sim10^9{\rm cm}$
- Anisotropy of Short & Hard GRB \Rightarrow Galactic Origin!

Sudden Hawking Evaporation

At $M \sim 10^{10} - 10^{13}$ g, Hawking Radiation \rightarrow Fireball: (D. B. Cline, Physics Reports, **307**, 173 (1998); D. B. Cline, et al., Astropart. Phys., **18**, 531 (2003))

- $E \sim 5 \times 10^{34} \mathrm{erg}$, $T \sim T_{\mathrm{QGP}} \sim 160 \mathrm{MeV}$, $t_{\mathrm{rise}} \sim 1 \mathrm{ms}$, $t \sim 100 \mathrm{ms}$, $R \sim 10^9 \mathrm{cm}$
- Anisotropy of Short & Hard GRB \Rightarrow Galactic Origin!

Sudden Hawking Evaporation

D.B. Cline et al. | Astroparticle Physics 18 (2003) 531–538

BATSE GRB EVENTS (SINCE APRIL 21, 1991 TILL MAY 26, 2000)

At $M \sim 10^{10} - 10^{13}$ g, Hawking Radiation \rightarrow Fireball: (D. B. Cline, Physics Reports, **307**, 173 (1998); D. B. Cline, et al., Astropart. Phys., **18**, 531 (2003))

- $E \sim 5 \times 10^{34} \text{erg}$, $T \sim T_{\text{QGP}} \sim 160 \text{MeV}$, $t_{\text{rise}} \sim 1 \text{ms}$, $t \sim 100 \text{ms}$, $R \sim 10^9 \text{cm}$
- Anisotropy of Short & Hard GRB \Rightarrow Galactic Origin!

Fluid Equations of Motion

Local Conservation of Baryons Equation : $\nabla_{\mu}J^{\mu} = 0$

Local Conservation of Energy Equation : $\nabla_{\mu}T^{\mu}{}_{\nu} = 0$

$$\frac{\partial}{\partial t} \begin{bmatrix} D \\ S \\ \tau \end{bmatrix} + \frac{1}{r^2} \frac{\partial}{\partial r} \begin{pmatrix} r^2 \frac{\alpha}{a} \begin{bmatrix} Dv \\ Sv + P \\ v(\tau + P) \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 0 \\ \Sigma \\ 0 \end{bmatrix}$$
$$\mathbf{q} \qquad \mathbf{f} \qquad \mathbf{\psi}$$

 $v = \frac{au^r}{\alpha u^t}$, $W^2 = \frac{1}{1 - v^2}$, $D = a\rho_0 W$, $S = (\rho + P)W^2 v$, $\tau = S/v - D - P$

• $\Sigma = \Sigma(\alpha, a, \mathbf{q}) \neq \Sigma(\alpha, a, \mathbf{q}, \partial_r \mathbf{q}, \partial_t \mathbf{q}) \Rightarrow \mathsf{EOM} \text{ are hyperbolic!}$

■ Relativistic Ideal gas Equation of State : $P = (\Gamma - 1) \rho_{\circ} \epsilon$, $\Gamma = constant$

Metric Equations

Slicing Condition :

$$\frac{\alpha'}{\alpha} = a^2 \left[4\pi r \left(Sv + P \right) + \frac{1}{2r} \left(1 - 1/a^2 \right) \right]$$

Hamiltonian Constraint :

$$\frac{a'}{a} = a^2 \left[4\pi r \left(\tau + D \right) - \frac{1}{2r} \left(1 - 1/a^2 \right) \right]$$

Mass Aspect Function :

$$m(r,t) = \frac{r}{2} \left(1 - 1/a^2\right)$$

Mass of Spherical Shell :

$$\frac{dm}{dr} = 4\pi r^2 \left(\tau + D\right)$$

 Tolman-Oppenheimer-Volkoff (TOV) solutions:
 Static, spherical solutions to Einstein's Eq. w/ perfect fluid;

- Tolman-Oppenheimer-Volkoff (TOV) solutions:
 Static, spherical solutions to Einstein's Eq. w/ perfect fluid;
- **•** Parameterized by $\rho_c = \rho_o(0,0)$

- Tolman-Oppenheimer-Volkoff (TOV) solutions:
 Static, spherical solutions to Einstein's Eq. w/ perfect fluid;
- **Parameterized by** $\rho_c = \rho_o(0,0)$
- Stable & Unstable Solutions

- Tolman-Oppenheimer-Volkoff (TOV) solutions:
 Static, spherical solutions to Einstein's Eq. w/ perfect fluid;
- **Parameterized by** $\rho_c = \rho_o(0,0)$
- Stable & Unstable Solutions
- Isentropic State Equations: $P = K ρ_{\circ}^{\Gamma} , P = (\Gamma 1) ρ_{\circ} ε$ $\Gamma = 2$

- Solve TOV Eq.'s $(\dot{g}_{\mu\nu} = \dot{T}_{\mu\nu} = v = 0)$
- Add in-going coordinate velocity: $U(\tilde{r} = r/R_*) = \frac{u^r}{u^t} = p \tilde{r} \left(\tilde{r}^2 - b\right)$

Match to U = 0

- Solve TOV Eq.'s $(\dot{g}_{\mu\nu} = \dot{T}_{\mu\nu} = v = 0)$
- Add in-going coordinate velocity: $U(\tilde{r} = r/R_*) = \frac{u^r}{u^t} = p \tilde{r} \left(\tilde{r}^2 - b\right)$

Match to U = 0

• Solve ($\alpha' = ...$) and (a' = ...) and find $v = aU/\alpha$

Tune to vary amount of kinetic energy

Initial Data : TOV Solution

Initial Data : TOV + In-going Velocity

Minimally-Coupled Massless Scalar Field

Coupled only through the geometry ("poor man's gravitational wave"):

$$T_{ab} = T_{ab}^{\text{scalar}} + T_{ab}^{\text{fluid}} \quad , \quad G_{ab} = 8\pi T_{ab}$$

$$\frac{dm}{dr} = \frac{dm_{\text{scalar}}}{dr} + \frac{dm_{\text{fluid}}}{dr}$$

Einstein-massless-Klein-Gordon (EMKG) scalar field:

$$T_{ab}^{\text{scalar}} = \nabla_a \phi \nabla_b \phi - \frac{1}{2} g_{ab} \left(\nabla_c \phi \nabla^c \phi \right)$$

$$abla^a
abla_a \phi = 0$$

Parameter Space Survey

- Previous work:
 - S. Shapiro and Teukolsky (1980)
 - Gourgoulhon (1992)
 - Novak (2001)
- Parameterized by v_{\min} and ρ_c
- Dynamical scenarios:
 - Normal Oscillations (O)
 - Shock/Bounce/Oscillations (SBO)
 - Shock/Bounce/Dispersal (SBD)
 - Shock/Bounce/Collapse (SBC)
 - Prompt Collapse (PC)

Normal Oscillations (O)

- **9** All stars, small v_{\min}
- Perturbed stable solution
- Normal, radial oscillations

Normal Oscillations (O)

- All stars, small v_{\min}
- Perturbed stable solution
- Normal, radial oscillations
- Movies: $\ln(\rho_{\circ}(r,t)), \quad \rho_{\circ}(r,t), \quad v(r,t)$

Shock/Bounce/Oscillations (SBO)

- Moderately compact stars, intermediate v_{min}
- Bounce, Core's Rebound \rightarrow Mass Ejection
- Highly-damped oscillations about sparser star

Shock/Bounce/Oscillations (SBO)

- Moderately compact stars, intermediate v_{min}
- Bounce, Core's Rebound \rightarrow Mass Ejection
- Highly-damped oscillations about sparser star
- Movies:

 $\ln \left(
ho_{\circ}
ight) \ \& \ \ln \left(\epsilon
ight) \ ext{vs.} \ \left\{ \ln (r/R_{*}), t
ight\}, \ v \ ext{vs.} \ \left\{ \ln \left(r/R_{*}
ight), t
ight\}$

Shock/Bounce/Dispersal (SBD)

- **9** Sparse stars, small—to—large v_{\min}
- $\textbf{9} \quad \textbf{Bounce, Core's Rebound} \rightarrow \textbf{Dispersal}$
- Negligible mass left behind

Shock/Bounce/Dispersal (SBD)

- **•** Sparse stars, small—to—large v_{\min}
- Sounce, Core's Rebound \rightarrow Dispersal
- Negligible mass left behind
- Movies:

Shock/Bounce/Collapse (SBC)

- Sparse—to—semi-dense stars, medium—to—large v_{min}
- $\textbf{ Bounce} \rightarrow \textbf{Mass Ejection}$
- Black hole formation, $M_{\rm BH} < M_*$

Shock/Bounce/Collapse (SBC)

- Sparse—to—semi-dense stars, medium—to—large v_{min}
- **9** Black hole formation, $M_{\rm BH} < M_*$
- Movies:

a(r,t) , $\alpha(r,t)$, $\rho_{\circ}(r,t)$, v(r,t) $r\in [0,R_{*}]$

Prompt Collapse (PC)

- Nearly all stars, large v_{\min}
- No mass ejection
- Black hole formation, $M_{\rm BH} \simeq M_*$

Prompt Collapse (PC)

- Nearly all stars, large v_{\min}
- No mass ejection
- Black hole formation, $M_{\rm BH} \simeq M_*$
- Movies:

a(r,t) , lpha(r,t) , $ho_\circ(r,t)$, v(r,t)

 $r \in [0, R_*]$

Parameter Space Survey

- $\min(\rho_c^{\rm BH}) \sim 0.007$;
- $\min(M_{\rm BH}) \lesssim 0.017;$
- Arbitrarily small BH's for $ho_c \lesssim 0.05343$, $M_\star \lesssim 0.09$;
- Dynamical scenarios:
 - Normal Oscillations (O)
 - Shock/Bounce/Oscillations (SBO)
 - Shock/Bounce/Dispersal (SBD)
 - Shock/Bounce/Collapse (SBC)
 - Prompt Collapse (PC)

Parameter Space Survey

- $\min(\rho_c^{\rm BH}) \sim 0.007$;
- $\min(M_{\rm BH}) \lesssim 0.017;$
- Arbitrarily small BH's for $ho_c \lesssim 0.05343$, $M_\star \lesssim 0.09$;
- Dynamical scenarios:
 - Normal Oscillations (O)
 - Shock/Bounce/Oscillations (SBO)
 - Shock/Bounce/Dispersal (SBD)
 - Shock/Bounce/Collapse (SBC)
 - Prompt Collapse (PC)

Type I Critical Phenomena

- Hawley & Choptuik (2000): Boson Stars
- Vary p: $\phi(r,0) = p \exp\left(-\left[r - r_{\circ}\right]^2 / \Delta^2\right)$
- Large $p \rightarrow \mathsf{BLACK} \mathsf{HOLE}$
- Small $p \rightarrow NO$ BLACK HOLE (e.g. perturbed star)
- Tuning away the only unstable mode

$$\Rightarrow T_{\circ} \propto \frac{1}{\omega_{Ly}} \ln |p - p^*|$$

Type I Critical Phenomena

$\rho_c = 0.15$

1/143 (3468)		(2.0e+00 , 8.9e-0	1)
0.00e+00	dm/dr		
(-50e-03 , -4.5e-05)			A

- Hawley & Choptuik (2000): Boson Stars
- Vary *p*: $\phi(r,0) = p \exp\left(-\left[r - r_{\circ}\right]^{2} / \Delta^{2}\right)$
- $\textbf{ large } p \ \rightarrow \textbf{BLACK HOLE }$
- Small $p \rightarrow NO$ BLACK HOLE (e.g. perturbed star)
- Tuning away the only unstable mode

$$\Rightarrow T_{\circ} \propto \frac{1}{\omega_{Ly}} \ln |p - p^*|$$

Movies:

dm/dr , $\ln(dm/dr)$ (wide view) , $\ln(dm/dr)$ (closeup)

Type I: Anomalous Case $\rho_c = 0.197$

Movie:

dm/dr

Type I: Anomalous Case $\rho_c = 0.27$

Movies:

dm/dr , $\ln(dm/dr)$

Critical Solution $\stackrel{?}{=}$ **Unstable TOV** ($\rho_c = 0.197$)

Scaling Behavior

Expected scaling relationship:

$$\Rightarrow T_{\circ} \propto \frac{1}{\omega_{Ly}} \ln |p - p^*|$$

Scaling Behavior

Expected scaling relationship:

$$\Rightarrow T_{\circ} \propto \frac{1}{\omega_{Ly}} \ln |p - p^*|$$

$${}$$
 $\omega_{Ly} \propto
ho_c^*$

Type II Critical Phenomena: Motivation

- **J**. Novak (2001):
 - "Ideal-gas" EOS: $P = (\Gamma 1) \rho_{\circ} \epsilon$, $\Gamma = 2$
 - Tuning star's init. vel. \rightarrow Type II critical behavior;
 - $M_{BH} \propto |p-p^*|^{\gamma}$ with $\gamma \simeq 0.52$
- Neilsen and Choptuik (2000), Brady et al. (2002)
 - Studied ultra-relativistic fluid collapse;
 - A limit of "ideal-gas" case where $\rho \equiv (1 + \epsilon) \rho_{\circ} \simeq \rho_{\circ} \epsilon$
 - $P = (\Gamma 1) \rho$, only EOS to admit CSS soln's;
 - For Γ = 2, $\gamma \simeq 0.95 \pm 0.02$
- Neilsen and Choptuik (2000)
 - For $\Gamma = 1.4$: Ideal-gas Type II Sol'n. = Ultra-rel. Type II Sol'n.

Type II Critical Phenomena: Motivation

- J. Novak (2001):
 - "Ideal-gas" EOS: $P = (\Gamma 1) \rho_{\circ} \epsilon$, $\Gamma = 2$
 - Tuning star's init. vel. \rightarrow Type II critical behavior;
 - $M_{BH} \propto |p-p^*|^{\gamma}$ with
- $\gamma \simeq 0.52$
- Neilsen and Choptuik (2000), Brady et al. (2002)
 - Studied ultra-relativistic fluid collapse;
 - A limit of "ideal-gas" case where $\rho \equiv (1 + \epsilon) \rho_{\circ} \simeq \rho_{\circ} \epsilon$
 - $P = (\Gamma 1) \rho$, only EOS to admit CSS soln's;

• For $\Gamma=2$, $\gamma\simeq 0.95\pm 0.02$.

- Neilsen and Choptuik (2000)
 - For $\Gamma = 1.4$: Ideal-gas Type II Sol'n. = Ultra-rel. Type II Sol'n.

Critical Regime of Parameter Space

• $T_{\max} \equiv \text{Global Max.}(T^a{}_a)$

- Anticipated subcritical scaling behavior: $T_{\max} \propto |p - p^*|^{-2\gamma}$ $\gamma = 1/\omega_{Ly}$
- Novak tuned to $\ln |p^* p| \simeq -7$

CSS Solutions of Ideal-gas and Ultra-rel.

- Comparison of dimensionless quantities:
 - $\omega \equiv 4\pi r^2 a^2
 ho$

•
$$a = \sqrt{g_{rr}}$$

• $v = \frac{au^r}{\alpha u^t}$ = Eulerian Velocity (u^{μ} = Fluid's 4-velocity)

• Star:
$$\rho_c = 0.05$$

Ultra-relativistic fluid:
 Initial profile = Gaussian

Scaling of T_{max} : Dependence on Fluid's Floor

γ	p^*
0.9427	0.46875367383
0.9436	0.46875350285
0.9470	0.4687516089

- Floor used to prevent $v \ge 1$, $P, \rho_{\circ} < 0$
- No significant effect;

Scaling of T_{max} : Different "Families"

γ	p^*
0.9427	0.46875367383
0.9423	0.42990315097
0.9187	0.4482047429836

- Suggests scaling is fairly independent of:
 - Functional form of perturbation;
 - Initial star configuration;

Scaling of T_{max} : **Different Flux Functions**

γ	p^*
0.9427	0.46875367383
0.9399	0.46876822118

- Suggests scaling is independent of flux formula;
- Able to tune further with "Smoothed" Roe solver;

Comparison of Scaling Parameters

Noble and Choptuik	Ideal gas	$\gamma = 0.94 \pm 0.01$
Noble and Choptuik	Ultra-relativistic fluid	$\gamma = 0.9747$
Neilsen and Choptuik (2000) and Brady et al. (2002)	Ultra-relativistic fluid	$\gamma = 0.95 \pm 0.02$
Novak (2001)	Ideal gas	$\gamma \simeq 0.52$

Conclusion

- Parameter Space Survey:
 - Illuminated possible dynamical scenarios
 - Provided a backdrop for critical phenomena studies
- **J** Type I Behavior:
 - $\scriptstyle \bullet \,$ Critical solutions \simeq perturbed unstable TOV solutions
 - Found anticipated scaling behavior $T_{\circ} \propto \frac{1}{\omega_{Ly}} \ln |p p^*|$
 - $\omega_{Ly} \propto
 ho_c^*$
- Type II Behavior:
 - $\scriptstyle \bullet \,$ Ideal gas critical solution \simeq ultra-relativistic critical solution
 - $\gamma_{\rm ideal} \simeq \gamma_{\rm ultra-rel}$

Future Work

- Type I Phenomena:
 - Compare results to ω_{Ly} of unstable TOV growing modes
 - Axially-symmetric collapse, effect of rotation
 - How $\omega_{Ly}(\rho_c^*)$ varies with Γ
 - Dependence on EOS
- Type II Phenomena:
 - Realistic equation of state
 - Axially-symmetric critical behavior
 - Develop general adaptive mesh refinement methods for relativistic fluids