Frontiers in Computational Relativistic Magnetohydrodynamics Applied to Astrophysical Systems: Predicting Light Signatures of Black Holes

Scott Noble

M. Campanelli, J. Krolik, B. Mundim, H. Nakano, B. Vazquez, J. Schnittman, N. Yunes, Y. Zlochower RIT Johns Hopkins Montana State U. NASA Goddard

CCP 2012 * Kobe, Japan *

October 18, 2012

The Exciting World of Black Hole Accretion!

Name	Small Black Holes	Big Black Holes
Aliases	Stellar Mass Black Holes Galactic Black Holes	Supermassive Black Holes Active Galactic Nuclei (AGN)
Masses	~3 - 100 M _{sun}	10 ⁵ - 10 ¹⁰ M _{sun}
Locale	Our Galaxy (those we can seen)	Centers of Galaxies
Typical Method of Observation	Radio, X-rays	Radio, X-rays
Jets?	Yes	Yes
Greater Relevance	Stelllar Mass Distribution, Grav. Wave source populations	Star formation rates, interstellar/ intergalactice medium, galactic evol.
		Core of Galaxy NGC 426

Hubble Space Telescope Wide Field / Planetary Camera

Ground-Based Optical/Radio Image THST Image of a Gas and Dust Disk HST Image of a Gas and Dust Disk Image of a Gas and Dust

380 Arc Seconds 88,000 LIGHTYEARS

Closeup Views of Black Holes

Done et al 2007

Line flux (photons $cm^{-2} s^{-1} keV^{-1}$)

Closeup Views of Black Holes

0402 + 379

Xu et al. 1994

Gravitational

Waves

Maness et al. 2004

d = 5 pc

Radio and sub-mm

2.5

2.0 1.5

1.0

.5

5 -1.0

-1.5 -2.0 -2.5

M87 Walker++2008 (Rsch) 0 Doeleman++2012 Diameter 8 Lensed ISCO 6 4 0.2 0.4 0.6 0.8 0 MILLIARC SEC Black Hole Spin

8 GHz MilliARC SEC Rodriguez et al. 2006 Weakly Emitting. -20 -10 -5 MilliARC SEC

> SDSS J153636.22+044127.0 d = 0.1 pc

Lauer & Boroson 2009

Black Hole Accretion Anatomy

Black Hole Accretion Anatomy

Ideal MHD = Magnetohydrodynamics

Radiative Transfer, Ray-tracing

Multi-species thermodynamics

•GR = General Relativity

General Relativistic Magnetohydrodynamics

Internal

Energy

Density

 $T_{\mu\nu} = (\rho + u + p + 2p_m) u_{\mu}u_{\nu} + (p + p_m) g_{\mu\nu} - b_{\mu}b_{\nu}$

Mass Density

Fluid's Magnetic Magnetic Gas **Pressure 4-velocity Pressure**

Radiative Energy & Momentum Loss 4-vector

Spacetime Metric:

$$ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu}$$

General Relativistic Magnetohydrodynamics

$$\begin{aligned} \frac{\partial}{\partial t}\sqrt{-g} \begin{bmatrix} T^{\mu}_{t} + \rho u^{t} \\ T^{t}_{j} \\ B^{k} \end{bmatrix} + \frac{\partial}{\partial x^{i}}\sqrt{-g} \begin{bmatrix} \rho u^{i} \\ T^{i}_{t} + \rho u^{i} \\ T^{i}_{j} \\ (b^{i}u^{k} - b^{k}u^{i}) \end{bmatrix} = \sqrt{-g} \begin{bmatrix} T^{\kappa}_{\lambda}\Gamma^{\lambda}_{t\kappa} - \mathcal{F}_{t} \\ T^{\kappa}_{\lambda}\Gamma^{\lambda}_{j\kappa} - \mathcal{F}_{j} \\ 0 \end{bmatrix} \end{aligned}$$
Spacetime Metric: $ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu}$
E.g.,
Schwarzschild $ds^{2} = -(1 - 2M/r) dt^{2} + (1 - 2M/r)^{-1} dr^{2} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2}$
Metric:
Christoffel Symbols: $\Gamma^{\mu}_{\nu\kappa} = \frac{1}{2}g^{\mu\sigma} \left(\frac{\partial}{\partial x^{\nu}}g_{\kappa\sigma} + \frac{\partial}{\partial x^{\kappa}}g_{\nu\sigma} - \frac{\partial}{\partial x^{\sigma}}g_{\nu\kappa}\right)$

$$x^{0'} = t = x^{0} \\ x^{1'} = r = Mc^{x^{1}} \\ x^{2'} = \theta = \theta(x^{2}) = \frac{\pi}{2} \left[1 + (1 - \xi) \left(2x^{2} - 1\right) + \left(\xi - \frac{2\theta_{c}}{\pi}\right) \left(2x^{2} - 1\right)^{n} \right] \qquad g_{\mu\nu} = \frac{\partial x^{\mu'}}{\partial x^{\mu}} \frac{\partial x^{\nu'}}{\partial x^{\nu}}g_{\mu'\nu'}$$

GRMHD Numerical Method (Harm3D)

Geometry and Coordinates:

- Harm3d written largely independent of chosen coordinate system (covariance)
 - GRMHD code Noble++2009
 - Now able to handle "arbitrary" spacetimes, though one must be specified;
 - Equations solved on a uniform discretized domain in system of coordinates tailored to the problem;
 - Efficiency through simple uniform domain decomposition:
 - Adaptivity pushed to the warped system of coordinates;
- Prefer to use coordinates similar to spherical coordinates to accurately evolve disks with significant azimuthal component;
 - Minimizes dissipation;
 - Allows us to better track transport of angular momentum --> essential for understanding disks;
- Grid must resolve dominant modes of the magnetorotational instability, responsible for ang. mom. transport;

Sano++2004 Noble++2010 Hawley++2011

Finite Volume Method:

- High-resolution Shock-capturing techniques;
- Reconstruction of Primitive var's (density, pressure, velocities) at cell interfaces:
 - Piecwise parabolic (PPM)
- Approximate Riemann solver:
 - Lax-Friedrichs (HLL available)
- Conserved variables are advanced in time using Method of Lines with 2nd-order Runge-Kutta;
- Primitives are recovered from Conserved var's using "2D" and "1DW" algorithms from Noble++2006

Solenoidal Constraint Enforcement:

- $\partial_i B^i \neq 0$ leads to :
 - Nón-perpendicular Lorentz forces to Bⁱ
 - Inconsistency with MHD;
 - Sometimes instabilities and artifacts;
- 3d, modified version of Flux-CT of Toth 2000

$$\mathcal{E}^z = v^x B^y - v^y B^x = f^x$$

GRMHD Numeric

Failure Recovery:

- "Con2Prim" or Primitive var. calculation can often lead to an unphysical state;
- Large scale simulations demand robust schemes that handle instabilities on the fly;
- Use a variety of methods:
 - Alternate Con2Prim routines;
 - Simpler state equations;
 - Interpolation...

The Fixup Tree #2 dtU All Results True Result False Result T1 (T12) т2 Τ7 Т8 Т13 (T13) (T10) (T14) (T14) ТЗ) (т11) (тз) DONE DONE

<u>Failure Recov</u>

- "Con2Prim" or often lead to ar
- Large scale sim schemes that h
- Use a variety of
 - Alternate C
 - Simpler state equations;

C

Interpolation...

Typical Production Run:

- ~ 1 Millions SUs;
- **2000-4000** cores;
 - 80% efficiency going from 2,400 --> 16,000 cores
- 2e7 cells, 1e6 1e7 time steps;
- Single BH: 33,000 zone-cycles/sec/core;
- Binary BH: 11,000 zone-cycles/sec/core;
- Clusters typically used: Ranger, Kraken

General Relativistic Radiative Transfer

Geodesic Calculation:

- 8 coupled ODEs per ray;
- Burlisch-Stoer Method:
 - Adaptive stepsize
 - Richardson Extrapolation;
- Special stepsize control near black holes
- Integrations start at camera and go through source to guarantee desired image resolution:
 - Rays point forward in time;
 - Rays are integrated backward in time;

Radiative Transfer:

- 1 ODE per ray
- Same intergrator as that used by geodesics;
- Neglects scattering;
- Difficulty is in accurate and fast emissivity and absorption function;
- Emissivity models:
 - Synchrotron;
 - Bremsstrahlung;
 - Black body;
 - Bolometric model; (see Noble++2009)

Monte Carlo Radiative Transfer:

$$u^{\mu} = \frac{\partial x^{\mu}}{\partial \lambda} \qquad \frac{\partial u^{\mu}}{\partial \lambda} = -\Gamma^{\mu}{}_{\nu\kappa}u^{\nu}u^{\kappa}$$
$$\Gamma^{\mu}{}_{\nu\kappa} = \frac{1}{2}g^{\mu\sigma} \left(\frac{\partial}{\partial x^{\nu}}g_{\kappa\sigma} + \frac{\partial}{\partial x^{\kappa}}g_{\nu\sigma} - \frac{\partial}{\partial x^{\sigma}}g_{\nu\kappa}\right)$$
$$\underbrace{N_{\text{rays}} = N_{t}N_{\theta}N_{\theta}N_{i}N_{j}N_{\nu}N_{M}N_{\rho}}_{N_{\text{rays}} = 10^{9}N_{\nu}N_{M}N_{\rho}}$$
$$\underbrace{N_{\text{rays}} = 10^{9}N_{\nu}N_{M}N_{\rho}}_{N_{\text{rays}} \sim N_{x}^{0}N_{x^{1}}N_{x^{2}}N_{x^{3}}}$$
$$\underbrace{\frac{\partial I}{\partial \lambda} = j - \alpha I}_{j}$$
$$\frac{\partial I}{\partial \lambda} = j(\rho, p, u^{\mu}, B^{i}, \nu)$$
$$j = j(\rho, p, u^{\mu}, B^{i}, \nu)$$

Schnittman & Krolik 2009

- Rays shot from source, collected at distance observer;
 - All other emissivity models plus:
 - Inverse Compton Scattering;
 - Reflection emission (e.g., Fe lines);

SCN, Krolik, Hawley 2010

 ρ

ThinHR: H/R = 0.06 912x160x64 a = 0M

SCN, Krolik, Hawley 2010

ThinHR: H/R = 0.06 912x160x64 a = 0Mt/M = 0.

10 -8 -6 -4 -2

1

E (keV)

10

Noble, Schnittman, Krolik, Hawley 2011

NT = Novikov-Thorne = Standard time-axisymmetric cold disk solution

Thermal Spectrum of Thin Disks:

Noble, Schnittman, Krolik, Hawley 2011

NT = Novikov-Thorne = Standard time-axisymmetric cold disk solution

> Bremsstrahlung: Red = Disk, Soft X-rays Blue = Corona, Hard X-rays

Monte Carlo Inverse Compton Emission

Schnittman, Krolik, Noble 2012

Thermal Spectrum of Thin Disks:

Noble, Schnittman, Krolik, Hawley 2011

NT = Novikov-Thorne = Standard time-axisymmetric cold disk solution

Monte Carlo Inverse Compton Emission

Bremsstrahlung: Red = Disk, Soft X-rays Blue = Corona, Hard X-rays

Binary Black Hole Spacetimes

1) Solve Einstein's Equations: Numerical Relativity

- Set of 12 second-order non-linear PDEs with constraints and gauge choices;
- Two-body problem solved only after ~30 years of research;
- Require grid refinement hierarchies that follow BHs --- not amenable for disk evolutions
- Please recall talks by Rezzolla, Loffler, Montero;

2) Approximate Spacetimes

- Solve Einstein's Equations approximately, perturbatively;
- Expand equations to orders of 2.5 Post-Newtonian order

$$\epsilon_i = m_i/r_i \sim (v_i/c)^2$$

- Used as initial data of Numerical Relativity simulations;
- BHs rigidly rotate at Post-Newtonian Frequency;
- a₀ = 20M;
- Domain: $r = [0.75 a_0, 13a_0] = [15M, 260M];$
- Keep binary at fixed separation until t = 40,000M;
- For t > 40,000M, let BHB inspiral according to PN;

Yunes++2006

Shrinking

Flux

The "Lump"

 $\Sigma(r,\phi) \equiv \int d\theta \sqrt{-g} \rho / \sqrt{g_{\phi\phi}}$

GRMHD: Noble++2012

Newtonian MHD: Shi++2012

1.0

0.8

0.6

0.4

0.2

0.0

•Also, seen in:

- Self-gravitating Newtonian hydro:
 - •D'Orazio++2012
 - •Roedig++2012

"low-pass" filter of disk's opacity: 0.16 (α) < f

 $0.16\left(\frac{\alpha}{0.3}\right) \lesssim f_{\text{supp}} \lesssim 0.32\left(\frac{\alpha}{0.3}\right)$ --> Ray-tracing may help determine quality of signal

Current & Future Directions

Binary Black Hole Ray-tracing:

•With Billy Vazquez (grad student);

Use Superimposed Boosted Dual Kerr-Schild black holes; Bonning++2009
Binary "orbits" via rigid rotation;

Binary Black Hole Ray-tracing:

With Billy Vazquez (grad student);

Use Superimposed Boosted Dual Kerr-Schild black holes; Bonning++2009
Binary "orbits" via rigid rotation;

Isotropic

Constrained to BBH's Plane

Dynamic Coordinates to Resolve Binary Black Holes

Load Balancing Domain Decomposition Regions of Validity

 Different zones of the spacetime vary in computational cost of evaluating metric;

 Black Holes (or zones) move through the grid --> "dynamic" load balancer;

Conclusions

- We have the tools to model single black hole accretion disks in 3D;
- We have the tools to make observational predictions from these simulations;
- We are in the process of applying these tools to the binary case;
 - Predicted a periodic EM signal that could be used for identifying close binaries by all-sky high-cadence campaigns (e.g., LSST, Pan-STARRS);
 - Additional computational techniques are required for the sake of runtime efficiency, load balancing and scaling to O (10⁴ - 10⁵) cores;

MRI Resolution

Sano++ 2004 Noble++ 2010 Guan, Gammie 2010 Sorathia++ 2010, 2011 Hawley++ 2011

Plasma Beta parameter = pgas / pmag

-1

-2

-3

-4

-5

