Frontiers in Computational Relativistic Magnetohydrodynamics Applied to Astrophysical Systems:

 Predicting Light Signatures of Black Holes

 Predicting Light Signatures of Black Holes}

Scott Noble

M. Campanellifo. Krolik, B. Mundim, H. Nakano,
B. Vazquez; Schnittman; N Yunes, Y: Zlochower

RIT
Johns Hopkins Montana State U. NASA Goddard

CCP 2012 * Kobe, Japan * October 18, 2012

The Exciting World of Black Hole Accretion!

Name	Small Black Holes	Big Black Holes
Aliases	Stellar Mass Black Holes Galactic Black Holes	Supermassive Black Holes Active Galactic Nuclei (AGN)
Masses	~3-100 Msun	$10^{5}-10^{10} \mathrm{M}$ sun
Locale	Our Galaxy (those we can seen)	Centers of Galaxies
Typical Method of Observation	Radio, X-rays	Radio, X-rays
Jets?	Yes	Yes
Greater Relevance	Stellar Mass Distribution, Grav. Wave source populations	Star formation rates, interstellar/ intergalactice medium, galactic evol.
	nextyuylez	Core of Galaxy NGC 426I Hubble Space Telescope Wide Field / Planetary Camera HST Image of a Gas and Dust Disk

Closeup Views of Black Holes

Closeup Views of Black Holes

$0402+379$
$\mathrm{d}=5 \mathrm{pc}$
Xuetal:1994
Maness et
Rodriguezetal:2006
Weakly Enitting
Gravitatiónal
Waves

SDSS $153636.22+044127.0$ $\mathrm{d}=0.1 \mathrm{pc}$
Lauer \& Boroson 2009

avesueswevesumbery

Black Hole Accretion Anatomy

Radio
$x-r=1 y s$

UV, X-rays

Disk's Bulk

Black Hole Accretion Anatomy

-ldeal MHD = Magnetohydrodynamics

- Radiative Transfer, Ray-tracing
-Multi-species thermodynamics
- GR = General Relativity

General Relativistic Magnetohydrodynamics

$$
\frac{\partial}{\partial t} \mathbf{U}(\mathbf{P})+\frac{\partial}{\partial x^{i}} \mathbf{F}^{i}(\mathbf{P})=\mathbf{S}(\mathbf{P})
$$

$\frac{\partial}{\partial t} \sqrt{-g}\left[\begin{array}{c}\rho u^{t} \\ T_{t}^{t}+\rho u^{t} \\ T_{j}^{t}{ }^{k} \\ B^{k}\end{array}\right]+\frac{\partial}{\partial x^{i}} \sqrt{-g}\left[\begin{array}{c}\rho u^{i} \\ T^{i} t+\rho u^{i} \\ T^{i}{ }_{j} \\ \left(b^{i} u^{k}-b^{k} u^{i}\right)\end{array}\right]=\sqrt{-g}\left[\begin{array}{c}0 \\ T^{\kappa}{ }^{\kappa} \Gamma^{0}{ }_{t k}-\mathcal{F}_{t} \\ T^{\kappa}{ }^{\lambda} \Gamma^{\lambda}{ }_{j k}-\mathcal{F}_{j} \\ 0\end{array}\right]$

Internal
Energy Density

$$
T_{\mu \nu}=\left(\rho+u+p+2 p_{m}\right) u_{\mu} u_{\nu}+\left(p+p_{m}\right) g_{\mu \nu}-b_{\mu} b_{\nu}
$$

Radiative
Energy \& Momentum
Gas Hiud's Magnetic Pressure 4 velocity Pressure 4 -vector

$$
d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}
$$

General Relativistic Magnetohydrodynamics

$\frac{\partial}{\partial t} \sqrt{-g}\left[\begin{array}{c}\rho u^{t} \\ T^{t}{ }_{t}+\rho u^{t} \\ T^{t}{ }_{j} \\ B^{k}\end{array}\right]+\frac{\partial}{\partial x^{i}} \sqrt{-g}\left[\begin{array}{c}\rho u^{i} \\ T^{i}{ }_{t}+\rho u^{i} \\ T^{i}{ }_{j} \\ \left(b^{i} u^{k}-b^{k} u^{i}\right)\end{array}\right]=\sqrt{-g}\left[\begin{array}{c}0 \\ T^{\kappa}{ }_{\lambda} \Gamma^{\lambda}{ }_{t \kappa}-\mathcal{F}_{t} \\ T^{\kappa}{ }_{\lambda} \Gamma^{\lambda}{ }_{j \kappa}-\mathcal{F}_{j} \\ 0\end{array}\right]$

$$
\text { Spacetime Metricotad } d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}
$$

E.g.,

Schwarzschild $d s^{2}=-(1-2 M / r) d t^{2}+(1-2 M / r)^{-1} d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2}$ Metric:

Christoffel Symbols:

$$
\Gamma^{\mu}{ }_{\nu \kappa}=\frac{1}{2} g^{\mu \sigma}\left(\frac{\partial}{\partial x^{\nu}} g_{\kappa \sigma}+\frac{\partial}{\partial x^{\kappa}} g_{\nu \sigma}-\frac{\partial}{\partial x^{\sigma}} g_{\nu \kappa}\right)
$$

$$
\begin{aligned}
& x^{0^{\prime}}=t=x^{0} \\
& x^{1^{\prime}}=r=M e^{x^{1}} \\
& x^{2^{\prime}}=\theta=\theta\left(x^{2}\right)=\frac{\pi}{2}\left[1+(1-\xi)\left(2 x^{2}-1\right)+\left(\xi-\frac{2 \theta_{c}}{\pi}\right)\left(2 x^{2}-1\right)^{n}\right] \quad g_{\mu \nu}=\frac{\partial x^{\mu^{\prime}}}{\partial x^{\mu}} \frac{\partial x^{\nu^{\prime}}}{\partial x^{\nu}} g_{\mu^{\prime} \nu^{\prime}} \\
& x^{3^{\prime}}=\phi=x^{3}
\end{aligned}
$$

GRMHD Numerical Method (Harm3D)

Geometry and Coordinates:

* Harm3d written largely independent of chosen coordinate system (covariance)
* GRMHD code Noble++2009
* Now able to handle "arbitrary" spacetimes, though one must be specified;
* Equations solved on a uniform discretized domain in system of coordinates tailored to the problem;
* Efficiency through simple uniform domain decomposition:
- Adaptivity pushed to the warped system of coordinates;
* Prefer to use coordinates similar to spherical coordinates to accurately evolve disks with significant azimuthal component;
* Minimizes dissipation;
- Allows us to better track transport of angular momentum --> essential for understanding disks;
. Grid must resolve dominant modes of the magnetorotational instability, responsible for ang. mom. transport;

Sanot+2004 Noblé +2010 Hawleyt+2011

Finite Volume Method:

. High-resolution Shock-capturing techniques;

- Reconstruction of Primitive var's (density, pressure, velocities) at cell interfaces:
- Piecwise parabolic (PPM)
- Approximate Riemann solver:
- Lax-Friedrichs (HLL available)
- Conserved variables are advanced in time using Method of Lines with 2nd-order Runge-Kutta;
- Primitives are recovered from Conserved var's using "2D" and "1DW" algorithms from Noble++2006

Solenoidal Constraint Enforcement:

- $\partial_{i} B^{i} \neq 0$ leads to:
* Non-perpendicular Lorentz forces to B^{i}
* Inconsistency with MHD;
- Sometimes instabilities and artifacts;
* 3d, modified version of Flux-CT of Toth 2000

$$
\mathcal{E}^{z}=v^{x} B^{y}-v^{y} B^{x}=f^{x}
$$

GRMHD Numerical Method (Harm3D)

Solenoidal Constraint Enforcement:

- $\partial_{i} B^{i} \neq 0$ leads to:
* Non-perpendicular Lorentz forces to Bi
* Inconsistency with MHD;
* Sometimes instabilities and artifacts;
- 3d, modified version of Flux-CT of Toth 2000

$$
\mathcal{E}^{z}=v^{x} B^{y}-v^{y} B^{x}=f^{x}
$$

Failure Recovery

" "Con2Prim" or Primitive var. calculation can often lead to an unphysical state;

- Large scale simulations demand robust schemes that handle instabilities on the fly;
- Use a variety of methods:
. Alternate Con2Prim routines;
* Simpler state equations;
- Interpolation...

The Fixup Tree \#2

GRMHD Numerical Method (Harm3D)

Failure Recovery:

- "Con2Prim" or Primitive var. calculation can often lead to an unphysical state;
- Large scale simulations demand robust schemes that handle instabilities on the fly;
- Use a variety of methods:
- Alternate Con2Prim routines;
- Simpler state equations;
- Interpolation...

Typical Production Run:

- ~ 1 Millions SUs;
- 2000-4000 cores;
- 80% efficiency going from 2,400 --> 16,000 cores
» $2 e 7$ cells, 1e6-1e7 time steps;
* Single BH: 33,000 zone-cycles/sec/core;
* Binary BH: 11,000 zone-cycles/sec/core;

Name	Description
T1	$P=P_{i}(U)$

True Condition
All $P_{i}(U)$ return true or

		$\gamma>\gamma_{\text {max } 2}$
T2	check_floor (P)	$\rho<\rho_{f}$ or $u<u_{f}$
T3	check_gamma (P)	$\gamma>\gamma_{\text {max1 }}$
T4	$P_{e e}=P_{e e}(U)$	If $P_{e e}$ returns true
T7	interp	If there are too few good nearest neighbors
T8	fixup_floor	Never
T9	fixup_gamma	Never
T10	$P=P_{\text {old }}$	Never
T11	interp	If there are too few good nearest neighbors

T12	check_entropy_eq (P)	If $u<\beta_{\min } b^{2}$
T13	check_Tmax	$u>T_{\max } \rho$
T14	fixup_Tmax	Never

General Relativistic Radiative Transfer

Geodesic Calculation:

- 8 coupled ODEs per ray;
- Burlisch-Stoer Method:
* Adaptive stepsize
- Richardson Extrapolation;
* Special stepsize control near black holes
- Integrations start at camera and go through source to guarantee desired image resolution:
- Rays point forward in time;
- Rays are integrated backward in time;

Radiative Transfer:

* 1 ODE per ray
- Same intergrator as that used by geodesics;
- Neglects scattering;
* Difficulty is in accurate and fast emissivity and absorption function;
- Emissivity models:
- Synchrotron;
- Bremsstrahlung;
- Black body;
- Bolometric model; (see Noble++2009)

Monte Carlo Radiative Transfer:
$\mu^{*}=\frac{\partial \partial^{2 \mu}}{\partial \lambda}$ $\frac{\partial u^{\mu}}{\partial \lambda}=-\Gamma_{\nu \kappa}^{\mu} u^{\nu} u^{\kappa}$ $\Gamma_{\nu \kappa}^{\mu}=\frac{1}{2} g^{\mu \sigma}\left(\frac{\partial}{\partial x^{\nu}} g_{\kappa \sigma}+\frac{\partial}{\partial x^{\kappa}} g_{\nu \sigma}-\frac{\partial}{\partial x^{\sigma}} g_{\nu \kappa}\right)$

$$
N_{\text {rays }}=N_{t} N_{\theta} N_{\theta} N_{i} N_{j} N_{\nu} N_{M} N_{\rho}
$$

$$
N_{\text {rays }}=10^{9} N_{\nu} N_{M} N_{\rho}
$$

$$
N_{\text {rays }} \sim N_{x^{0}} N_{x^{1}} N_{x^{2}} N_{x^{3}}
$$

$$
\frac{\partial I}{\partial \lambda}=j-\alpha I
$$

$$
\alpha=\alpha\left(\rho, p, u^{\mu}, B^{i}, \nu\right)
$$

$$
j=j\left(\rho, p, u^{\mu}, B^{i}, \nu\right)
$$

* Schnittman \& Krolik 2009
- Rays shot from source, collected at distance observer;
- All other emissivity models plus:
- Inverse Compton Scattering;
- Reflection emission (e.g., Fe lines);

SCN, Krolik, Hawley 2010

ThinHR: $H / R=0.06$
 $912 \times 160 \times 64$

SCN, Krolik, Hawley 2010
ThinHR: H/R = 0.06 $\quad 912 \times 1.60 \times 64 . a=0 M$

-10	-8	-6	-4	-2

$t / M=8000$

Corona's X-ray Variability:

$$
i=53^{\circ}
$$

Noble \& Krolik 2009

$$
\begin{aligned}
& P \sim \nu^{\alpha} \\
& -3<\alpha<-1
\end{aligned}
$$

Markowitz et al 2003

$$
\dot{m}=0.003
$$

Thermal Spectrum of Thin Disks:

Thermal Spectrum of Thin Disks:

Monte Carlo Inverse Compton Emission

Schnittman, Krolik, Noble 2012

Noble, Schnittman, Krolik, Hawley 2011

NT: Novikov-Thorne - Standard time-ax
symmetric cold disk solution

Bremsstrahling:
Red = Disk, Soft X-rays Blue - Corona, Hard X-rays

Thermal Spectrum of Thin Disks:

Monte Carlo Inverse Compton Emission

Noble, Schnittman, Krolik, Hawley 2011

NT: Novikov-Thorne - Standard time-ax symmetric cold disk solution

Schnittman, Krolik, Noble 2012

Binary Black Hole Spacetimes

1) Solve Einstein's Equations: Numerical Relativity

- Set of 12 second-order non-linear PDEs with constraints and gauge choices;
- Two-body problem solved only after 30 years of research;
- Require grid refinement hierarchies that follow BHS not amenable for disk evolutions
- Please recall talks by Rezzolla, Loffler, Montero;

2) Approximate Spacetimes

- Solve Einstein's Equations approximately, perturbativelys
- Expand equations to orders of 2.5 Post Newtonian order

$$
\epsilon_{i}=m_{i} / r_{i} \sim\left(v_{i} / c\right)^{2}
$$

- Used as initial data of Numerical Relativity simulations;
- BHs rigidy rotate at Post Newtonian Frequency:
- $20=20 \mathrm{M}$;

$\frac{8}{8}$

The "Lump"

$$
\Sigma(r, \phi) \equiv \int d \theta \sqrt{-g} \rho / \sqrt{g_{\phi \phi}}
$$

Newtonian MHD: $\mathrm{Shit+2012}$

QAlso, seen in:

- Self-gravitating Newtonian hydro: - D'Orazio + +2012
-Roedig++2012

Periodic Signal

$r_{\text {lump }} \simeq 2.5 a$

$$
\begin{aligned}
& \omega_{\text {peak }}=2\left(\Omega_{\text {jin }} \quad \Omega_{\text {lump }}\right)
\end{aligned}
$$

May be obfuscated by "low-pass" filter of disk's opacity:

$$
0.16\left(\frac{\alpha}{0.3}\right) \lesssim f_{\text {stpp }} \propto 0.32\left(\frac{\alpha}{0.3}\right)
$$

\rightarrow Ray-tracing may help determine quality of signal

Current \& Future Directions

Binary Black Hole Ray-tracing:

- With Billy Vazquez (grad student);
- Use Superimposed Boosted Dual Kerr Schild black holes; Bonning ti2009
- Binary "orbits" via rigid rotation;

Binary Black Hole Ray tracing:

- With Billy Vazquez (grad student);
-Use Superimposed Boosted Dual Ken' Schild black holes; : Bongingt t2009
- Binary "orbits" via rigid rotation:

Constrained to BBH's Plane
Isotropic

Dynamic Coordinates to Resolve Binary Black Holes

Load Balancing Domain Decomposition

- Different zones of the spacetime vary in computational cost of evaluating metric;
- Black Holes (or zones) move through the grid $->$ dynamic" load balancer;

Relative Cost
Per Cell
Inner
3
Inner/Near Buffer 4
Near
1
Near/Far Buffer 2

Far	~ 1

Conclusions

- We have the tools to model single black hole accretion disks in 3D;
-We have the tools to make observational predictions from these simulations;
-We are in the process of applying these tools to the binary case;
-Predicted a periodic EM signal that could be used for identifying close binaries by all sky high-cadence campaigns (e.g. LSST, Pan-STARRS);
-Additional computational techniques are required for the sake of runtime efficiency, load balancing and scaling to 0 ($10^{4}-10^{5}$) cores;

Extra Slices

MRI Resolution

$$
Q^{i}=\frac{2 \pi\left|b^{i}\right|}{\Delta x^{i} \Omega(r) \sqrt{\rho h+2 p_{m}}}
$$

Sano++ 2004 Noble++ 2010 Guan, Gammie 2010, Sorathiat+2010,2011 Hawley ++2011

Plasma Beta parameter $=$ pgas $/$ pmag

Resolution Constraints: MRI

Sano++ 2004 Noble++ 2010 Guan Gammie 2010 Sorathia+t 2010,2011 Hawley+ +2011:

$$
N_{\phi} \simeq 1000(0.1 R / H)(\beta / 100)^{1 / 2}\left(Q_{\phi} / 10\right)
$$

$4 \mathrm{H} / \mathrm{r} \quad 3 \mathrm{H} / \mathrm{r} \quad 2 \mathrm{H} / \mathrm{r} \quad \mathrm{H} / \mathrm{r}$

$$
N_{z} \simeq 16(\beta / 100)^{1 / 2}\left(\left\langle v_{A}^{2}\right\rangle /\left\langle v_{A z}^{2}\right\rangle\right)^{1 / 2}\left(Q_{z} / 10\right)
$$

$$
\begin{gathered}
Q_{z}=\lambda_{M R I} / \Delta z= \\
\beta_{z} / \beta \simeq 50 \\
\beta \simeq 10 \\
\beta=6
\end{gathered}
$$

$N_{\theta}>36$ per H / r
$\theta=\frac{\pi}{2}\left[1+h_{s}\left(2 x^{2}-1\right)+\left(1-h_{s}-2 \theta_{c} / \pi\right)\left(2 x^{2}-1\right)^{n}\right] N_{\theta}=160, h_{s}=0.13, n=9, \theta_{c}=10^{-15}$

